Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = indanones

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2929 KiB  
Article
Synthesis and Electronic Properties of Novel Donor–π–Acceptor-Type Functional Dyes with a Carbonyl-Bridged Bithiophene π-Spacer
by Miyu Ueda, Ryo Nagayama, Masaki Nagaoka, Naoya Suzuki, Shintaro Kodama, Takeshi Maeda, Shin-ichiro Kato and Shigeyuki Yagi
Molecules 2025, 30(15), 3084; https://doi.org/10.3390/molecules30153084 - 23 Jul 2025
Viewed by 268
Abstract
In this study, we synthesized novel donor–π–acceptor (D–π–A) functional dyes bearing a carbonyl-bridged bithiophene as a π-conjugated spacer and evaluated the absorption and fluorescence properties as well as the photostability. The developed dyes 1-CO3-CO possess an N,N-diphenylaminophenyl electron [...] Read more.
In this study, we synthesized novel donor–π–acceptor (D–π–A) functional dyes bearing a carbonyl-bridged bithiophene as a π-conjugated spacer and evaluated the absorption and fluorescence properties as well as the photostability. The developed dyes 1-CO3-CO possess an N,N-diphenylaminophenyl electron donor unit and an electron acceptor unit such as a formyl group (1-CO), an (N,N-diethylthiobarbituryl)methylene moiety (2-CO), or a (3-dicyanomethylidene-1-indanon-2-yl)methylene moiety (3-CO). The absorption spectra of 1-CO3-CO in dichloromethane at room temperature showed absorption maxima at 569 nm, 631 nm, and 667 nm, respectively, and the stronger acceptors in 2-CO and 3-CO led to enhancement of the ICT character. In addition, 2-CO and 3-CO had a second absorption band in the visible region, showing panchromatic absorption properties. Electrochemical analyses of the developed dyes revealed that the carbonyl bridging group in the π-spacer contributes to stabilization of the frontier orbitals such as the highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO, respectively), in comparison with the referential dyes bearing a dibutylmethylene-bridged bithiophene spacer, 1-CBu23-CBu2. The HOMO/LUMO stabilization brought about high photostability in the doped poly(methyl methacrylate) film. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

20 pages, 2014 KiB  
Article
Stereochemical Characterization of Optically Active Indane and Phenylpropyl Derivatives Obtained Through Biotransformation by the Marine-Derived Fungi Emericellopsis maritima BC17 and Purpureocillium lilacinum BC17-2
by Jorge R. Virués-Segovia, Salvador Muñoz-Mira, Nuria Cabrera-Gómez, Marta Pacheco, María Gómez-Marín, Javier Moraga, Rosa Durán-Patrón and Josefina Aleu
J. Mar. Sci. Eng. 2025, 13(8), 1386; https://doi.org/10.3390/jmse13081386 - 22 Jul 2025
Viewed by 280
Abstract
Indane and phenylpropyl derivatives are interesting precursors for the synthesis of bioactive compounds, including those with antifungal or anti-inflammatory properties. In light of the increasing interest in the biocatalytic potential of marine-derived fungi, a study was conducted in which the substrates indene ( [...] Read more.
Indane and phenylpropyl derivatives are interesting precursors for the synthesis of bioactive compounds, including those with antifungal or anti-inflammatory properties. In light of the increasing interest in the biocatalytic potential of marine-derived fungi, a study was conducted in which the substrates indene (1), indanone (2), 5-chloroindanone (2a), 1-phenylpropyl acetate (3), and 1-(4′-chlorophenyl)propyl acetate (3a) were biotransformed by the marine sediment-derived fungal strains Purpureocillium lilacinum BC17-2 and Emericellopsis maritima BC17. Fermentations led to the isolation of sixteen derivatives, which exhibited noteworthy stereoselectivities. The absolute configurations of the optically active indane and phenylpropyl derivatives isolated were determined through electronic circular dichroism and optical rotation dispersion computational calculations. Furthermore, given the known biocatalytic potential of the phytopathogenic fungus Botrytis cinerea to modify the structures of certain antifungal phenylpropyl derivatives, substrates 3 and 3a were also subjected to biotransformation by the strain B. cinerea UCA992. The antifungal activities of the biotransformation products (R)-5, (S)-6, syn-(1S,2R)-7, anti-(1R,2R)-7, (R)-8, (R)-9, threo-(1R,2R)-11, and erythro-(1R,2S)-11 were evaluated against B. cinerea UCA992 using a resazurin-based microdilution method. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Graphical abstract

21 pages, 2914 KiB  
Article
The Numerical Simulation of a Non-Fullerene Thin-Film Organic Solar Cell with Cu2FeSnS4 (CFTS) Kesterite as a Hole Transport Layer Using SCAPS-1D
by Edson L. Meyer, Sindisiwe Jakalase, Azile Nqombolo, Nicholas Rono and Mojeed A. Agoro
Coatings 2025, 15(3), 266; https://doi.org/10.3390/coatings15030266 - 23 Feb 2025
Cited by 3 | Viewed by 1116
Abstract
Global warming and environmental pollution due to the overuse and exploitation of fossil fuels are the main issues affecting humans’ well-being. Solar energy is considered to be one of the most promising candidates for providing human society with a clean and sustainable energy [...] Read more.
Global warming and environmental pollution due to the overuse and exploitation of fossil fuels are the main issues affecting humans’ well-being. Solar energy is considered to be one of the most promising candidates for providing human society with a clean and sustainable energy supply. Thin-film organic solar cells (TFOSCs) use organic semiconductors as light-absorbing layer materials. TFOSCs have attracted wide research interest due to several advantages, such as easy fabrication, affordability, light weight, and environmental friendliness. Over the years, TFOSCs have been dominated by donor–acceptor blends based on polymer donors and fullerene acceptors. However, a new class of non-fullerene acceptors (NFAs) has gained prominence in TFOSCs owing to their significant improvement in the power conversion efficiency (PCE) of non-fullerene-based devices. In this study, the One-Dimensional Solar Cell Capacitance Simulator (SCAPS-1D) numerical simulator was used to study the performance of a device with a configuration of FTO/PDINO/PBDB-T/ITIC/CFTS/Al. Here, the PBDB-T/ITIC polymer blend represents poly[(2,6-(4,8-bis(5-(2 ethylhexyl)thiophen-2-yl)benzo [1,2-b:4,5-b]dithiophene)-co-(1,3-di(5-thiophene-2-yl)-5,7-bis(2-ethylhexyl)benzo [1,2-c:4,5-c]dithiophene-4,8-dione)] (PBDB)/3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone)-5,5,11,11-tetraki(4-hexylphenyl)-dithieno[2,3-d:2,3-d]-s-indaceno [1,2-b:5,6-b]dithiophene) (ITIC) and the non-fullerene acceptor (NFA) and serves as the absorber layer. The electron transport layer (ETL) was 2,9-Bis[3-(dimethyloxidoamino)propyl]anthra[2,1,9-def:6,5,10-d’e’f’]diisoquinoline-1,3,8,10(2H,9H)-tetrone (PDINO), and Cu2FeSnS4 (CFTS) was used as a hole transport layer (HTL). This research article aims to address the global challenges of environmental pollution and global warming caused by the overuse of fossil fuels by exploring alternative energy solutions. Upon optimization, the device achieved a power conversion efficiency (PCE) of 16.86%, a fill factor (FF) of 79.12%, a short-circuit current density (JSC) of 33.19 mA cm−2, and an open-circuit voltage (VOC) of 0.64 V. The results obtained can guide the fabrication of NFA-based TFOSCs in the near future. Full article
Show Figures

Figure 1

45 pages, 12731 KiB  
Review
Recent Developments in Stereoselective Reactions of Sulfoxonium Ylides
by Ciarán O’Shaughnessy, Mukulesh Mondal and Nessan J. Kerrigan
Molecules 2025, 30(3), 655; https://doi.org/10.3390/molecules30030655 - 1 Feb 2025
Viewed by 2613
Abstract
This review probes the recent developments in stereoselective reactions within the area of sulfoxonium ylide chemistry since the early 2000s. An abundance of research has been applied to sulfoxonium ylide chemistry since its emergence in the early 1960s. There has been a continued [...] Read more.
This review probes the recent developments in stereoselective reactions within the area of sulfoxonium ylide chemistry since the early 2000s. An abundance of research has been applied to sulfoxonium ylide chemistry since its emergence in the early 1960s. There has been a continued effort since then with work in traditional areas, such as epoxidation, aziridination and cyclopropanation. Efforts have also been applied in novel areas, such as olefination and insertion reactions, to develop stereoselective methodologies using organocatalysis and transition metal catalysis. The growing research area of interrupted Johnson–Corey–Chaykovsky reactions is also described, whereby unexpected stereoselective cyclopropanation and epoxidation methodologies have been developed. In general, the most observed mechanistic pathway of sulfoxonium ylides is the formal cycloaddition: (2 + 1) (e.g., epoxides, cyclopropanes, aziridines), (3 + 1) (e.g., oxetanes, azetidines), (4 + 1) (e.g., indanones, indolines). This pathway involves the formation of a zwitterionic intermediate through nucleophilic addition of the carbanion to an electrophilic site. An intramolecular cyclization occurs, constructing the cyclic product. Insertion reactions of sulfoxonium ylides to X–H bonds (e.g., X = S, N or P) are also observed, whereby protonation of the carbanion is followed by a nucleophilic addition of X, to form the inserted product. Full article
(This article belongs to the Special Issue Featured Reviews in Organic Chemistry 2025)
Show Figures

Scheme 1

54 pages, 6031 KiB  
Article
(E)-1-(3-(3-Hydroxy-4-Methoxyphenyl)-1-(3,4,5-Trimethoxyphenyl)allyl)-1H-1,2,4-Triazole and Related Compounds: Their Synthesis and Biological Evaluation as Novel Antimitotic Agents Targeting Breast Cancer
by Gloria Ana, Azizah M. Malebari, Sara Noorani, Darren Fayne, Niamh M. O’Boyle, Daniela M. Zisterer, Elisangela Flavia Pimentel, Denise Coutinho Endringer and Mary J. Meegan
Pharmaceuticals 2025, 18(1), 118; https://doi.org/10.3390/ph18010118 - 17 Jan 2025
Cited by 2 | Viewed by 3865
Abstract
Background/Objectives: The synthesis of (E)-1-(1,3-diphenylallyl)-1H-1,2,4-triazoles and related compounds as anti-mitotic agents with activity in breast cancer was investigated. These compounds were designed as hybrids of the microtubule-targeting chalcones, indanones, and the aromatase inhibitor letrozole. Methods: A panel of [...] Read more.
Background/Objectives: The synthesis of (E)-1-(1,3-diphenylallyl)-1H-1,2,4-triazoles and related compounds as anti-mitotic agents with activity in breast cancer was investigated. These compounds were designed as hybrids of the microtubule-targeting chalcones, indanones, and the aromatase inhibitor letrozole. Methods: A panel of 29 compounds was synthesized and examined by a preliminary screening in estrogen receptor (ER) and progesterone receptor (PR)-positive MCF-7 breast cancer cells together with cell cycle analysis and tubulin polymerization inhibition. Results: (E)-5-(3-(1H-1,2,4-triazol-1-yl)-3-(3,4,5-trimethoxyphenyl)prop-1-en-1-yl)-2-methoxyphenol 22b was identified as a potent antiproliferative compound with an IC50 value of 0.39 mM in MCF-7 breast cancer cells, 0.77 mM in triple-negative MDA-MB-231 breast cancer cells, and 0.37 mM in leukemia HL-60 cells. In addition, compound 22b demonstrated potent activity in the sub-micromolar range against the NCI 60 cancer cell line panel including prostate, melanoma, colon, leukemia, and non-small cell lung cancers. G2/M phase cell cycle arrest and the induction of apoptosis in MCF-7 cells together with inhibition of tubulin polymerization were demonstrated. Immunofluorescence studies confirmed that compound 22b targeted tubulin in MCF-7 cells, while computational docking studies predicted binding conformations for 22b in the colchicine binding site of tubulin. Compound 22b also selectively inhibited aromatase. Conclusions: Based on the results obtained, these novel compounds are suitable candidates for further investigation as antiproliferative microtubule-targeting agents for breast cancer. Full article
Show Figures

Graphical abstract

16 pages, 3337 KiB  
Article
Development of Composite Semiconductor Films Based on Organotin Complexes Doped with Cobalt Porphine for Applications in Organic Diodes
by María Elena Sánchez Vergara, José Miguel Rocha Flores, Luis Alberto Cantera-Cantera, Ricardo Ballinas-Indilí, Alejandro Flores Huerta and Cecilio Álvarez-Toledano
Materials 2025, 18(1), 45; https://doi.org/10.3390/ma18010045 - 26 Dec 2024
Viewed by 898
Abstract
In this work, we present the green synthesis of complex AE derived from β-hidroxymethylidene indanones by ultrasound, which allowed for the obtaining of compounds in a shorter time and with good yields. These organotin complexes were then doped with cobalt porphine [...] Read more.
In this work, we present the green synthesis of complex AE derived from β-hidroxymethylidene indanones by ultrasound, which allowed for the obtaining of compounds in a shorter time and with good yields. These organotin complexes were then doped with cobalt porphine and incorporated into a poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) matrix to manufacture composite semiconductor films. The semiconductor films were characterized through atomic force microscopy, examining their topography, Knoop hardness (around 17 HK), and tensile strength, which varied from 5 × 10−4 to 7 × 10−2 Pa. The optical behavior was evaluated, revealing that the changes in these characteristics are related to the type of organotin complex present in the composite film: the transmittance ranged from 77% to 86%, while the reflectance varied from 13% to 17%. The band gap, calculated using the Kubelka–Munk function F(KM), was approximately 3.7 ± 0.19 eV for all the semiconductor films. Finally, we assessed the electrical behavior of the composite films through current–voltage (I–V) measurements under different lighting conditions. The I–V curves demonstrated that they share a saturation current density of 3.46 mA/mm2. However, they differ in their conduction rates within the ohmic regimen. These composite films’ optical and electrical properties suggest their potential use in developing electronic devices like organic diodes. Full article
(This article belongs to the Special Issue Advances in Materials Science for Engineering Applications)
Show Figures

Figure 1

20 pages, 4068 KiB  
Review
An Assessment of Polycyclic Aromatic Hydrocarbons Using Estimation Programs
by Oluwabunmi P. Femi-Oloye, Ryen T. Sutton, Heidi D. Gordon, Ayush Ain Das, Grace O. Morenikeji, Melissa K. Odorisio, Ovidiu D. Francestscu, Ryan L. Myers and Femi F. Oloye
Toxics 2024, 12(8), 592; https://doi.org/10.3390/toxics12080592 - 15 Aug 2024
Cited by 2 | Viewed by 2104
Abstract
In the environment, the class of chemicals known as polycyclic aromatic hydrocarbons (PAHs) behave somewhat differently. This review covers situations where PAHs can be ‘labile’ and where they can be persistent. The in-silico prediction of toxicity and the properties of selected 29 PAHs [...] Read more.
In the environment, the class of chemicals known as polycyclic aromatic hydrocarbons (PAHs) behave somewhat differently. This review covers situations where PAHs can be ‘labile’ and where they can be persistent. The in-silico prediction of toxicity and the properties of selected 29 PAHs were estimated using programs developed by the U.S. Environmental Protection Agency (EPA), such as the Estimation Programs Interface (E.P.I.) and the Toxicity Estimation Software Tool (version 5.1.2) (TEST), with online software such as SwissADME and SwissDock. TEST was used to estimate the LC50 of the fathead minnow (with a range of 14.53 mg/L for 1-indanone and 2.14 × 10−2 mg/L for cyclopenta[c,d]pyrene), the LC50 of Daphnia magna (with a range of 14.95 mg/L for 1-indanone and 7.53 × 10−2 mg/L for coronene), the IGC50 of Tetrahymena pyriformis (with a range of 66.14 mg/L for 1-indanone and 0.36 mg/L for coronene), the bioconcentration factor (8.36 for 1,2-acenaphthylenedione and 910.1 for coronene), the developmental toxicity (0.30 (−) for 1,2-acenaphthylenedione and 0.82 (+) for 4-hydroxy-9-fluorenone), and the mutagenicity (0.25 (−) for 2-methyl-9-fluorenone and 1.09 (+) for coronene). The carbon chain and molecular weight have a significant effect on the properties of PAHs. Overall, it was found that PAHs with a lower molecular weight (LMW) have a higher water solubility and LC50 value and a smaller LogKow value, whereas the opposite is true for heavier PAHs, with TEST predicting that PAHs with an MW of over 168.2 g/mol, with a few exceptions, are mutagenic. Hence, LMW PAHs have a higher potential to be in the environment but are less toxic. Full article
(This article belongs to the Section Novel Methods in Toxicology Research)
Show Figures

Figure 1

14 pages, 1252 KiB  
Article
Aromatic Functionalized Indanones and Indanols: Broad Spectrum Intermediates for Drug Candidate Diversification
by Thomas C. Nugent and Nilesh N. Shitole
Organics 2024, 5(3), 263-276; https://doi.org/10.3390/org5030014 - 1 Aug 2024
Viewed by 1964
Abstract
A series of new aromatic substituted indanone and indanol building blocks have been prepared and are anticipated to aid future drug discovery studies. In total, seven compounds (7, 1217) are expounded on, and all have been fully characterized. [...] Read more.
A series of new aromatic substituted indanone and indanol building blocks have been prepared and are anticipated to aid future drug discovery studies. In total, seven compounds (7, 1217) are expounded on, and all have been fully characterized. In doing so, we have shown multiple examples of highly chemoselective reactions. One example employed an adaptation of Fujioka’s chemoselective reduction methodology, allowing an ester to be reduced in the presence of a ketone. In another example, an uncommon benzylic methyl group to aldehyde oxidation was demonstrated for two different compounds. These and other chemoselective interconversions allowed us to identify compound (12) as a remarkably flexible springboard for accessing a diverse array of indan-based building blocks (1317). Full article
Show Figures

Graphical abstract

16 pages, 2579 KiB  
Article
Asymmetric Mannich/Cyclization Reaction of 2-Benzothiazolimines and 2-Isothiocyano-1-indanones to Construct Chiral Spirocyclic Compounds
by Yao Zheng and Da-Ming Du
Molecules 2024, 29(13), 2958; https://doi.org/10.3390/molecules29132958 - 21 Jun 2024
Viewed by 1316
Abstract
An efficient and practical organocatalyzed asymmetric Mannich/cyclization tandem reaction strategy of 2-benzothiazolimines and 2-isothiocyanato-1-indanones was developed, and novel spirocyclic compounds containing benzothiazolimine and indanone scaffolds were obtained. This chiral thiourea-catalyzed Mannich/cyclization tandem reaction offers chiral spirocyclic compounds with continuous tertiary and quaternary stereocenters [...] Read more.
An efficient and practical organocatalyzed asymmetric Mannich/cyclization tandem reaction strategy of 2-benzothiazolimines and 2-isothiocyanato-1-indanones was developed, and novel spirocyclic compounds containing benzothiazolimine and indanone scaffolds were obtained. This chiral thiourea-catalyzed Mannich/cyclization tandem reaction offers chiral spirocyclic compounds with continuous tertiary and quaternary stereocenters in good to high yields (up to 90%) with excellent diastereoselectivities (up to >20:1 dr) and enantioselectivities (up to 98% ee) at −18 °C. Additionally, the scaled-up synthesis was also performed with retained yield and stereoselectivity, and a reaction mechanism was also proposed. Full article
(This article belongs to the Special Issue Recent Advances of Catalytic Asymmetric Synthesis)
Show Figures

Graphical abstract

16 pages, 3005 KiB  
Article
Synthesis of New Ruthenium Complexes and Their Exploratory Study as Polymer Hybrid Composites in Organic Electronics
by Ricardo Ballinas-Indilí, María Elena Sánchez Vergara, Saulo C. Rosales-Amezcua, Joaquín André Hernández Méndez, Byron López-Mayorga, René Miranda-Ruvalcaba and Cecilio Álvarez-Toledano
Polymers 2024, 16(10), 1338; https://doi.org/10.3390/polym16101338 - 9 May 2024
Viewed by 2144
Abstract
Polymeric hybrid films, for their application in organic electronics, were produced from new ruthenium indanones in poly(methyl methacrylate) (PMMA) by the drop-casting procedure. Initially, the synthesis and structural characterization of the ruthenium complexes were performed, and subsequently, their properties as a potential semiconductor [...] Read more.
Polymeric hybrid films, for their application in organic electronics, were produced from new ruthenium indanones in poly(methyl methacrylate) (PMMA) by the drop-casting procedure. Initially, the synthesis and structural characterization of the ruthenium complexes were performed, and subsequently, their properties as a potential semiconductor material were explored. Hence hybrid films in ruthenium complexes were deposited using PMMA as a polymeric matrix. The hybrid films were characterized by infrared spectrophotometry and atomic force microscopy. The obtained results confirmed that the presence of the ruthenium complexes enhanced the mechanical properties in addition to increasing the transmittance, favoring the determination of their optical parameters. Both hybrid films exhibited a maximum stress around 10.5 MPa and a Knoop hardness between 2.1 and 18.4. Regarding the optical parameters, the maximum transparency was obtained at wavelengths greater than 590 nm, the optical band gap was in the range of 1.73–2.24 eV, while the Tauc band gap was in the range of 1.68–2.17 eV, and the Urbach energy was between 0.29 and 0.50 eV. Consequently, the above comments are indicative of an adequate semiconductor behavior; hence, the target polymeric hybrid films must be welcomed as convenient candidates as active layers or transparent electrodes in organic electronics. Full article
(This article belongs to the Special Issue Polymer-Based Hybrid Composites II)
Show Figures

Figure 1

15 pages, 10611 KiB  
Article
Boosting Solvent-Free Aerobic Oxidation of Benzylic Compounds into Ketones over Au-Pd Nanoparticles Supported by Porous Carbon
by Shanshan Sun, Xiaoyu Peng, Xingcui Guo, Xiufang Chen and Di Liu
Catalysts 2024, 14(3), 158; https://doi.org/10.3390/catal14030158 - 20 Feb 2024
Cited by 3 | Viewed by 2135
Abstract
The exploitation of highly efficient solvent-free catalytic systems for the selective aerobic oxidation of benzylic compounds to produce corresponding ketones with molecular oxygen under mild conditions remains a great challenge in the chemical industry. In this work, Au-Pd nanoparticles supported on porous carbon [...] Read more.
The exploitation of highly efficient solvent-free catalytic systems for the selective aerobic oxidation of benzylic compounds to produce corresponding ketones with molecular oxygen under mild conditions remains a great challenge in the chemical industry. In this work, Au-Pd nanoparticles supported on porous carbon catalysts were fabricated by the borax-mediated hydrothermal carbonization method and the chemical reduction method. The physicochemical properties of Au-Pd bimetallic samples were examined by XRD, N2 sorption, SEM, TEM, and XPS techniques. The Au-Pd nanoparticles have successfully immobilized on the spherical carbon support with a porous structure and large surface area. A solvent-free catalytic oxidation system was constructed to selectively convert indane into indanone with Au-Pd nanocatalysts and O2. In contrast with a monometallic Au or Pd catalyst, the resulting bimetallic Au-Pd catalyst could effectively activate O2 and exhibit improved catalytic activity in the controlled oxidation of indane into indanone under 1 bar O2. A total of 78% conversion and >99% selectivity toward indanone can be achieved under optimized conditions. The synergistic effect of Au and Pd and porous carbon support contributed to the high catalytic activity for aerobic benzylic compound oxidation. This work offers a promising application prospect of efficient and recyclable Au-Pd nanocatalysts in functional benzylic ketone production. Full article
(This article belongs to the Special Issue Advances in Heterogeneous Catalysis for Organic Transformations)
Show Figures

Graphical abstract

10 pages, 966 KiB  
Article
Meirols A–C: Bioactive Catecholic Compounds from the Marine-Derived Fungus Meira sp. 1210CH-42
by Min Ah Lee, Jong Soon Kang, Jeong-Wook Yang, Hwa-Sun Lee, Chang-Su Heo, Sun Joo Park and Hee Jae Shin
Mar. Drugs 2024, 22(2), 87; https://doi.org/10.3390/md22020087 - 14 Feb 2024
Cited by 2 | Viewed by 2489
Abstract
Three new catecholic compounds, named meirols A–C (24), and one known analog, argovin (1), were isolated from the marine-derived fungus Meira sp. 1210CH-42. Their structures were determined by extensive analysis of 1D, 2D NMR, and HR-ESIMS spectroscopic [...] Read more.
Three new catecholic compounds, named meirols A–C (24), and one known analog, argovin (1), were isolated from the marine-derived fungus Meira sp. 1210CH-42. Their structures were determined by extensive analysis of 1D, 2D NMR, and HR-ESIMS spectroscopic data. Their absolute configurations were elucidated based on ECD calculations. All the compounds exhibited strong antioxidant capabilities with EC50 values ranging from 6.01 to 7.47 μM (ascorbic acid, EC50 = 7.81 μM), as demonstrated by DPPH radical scavenging activity assays. In the α-glucosidase inhibition assay, 1 and 2 showed potent in vitro inhibitory activity with IC50 values of 184.50 and 199.70 μM, respectively (acarbose, IC50 = 301.93 μM). Although none of the isolated compounds exhibited cytotoxicity against one normal and six solid cancer cell lines, 1 exhibited moderate cytotoxicity against the NALM6 and RPMI-8402 blood cancer cell lines with GI50 values of 9.48 and 21.00 μM, respectively. Compound 2 also demonstrated weak cytotoxicity against the NALM6 blood cancer cell line with a GI50 value of 29.40 μM. Full article
(This article belongs to the Special Issue Bioactive Secondary Metabolites of Marine Fungi 2.0)
Show Figures

Figure 1

23 pages, 20060 KiB  
Article
A Convenient Synthesis of Novel Isoxazolidine and Isoxazole Isoquinolinones Fused Hybrids
by Konstantinos A. Ouzounthanasis, Stergios R. Rizos and Alexandros E. Koumbis
Molecules 2024, 29(1), 91; https://doi.org/10.3390/molecules29010091 - 22 Dec 2023
Cited by 5 | Viewed by 3024
Abstract
Isoxazolidine, isoxazole, and isoquinolinone rings are present in the structure of several natural products and/or pharmaceutically interesting compounds. In this work, facile and efficient pathways have been developed for the preparation of fused frameworks bearing those heterocycles. The successful approaches for both isoxazolidine/isoquinolinone [...] Read more.
Isoxazolidine, isoxazole, and isoquinolinone rings are present in the structure of several natural products and/or pharmaceutically interesting compounds. In this work, facile and efficient pathways have been developed for the preparation of fused frameworks bearing those heterocycles. The successful approaches for both isoxazolidine/isoquinolinone and isoxazole/isoquinolinone hybrid syntheses relied initially on 1,3-dipolar cycloadditions of nitrones and nitrile oxides to indenone and 2-propargylbenzamide, respectively. The construction of the isoquinolinone lactam system followed by performing a selective Schmidt reaction for isoxazolidine derivatives (two steps overall), whereas the isoxazole lactams were reached via an Ullmann-type cyclisation (three steps overall). Key observations were made regarding the stereo- and regioselectivities of the reactions employed, and small libraries of the targeted hybrids were prepared, demonstrating the general applicability of these strategies. Full article
Show Figures

Graphical abstract

12 pages, 2803 KiB  
Article
Streptinone, a New Indanone Derivative from a Marine-Derived Streptomyces massiliensis, Inhibits Particulate Matter-Induced Inflammation
by Hwa-Sun Lee, Dineth Pramuditha Nagahawatta, You-Jin Jeon, Min Ah Lee, Chang-Su Heo, Sun Joo Park and Hee Jae Shin
Mar. Drugs 2023, 21(12), 640; https://doi.org/10.3390/md21120640 - 14 Dec 2023
Cited by 6 | Viewed by 2507
Abstract
Inflammatory diseases caused by air pollution, especially from particulate matter (PM) exposure, have increased daily. Accordingly, attention to treatment or prevention for these inflammatory diseases has grown. Natural products have been recognized as promising sources of cures and prevention for not only inflammatory [...] Read more.
Inflammatory diseases caused by air pollution, especially from particulate matter (PM) exposure, have increased daily. Accordingly, attention to treatment or prevention for these inflammatory diseases has grown. Natural products have been recognized as promising sources of cures and prevention for not only inflammatory but also diverse illnesses. As part of our ongoing study to discover bioactive compounds from marine microorganisms, we isolated streptinone, a new indanone derivative (1), along with three known diketopiperazines (24) and piericidin A (5), from a marine sediment-derived Streptomyces massiliensis by chromatographic methods. The structure of 1 was elucidated based on the spectroscopic data analysis. The relative and absolute configurations of 1 were determined by 1H-1H coupling constants, 1D NOESY, and ECD calculation. The anti-inflammatory activities of 1 were evaluated through enzyme-linked immunosorbent assay (ELISA), Western blot, and qPCR. Compound 1 suppressed the production of nitric oxide (NO), prostaglandin E2 (PGE2), and pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1β, by inhibiting the Toll-like receptor (TLR)-mediated nuclear factor kappa B (NF-κB) signaling pathway. Therefore, compound 1 could potentially be used as an agent in the prevention and treatment of diverse inflammatory disorders caused by particulate matter. Full article
(This article belongs to the Special Issue Marine Natural Products with Anti-Inflammatory Effects)
Show Figures

Graphical abstract

25 pages, 17725 KiB  
Review
Syntheses, Structures and Reactivity of Metal Complexes of Trindane, Trindene, Truxene, Decacyclene and Related Ring Systems: Manifestations of Three-Fold Symmetry
by Philippa E. Lock, Nada Reginato, Julia Bruno-Colmenárez and Michael J. McGlinchey
Molecules 2023, 28(23), 7796; https://doi.org/10.3390/molecules28237796 - 27 Nov 2023
Cited by 3 | Viewed by 2028
Abstract
The triple condensation of cyclopentanone or indanone to trindane (C15H18) or truxene (C27H18), respectively, provides convenient access to molecular skeletons on which major fragments of the prototypical fullerene C60 can be assembled. In particular, [...] Read more.
The triple condensation of cyclopentanone or indanone to trindane (C15H18) or truxene (C27H18), respectively, provides convenient access to molecular skeletons on which major fragments of the prototypical fullerene C60 can be assembled. In particular, early approaches (both organic and organometallic) towards sumanene, as well as the final successful synthesis, are described. Organometallic derivatives of trindane have been prepared in which Cr(CO)3, Mo(CO)3, [Mn(CO)3]+ or [(C5H5)Fe(CO)2]+ are η6-bonded to the central arene ring. The debromination of hexabromotrindane yields trindene, which forms a tri-anion to which as many as three organometallic fragments, such as Mn(CO)3, W(CO)3Me, or Rh(CO)2, may be attached. Truxene forms complexes whereby three metal fragments can bind either to the peripheral arene rings, or to the five-membered rings, and these can be interconverted via η6 ↔ η5 haptotropic shifts. Truxene also forms a double-decker sandwich with Ag(I) bridges, and decacyclene, C36H18, forms triple-decker sandwiches bearing multiple cyclopentadienyl-nickel or -iron moieties. The organic chemistry of trindane has been investigated, especially with respect to its unexpectedly complex oxidation products, which were only identified unambiguously via X-ray crystallography. The three-fold symmetric trindane framework has also been used as a template upon which a potential artificial receptor has been constructed. Finally, the use of truxene and truxenone derivatives in a wide range of applications is highlighted. Full article
(This article belongs to the Section Organometallic Chemistry)
Show Figures

Figure 1

Back to TopTop