Synthesis and Electronic Properties of Novel Donor–π–Acceptor-Type Functional Dyes with a Carbonyl-Bridged Bithiophene π-Spacer
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. UV–vis–NIR Absorption Properties
2.3. Photoluminescence Properties
2.4. Theoretical Calculations
2.5. Electrochemical Properties
2.6. Photostability Test
3. Methods
3.1. Spectroscopic Measurements
3.2. Measurements of Electrochemical Properties
3.3. Photostability Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kulinich, A.V.; Ishchenko, A.A. Design and Photonics of Merocyanine Dyes. Chem. Rec. 2024, 24, e202300262. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhu, W. Organic Sensitizers from D–π–A to D–A–π–A: Effect of the Internal Electron-Withdrawing Units on Molecular Absorption, Energy Levels and Photovoltaic Performances. Chem. Soc. Rev. 2013, 42, 2039–2058. [Google Scholar] [CrossRef] [PubMed]
- Bures, F. Fundamental Aspects of Property Tuning in Push–Pull Molecules. RSC Adv. 2014, 4, 58826. [Google Scholar] [CrossRef]
- Imato, K.; Enoki, T.; Uenaka, K.; Ooyama, Y. Synthesis and Photophysical and Electrochemical Properties of Pyridine-, Pyrazine- and Triazine-Based (D–π–)2A Fluorescent Dyes. Beilstein J. Org. Chem. 2019, 15, 1712–1721. [Google Scholar] [CrossRef] [PubMed]
- Munir, R.; Zahoor, A.F.; Anjum, M.N.; Nazeer, U.; Haq, A.U.; Mansha, A.; Chaudhry, A.R.; Irfan, A. Synthesis and Photovoltaic Performance of Carbazole (Donor) Based Photosensitizers in Dye-Sensitized Solar Cells (DSSC): A Review. Top. Curr. Chem. 2025, 383, 5. [Google Scholar] [CrossRef] [PubMed]
- Gezgin, M.; Arslan, B.S.; Avcı, D.; Nebioğlu, M.; Şişman, İ. Novel D–π–A Dye as a Co-Sensitizer of Indoline and Benzothiadiazole Dyes to Enhance Photovoltaic Performance of Dye-Sensitized Solar Cells. J. Photochem. Photobiol. A Chem. 2025, 458, 115977. [Google Scholar] [CrossRef]
- Omidvar, A.; Fazeli, F.; Ghaed-Sharaf, T.; Keshavarzi, R. Fine Structural Tuning of Diphenylaniline-Based Dyes for Designing Semiconductors Relevant to Dye-Sensitized Solar Cells. Sci. Rep. 2024, 14, 26231. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Jiang, S.; Cha, M.; Zhou, G.; Wang, Z.-S. Thiophene-Bridged Double D–π–A Dye for Efficient Dye-Sensitized Solar Cell. Chem. Mater. 2012, 24, 3493–3499. [Google Scholar] [CrossRef]
- Zhou, N.; Prabakaran, K.; Lee, B.; Chang, S.H.; Harutyunyan, B.; Guo, P.; Butler, M.R.; Timalsina, A.; Bedzyk, M.J.; Ratner, M.A.; et al. Metal-Free Tetrathienoacene Sensitizers for High-Performance Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2015, 137, 4414–4423. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Li, W.; Wu, Y.; Liu, B.; Zhu, S.; Li, X.; Agren, H.; Zhu, W. Insight into Benzothiadiazole Acceptor in Configuration on Photovoltaic Performances of Dye-Sensitized Solar Cells. ACS Sustain. Chem. Eng. 2014, 2, 1026–1034. [Google Scholar] [CrossRef]
- Yan, T.; Bin, H.; Yang, Y.; Xue, L.; Zhang, Z.-G.; Li, Y. Effect of furan π–bridge on the photovoltaic performance of D–A copolymers based on bi(alkylthio-thienyl)benzodithiophene and fluorobenzotriazole. Sci. China Chem. 2017, 60, 537–544. [Google Scholar] [CrossRef]
- Qin, C.; Islam, A.; Han, L. Panchromatic Donor–Acceptor–Acceptor Sensitizers Based on 4H-Cyclopenta[2,1-b:3,4-b’]dithiophen-4-one as a Strong Acceptor for Dye-Sensitized Solar Cells. Dye. Pigment. 2012, 94, 553–560. [Google Scholar] [CrossRef]
- Lin, S.-L.; Chan, L.-H.; Lee, R.-H.; Yen, M.-Y.; Kuo, W.-J.; Chen, C.-T.; Jeng, R.-J. Highly Efficient Carbazole–π–Dimesitylborane Bipolar Fluorophores for Nondoped Blue Organic Light-Emitting Diodes. Adv. Mater. 2008, 20, 3947–3952. [Google Scholar] [CrossRef]
- Entwistle, C.D.; Marder, T.B. Boron Chemistry Lights the Way: Optical Properties of Molecular and Polymeric Systems. Angew. Chem. Int. Ed. 2002, 41, 2927–2931. [Google Scholar] [CrossRef]
- Entwistle, C.D.; Marder, T. Applications of Three-Coordinate Organoboron Compounds and Polymers in Optoelectronics. Chem. Mater. 2004, 16, 4574–4585. [Google Scholar] [CrossRef]
- Jia, W.-L.; Bai, D.-R.; McCormick, T.; Liu, Q.-D.; Motala, M.; Wang, R.-Y.; Seward, C.; Tao, Y.; Wang, S. Three-Coordinate Organoboron Compounds BAr2R (Ar = Mesityl, R = 7-Azaindolyl- or 2,2′-Dipyridylamino-Functionalized Aryl or Thienyl) for Electroluminescent Devices and Supramolecular Assembly. Chem. Eur. J. 2004, 10, 994–1006. [Google Scholar] [CrossRef] [PubMed]
- Bagal, M.S.; Zambare, A.; Sharma, S.; Sekar, N. Synthesis, Photophysical, Linear, and Non-Linear Optical Properties of 4-Methoxyphenyl Dicyanovinylene Dyes: DFT and TD-DFT Studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2025, 329, 125484. [Google Scholar] [CrossRef] [PubMed]
- Dalton, L.R. Theory-Inspired Development of Organic Electro-Optic Materials. Thin Solid Films 2009, 518, 428–431. [Google Scholar] [CrossRef]
- Dalton, L.R. Organic Electro-Optic Materials. Pure Appl. Chem. 2004, 76, 1421–1433. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, C.; Zhang, H.; Bechtel, J.H.; Dalton, L.R.; Robinson, B.H.; Steier, W.H. Low (Sub-1-Volt) Halfwave Voltage Polymeric Electro-Optic Modulators Achieved by Controlling Chromophore Shape. Science 2000, 288, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Marder, S.R.; Kippelen, B.; Jen, A.K.-Y.; Peyghambarian, N. Design and Synthesis of Chromophores and Polymers for Electro-Optic and Photorefractive Applications. Nature 1997, 388, 845–851. [Google Scholar] [CrossRef]
- Muhammad, S.; Ahmad, H.; Yan, Y.; Chen, X.; Muhammad, S.; Maridevaru, M.C.; Roy, S.; Wang, Z.; Zhang, Y.; Guo, B. Hemicyanine-Based Fluorescent Probes: Advancements in Biomedical Sensing and Activity-Based Detection. Coord. Chem. Rev. 2025, 534, 216602. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Y.; Dong, C.; Zan, Q.; Feng, F.; Wang, R.; Shuang, S. A Dual-Channel Fluorescent Probe with Mitochondria-Immobilization: Detecting Polarity and Viscosity during Mitophagy. Biosens. Bioelectron. 2025, 276, 117246. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Shi, Y.; Wang, Z.; Zhu, Z.; Zhao, X.; Nie, H.; Qian, J.; Qin, A.; Sun, J.Z.; Tang, B.Z. A Red to Near-IR Fluorogen: Aggregation-Induced Emission, Large Stokes Shift, High Solid Efficiency and Application in Cell-Imaging. Chem. Eur. J. 2016, 22, 9784–9791. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, E.; Wang, C.; Fukazawa, A.; Taki, M.; Sato, Y.; Sasaki, T.; Ueda, M.; Sasaki, N.; Higashiyama, T.; Yamaguchi, S. Environment-Sensitive Fluorescent Probe: A Benzophosphole Oxide with an Electron-Donating Substituent. Angew. Chem. Int. Ed. 2015, 54, 4539–4543. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Dai, Y.; Lu, Z.; Pei, Y.; Chen, H.; Zhang, L.; Duan, Y.; Guo, H. Efficient Green Light-Excited Switches Based on Dithienylethenes with BF2-Doped π-Conjugated Systems. Chem. Commun. 2019, 55, 13430–13433. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, P.; Zhang, C.; Chen, J.; Jiang, J.-H. Self-Assembly of a Dual-Targeting and Self-Calibrating Ratiometric Polymer Nanoprobe for Accurate Hypochlorous Acid Imaging. ACS Appl. Mater. Interfaces 2020, 12, 45822–45829. [Google Scholar] [CrossRef] [PubMed]
- Pei, K.; Wu, Y.; Islam, A.; Zhang, Q.; Han, L.; Tian, H.; Zhu, W. Constructing High-Efficiency D–A–π–A-Featured Solar Cell Sensitizers: A Promising Building Block of 2,3-Diphenylquinoxaline for Antiaggregation and Photostability. ACS Appl. Mater. Interfaces 2013, 5, 4986–4995. [Google Scholar] [CrossRef] [PubMed]
- Cigan, M.; Gaplovsky, A.; Sigmundova, I.; Zahradnik, P.; Dedic, R.; Hromadova, M. Photostability of D–π–A Nonlinear Optical Chromophores Containing a Benzothiazolium Acceptor. J. Phys. Org. Chem. 2011, 24, 450–459. [Google Scholar] [CrossRef]
- Zhang, C.; Dalton, L.R.; Oh, M.-C.; Zhang, H.; Steier, W.H. Low Vπ Electrooptic Modulators from CLD-1: Chromophore Design and Synthesis, Material Processing, and Characterization. Chem. Mater. 2001, 13, 3043–3050. [Google Scholar] [CrossRef]
- Galvan-Gonzalez, A.; Belfield, K.D.; Stegeman, G.I.; Canva, M.; Marder, S.R.; Staub, K.; Levina, G.; Twieg, R.J. Photodegradation of Selected π-Conjugated Electro-Optic Chromophores. J. Appl. Phys. 2003, 94, 756–763. [Google Scholar] [CrossRef]
- DeRosa, M.E.; He, M.; Cites, J.S.; Garner, S.M.; Tang, Y.R. Photostability of High μβ Electro-Optic Chromophores at 1550 nm. J. Phys. Chem. B 2004, 108, 8725–8730. [Google Scholar] [CrossRef]
- Corredor, C.C.; Belfield, K.D.; Bondar, M.V.; Przhonska, O.V.; Yao, S. One- and Two-Photon Photochemical Stability of Linear and Branched Fluorene Derivatives. J. Photochem. Photobiol. A Chem. 2006, 184, 105–112. [Google Scholar] [CrossRef]
- Kanony, C.; Akerman, B.; Tuite, E. Photobleaching of Asymmetric Cyanines Used for Fluorescence Imaging of Single DNA Molecules. J. Am. Chem. Soc. 2001, 123, 7985–7995. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, Y.; Morimoto, A.; Ban, A.; Goto, Y.; Maeda, T.; Enoki, T.; Ooyama, Y.; Yagi, S. Novel Group 14 Element-Bridged Bithiophene Dimers Appended with Terminal Electron-Withdrawing Groups: Red-to-Near Infrared Fluorescence and Efficient Photosensitized Singlet Oxygen Generation. Dye. Pigment. 2021, 193, 109498. [Google Scholar] [CrossRef]
- Pigot, C.; Noirbent, G.; Bui, T.-T.; Peralta, S.; Duval, S.; Nechab, M.; Gigmes, D.; Dumur, F. Synthesis, Optical and Electrochemical Properties of a Series of Push-Pull Dyes Based on the 4,4-bis(4-methoxy phenyl)butadienyl Donor. Dye. Pigment. 2021, 194, 109552. [Google Scholar] [CrossRef]
- Barnsley, J.E.; Pelet, W.; McAdam, J.; Wagnar, K.; Hayes, P.; Officer, D.L.; Wagner, P.; Gordon, K.C. When “Donor–Acceptor” Dyes Delocalize: A Spectroscopic and Computational Study of D–A Dyes Using “Michler’s Base”. J. Phys. Chem. A 2019, 123, 5957–5968. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Chen, H.; Zhang, Y.; Morlet-Savary, F.; Graff, B.; Xiao, P.; Dumer, F.; Lalevee, J. High-Performance Sunlight Induced Polymerization Using Novel Push-Pull Dyes with High Light Absorption Properties. Eur. Polym. J. 2021, 151, 110410. [Google Scholar] [CrossRef]
- Ooyama, Y.; Ohira, K.; Kagawa, Y.; Imato, K. Synthesis, Optical and Electrochemical Properties of Benzofuro[2,3-c]carbazoloquinol Fluorescent Dyes. Electrochemistry 2021, 89, 562–566. [Google Scholar] [CrossRef]
- El-Sayed, M.A. Triplet State. Its Radiative and Nonradiative Properties. Acc. Chem. Res. 1968, 1, 8–16. [Google Scholar] [CrossRef]
- Englman, R.; Jortner, J. The Energy Gap Law for Radiationless Transitions in Large Molecules. Mol. Phys. 1970, 18, 145–164. [Google Scholar] [CrossRef]
- Jang, S.J. A Simple Generalization of the Energy Gap Law for Nonradiative Processes. J. Chem. Phys. 2021, 155, 164106. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Carreira, E.M. Conformationally Restricted Aza-BODIPY: Highly Fluorescent, Stable Near-Infrared Absorbing Dyes. Chem. Eur. J. 2006, 12, 7254–7263. [Google Scholar] [CrossRef] [PubMed]
- Awuah, S.G.; Polreis, J.; Biradar, V.; You, Y. Singlet Oxygen Generation by Novel NIR BODIPY Dyes. Org. Lett. 2011, 13, 3884–3887. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Lin, W.; Zhao, S.; Gao, W.; Chen, B.; He, L.; Zhu, S. A Unique Approach to Development of Near-Infrared Fluorescent Sensors for in Vivo Imaging. J. Am. Chem. Soc. 2021, 134, 13510–13523. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Zhang, S.; Wang, R.; Li, W.; Shen, F.; Yang, B.; Ma, Y. Highly Efficient Near-Infrared Organic Light-Emitting Diode Based on a Butterfly-Shaped Donor–Acceptor Chromophore with Strong Solid-State Fluorescence and a Large Proportion of Radiative Excitons. Angew. Chem. Int. Ed. 2014, 53, 2119–2123. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Shimizu, S.; Mack, J.; Shen, Z.; Kobayashi, N. Synthesis and Spectroscopic Properties of Fused-Ring-Expanded Aza-Boradiazaindacenes. Chem. Asian J. 2001, 6, 1026–1037. [Google Scholar] [CrossRef] [PubMed]
- Afrin, A.; Chinna Ayya Swamy, P. Tailoring Emission Color Shifts in Mechanofluorochromic-Active AIE Systems of Carbazole-Based D−π−A Conjugates: Impact of π Spacer Unit Variants. J. Org. Chem. 2024, 89, 7946–7961. [Google Scholar] [CrossRef] [PubMed]
- Noikham, M.; Sriwiphasathit, C.; Siriwong, K.; Vilaivan, T. Solvatochromic Fluorescent Styryl Pyrene Probes for the Quantitative Determination of Water Content in Organic Solvents. Dye. Pigment. 2022, 208, 110847. [Google Scholar] [CrossRef]
- Shigehiro, T.; Yagi, S.; Maeda, T.; Nakazumi, H.; Fujiwara, H.; Sakurai, Y. Novel 10,13-Disubstituted Dipyrido[3,2-a:2′,3′-c]phenazines and their Platinum(II) Complexes: Highly Luminescent ICT-Type Fluorophores Based on D–A–D Structures. Tetrahedron Lett. 2014, 55, 5195–5198. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision A.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
Compd | λabs [nm] (εabs [mol−1 L cm−1]) | Compd | λabs [nm] (εabs [mol−1 L cm−1]) |
---|---|---|---|
1-CO | 285 (61,800), 383 (27,900), 569 (7800) | 1-CBu2 | 296 (16,900), 445 (45,800) |
2-CO | 338 (29,800), 481 (24,300), 631 (31,500) | 2-CBu2 | 308 (24,500), 598 (87,200) |
3-CO | 328 (34,500), 498 (15,700), 667 (34,600) | 3-CBu2 | 307 (32,900), 665 (77,500) |
Compd | λPL (nm) | ΦPL | (cm−1) | τPL (ns) | kr (107 s−1) | knr (107 s−1) |
---|---|---|---|---|---|---|
1-CO | --- 1 | --- 1 | --- 1 | --- 1 | --- 1 | --- 1 |
2-CO | 926 | <0.01 | 5120 | --- 2 | --- 2 | --- 2 |
3-CO | 937 | <0.01 | 4320 | --- 2 | --- 2 | --- 2 |
1-CBu2 | 592 | 0.93 | 5440 | 2.84 | 32.7 3 | 2.46 3 |
2-CBu2 | 742 | 0.48 | 3190 | 1.95 | 24.6 3 | 26.7 3 |
3-CBu2 | 823 | 0.03 | 2860 | --- 2 | --- 2 | --- 2 |
Compd | Transition | Component | λabs,calc (f) |
---|---|---|---|
1-CO | S0 → S1 | HOMO → LUMO (60%) HOMO−1 → LUMO (35%) | 499.70 nm (0.3829) |
S0 → S3 1 | HOMO → LUMO (41%) HOMO−1 → LUMO (31%) | 356.84 nm (0.3404) | |
1-CBu2 | S0 → S1 | HOMO → LUMO (79%) HOMO−1 → LUMO (15%) | 393.24 nm (1.401) |
2-CO | S0 → S1 | HOMO → LUMO (62%) HOMO−1 → LUMO (25%) | 540.97 nm (1.116) |
S0 → S2 | HOMO−1 → LUMO+1 (38%) HOMO → LUMO+1 (32%) | 395.36 nm (0.6429) | |
2-CBu2 | S0 → S1 | HOMO → LUMO (73%) HOMO−1 → LUMO (22%) | 503.28 nm (2.063) |
3-CO | S0 → S1 | HOMO → LUMO (56%) HOMO−1 → LUMO (25%) | 556.05 nm (1.217) |
S0 → S2 | HOMO → LUMO+1 (33%) HOMO−1 → LUMO+1 (28%) | 423.17 nm (0.3909) | |
3-CBu2 | S0 → S1 | HOMO → LUMO (69%) HOMO−1 → LUMO (24%) | 540.19 nm (1.833) |
Compd | E1/2, ox (V) vs. Fc/Fc+ | EHOMO 1 (eV) | ELUMO 2 (eV) | Eopt 3 (eV) |
---|---|---|---|---|
1-CO | 0.450 | −5.25 | −3.53 | 1.72 |
1-CBu2 | 0.315 | −5.12 | −2.66 | 2.46 |
2-CO | 0.455 | −5.26 | −3.63 | 1.63 |
2-CBu2 | 0.335 | −5.14 | −3.32 | 1.82 |
3-CO | 0.445 | −5.25 | −3.72 | 1.53 |
3-CBu2 | 0.320 | −5.12 | −3.48 | 1.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ueda, M.; Nagayama, R.; Nagaoka, M.; Suzuki, N.; Kodama, S.; Maeda, T.; Kato, S.-i.; Yagi, S. Synthesis and Electronic Properties of Novel Donor–π–Acceptor-Type Functional Dyes with a Carbonyl-Bridged Bithiophene π-Spacer. Molecules 2025, 30, 3084. https://doi.org/10.3390/molecules30153084
Ueda M, Nagayama R, Nagaoka M, Suzuki N, Kodama S, Maeda T, Kato S-i, Yagi S. Synthesis and Electronic Properties of Novel Donor–π–Acceptor-Type Functional Dyes with a Carbonyl-Bridged Bithiophene π-Spacer. Molecules. 2025; 30(15):3084. https://doi.org/10.3390/molecules30153084
Chicago/Turabian StyleUeda, Miyu, Ryo Nagayama, Masaki Nagaoka, Naoya Suzuki, Shintaro Kodama, Takeshi Maeda, Shin-ichiro Kato, and Shigeyuki Yagi. 2025. "Synthesis and Electronic Properties of Novel Donor–π–Acceptor-Type Functional Dyes with a Carbonyl-Bridged Bithiophene π-Spacer" Molecules 30, no. 15: 3084. https://doi.org/10.3390/molecules30153084
APA StyleUeda, M., Nagayama, R., Nagaoka, M., Suzuki, N., Kodama, S., Maeda, T., Kato, S.-i., & Yagi, S. (2025). Synthesis and Electronic Properties of Novel Donor–π–Acceptor-Type Functional Dyes with a Carbonyl-Bridged Bithiophene π-Spacer. Molecules, 30(15), 3084. https://doi.org/10.3390/molecules30153084