Stereochemical Characterization of Optically Active Indane and Phenylpropyl Derivatives Obtained Through Biotransformation by the Marine-Derived Fungi Emericellopsis maritima BC17 and Purpureocillium lilacinum BC17-2
Abstract
1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. Reagents and Solvents
2.3. Microorganisms
2.4. Synthesis of (±)-1-Phenylpropyl Acetate (3) and (±)-1-(4′-Chlorophenyl)propyl Acetate (3a)
2.5. General Biotransformation Method
2.6. Biotransformation of Indene (1) by Purpureocillium lilacinum BC17-2
2.7. Biotransformation of Indene (1) by Emericellopsis maritima BC17
2.8. Biotransformation of Indanone (2) by Purpureocillium lilacinum BC17-2
2.9. Biotransformation of Indanone (2) by Emericellopsis maritima BC17
2.10. Biotransformation of 5-Chloroindanone (2a) by Purpureocillium lilacinum BC17-2
2.11. Biotransformation of 5-Chloroindanone (2a) by Emericellopsis maritima BC17
2.12. Biotransformation of (±)-1-Phenylpropyl Acetate (3) by Purpureocillium lilacinum BC17-2
2.13. Biotransformation of (±)-1-Phenylpropyl Acetate (3) by Emericellopsis maritima BC17
2.14. Biotransformation of (±)-1-Phenylpropyl Acetate (3) by Botrytis cinerea UCA992
2.15. Biotransformation of (±)-1-(4′-Chlorophenyl)propyl Acetate (3a) by Purpureocillium lilacinum BC17-2
2.16. Biotransformation of (±)-1-(4′-Chlorophenyl)propyl Acetate (3a) by Emericellopsis maritima BC17
2.17. Biotransformation of (±)-1-(4′-Chlorophenyl)propyl Acetate (3a) by Botrytis cinerea UCA992
2.18. Computational Details of ECD and ORD Calculations
2.19. In Vitro Antifungal Assay
3. Results and Discussion
3.1. Biotransformation of Indene (1)
3.2. Biotransformation of Indanone (2) and 5-Chloroindanone (2a)
3.3. Biotransformation of (±)-1-Phenylpropyl Acetate (3) and (±)-1-(4′-Chlorophenyl)propyl Acetate (3a)
3.4. Antifungal Assays Against Botrytis cinerea UCA992
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, L.A.; He, H.; Pham-Huy, C. Chiral drugs: An overview. Int. J. Biomed. Sci. 2006, 2, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, H.; Yamanish, Y.; Iimura, Y.; Kawakami, Y. Donepezil hydrochloride (E2020) and other acetylcholinesterase inhibitors. Curr. Med. Chem. 2000, 7, 303–339. [Google Scholar] [CrossRef] [PubMed]
- Leoni, L.M.; Hamel, E.; Genini, D.; Shih, H.; Carrera, C.J.; Cottam, H.B.; Carson, D.A. Indanocine, a microtubule-binding indanone and a selective inducer of apoptosis in multidrug-resistant cancer cells. JNCI J. Natl. Cancer Inst. 2000, 92, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Vilums, M.; Heuberger, J.; Heitman, L.H.; IJzerman, A.P. Indanes—Properties, preparation, and presence in ligands for G protein coupled receptors. Med. Res. Rev. 2015, 35, 1097–1126. [Google Scholar] [CrossRef] [PubMed]
- Mukhtar, A.; Shah, S.; Kanwal; Hameed, S.; Khan, K.M.; Khan, S.U.; Zaib, S.; Iqbal, J.; Perveen, S. Indane-1,3-diones: As potential and selective α-glucosidase inhibitors, their synthesis, in vitro and in silico studies. Med. Chem. 2021, 17, 887–902. [Google Scholar] [CrossRef] [PubMed]
- Bano, B.; Kanwal; Khan, K.M.; Begum, F.; Lodhi, M.A.; Salar, U.; Khalil, R.; Ul-Haq, Z.; Perveen, S. Benzylidine indane-1,3-diones: As novel urease inhibitors; synthesis, in vitro, and in silico studies. Bioorg. Chem. 2018, 81, 658–671. [Google Scholar] [CrossRef] [PubMed]
- Ugliarolo, E.A.; Gagey, D.; Lantaño, B.; Moltrasio, G.Y.; Campos, R.H.; Cavallaro, L.V.; Moglioni, A.G. Synthesis and biological evaluation of novel homochiral carbocyclic nucleosides from 1-amino-2-indanols. Bioorg. Med. Chem. 2012, 20, 5986–5991. [Google Scholar] [CrossRef] [PubMed]
- Plosker, G.L.; Noble, S. Indinavir: A review of its use in the management of HIV infection. Drugs 1999, 58, 1165–1203. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, N.S.; Elghany, R.A.A.; Sharaky, M.; Diab, H.M.; Abdelhamid, I.A.; Elwahy, A.H.M. Synthesis, cytotoxicity, antiproliferative, antioxidant, anti-inflammatory, and anti-metastatic activities of novel 2-arylidene-indane-1,3-dione scaffolds incorporating 2-phenoxy-N-arylacetamide moiety: Induction of apoptosis in Hela cells. J. Mol. Struct. 2025, 1328, 141424. [Google Scholar] [CrossRef]
- Saiz-Urra, L.; Pérez, A.J.B.; Cruz-Monteagudo, M.; Pinedo-Rivilla, C.; Aleu, J.; Hernández-Galan, R.; Collado, I.G. Global antifungal profile optimization of chlorophenyl derivatives against Botrytis cinerea and Colletotrichum gloeosporioides. J. Agric. Food Chem. 2009, 57, 4838–4843. [Google Scholar] [CrossRef] [PubMed]
- Bustillo, A.J.; Aleu, J.; Hernández-Galán, R.; Collado, I.G. Biocatalytically assisted preparation of antifungal chlorophenylpropanols. Tetrahedron Asymmetry 2002, 13, 1681–1686. [Google Scholar] [CrossRef]
- McGinty, D.; Letizia, C.S.; Api, A.M. Fragrance material review on ethyl phenyl carbinyl acetate. Food Chem. Toxicol. 2012, 50, S512–S515. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Snajdrova, R.; Moore, J.C.; Baldenius, K.; Bornscheuer, U.T. Biocatalysis: Enzymatic synthesis for industrial applications. Angew. Chem. Int. Ed. 2021, 60, 88–119. [Google Scholar] [CrossRef] [PubMed]
- Muñoz Solano, D.; Hoyos, P.; Hernáiz, M.J.; Alcántara, A.R.; Sánchez-Montero, J.M. Industrial biotransformations in the synthesis of building blocks leading to enantiopure drugs. Bioresour. Technol. 2012, 115, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Trincone, A. Marine biocatalysts: Enzymatic features and applications. Mar. Drugs 2011, 9, 478–499. [Google Scholar] [CrossRef] [PubMed]
- Virués-Segovia, J.R.; Muñoz-Mira, S.; Durán-Patrón, R.; Aleu, J. Marine-derived fungi as biocatalysts. Front. Microbiol. 2023, 14, 1125639. [Google Scholar] [CrossRef] [PubMed]
- Debashish, G.; Malay, S.; Barindra, S.; Joydeep, M. Marine enzymes. In Advances in Biochemical Engineering/Biotechnology; Springer: Berlin/Heidelberg, Germany, 2005; Volume 96, pp. 189–218. [Google Scholar] [CrossRef]
- Dowd, B.; Tuohy, M.G. Induction and characterisation of lignocellulolytic activities from novel deep-sea fungal secretomes. Fermentation 2023, 9, 780. [Google Scholar] [CrossRef]
- Batista-García, R.A.; Sutton, T.; Jackson, S.A.; Tovar-Herrera, O.E.; Balcázar-López, E.; Sánchez-Carbente, M.D.R.; Sánchez-Reyes, A.; Dobson, A.D.W.; Folch-Mallol, J.L. Characterization of lignocellulolytic activities from fungi isolated from the deep-sea sponge Stelletta normani. PLoS ONE 2017, 12, e0173750. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, Z.; Qiu, H.; Li, S.; Zhang, T. Biological degradation of aflatoxin B1 by Emericellopsis sp. 1912 and Sarocladium sp. 10A. Lect. Notes Electr. Eng. 2018, 444, 525–532. [Google Scholar] [CrossRef]
- Pradeep, S.; Faseela, P.; Josh, M.K.S.; Balachandran, S.; Devi, R.S.; Benjamin, S. Fungal biodegradation of phthalate plasticizer in situ. Biodegradation 2013, 24, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Tseng, W.-S.; Lee, M.-J.; Wu, J.-A.; Kuo, S.-L.; Chang, S.-L.; Huang, S.-J.; Liu, C.-T. Poly(butylene adipate-co-terephthalate) biodegradation by Purpureocillium lilacinum strain BA1S. Appl. Microbiol. Biotechnol. 2023, 107, 6057–6070. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-Y.; Ten, L.N.; Das, K.; You, Y.-H.; Jung, H.-Y. Biodegradative activities of fungal strains isolated from terrestrial environments in Korea. Mycobiology 2021, 49, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Cavello, I.A. Study of the production of alkaline keratinases in submerged cultures as an alternative for solid waste treatment generated in leather technology. J. Microbiol. Biotechnol. 2013, 23, 1004–1014. [Google Scholar] [CrossRef] [PubMed]
- Virués-Segovia, J.R.; Pinedo-Rivilla, C.; Muñoz-Mira, S.; Ansino, M.; González-Rodríguez, V.E.; Ezzanad, A.; Galán-Sánchez, F.; Durán-Patrón, R.; Aleu, J. Biotransformation of thiochroman derivatives using marine-derived fungi: Isolation, characterization, and antimicrobial activity. Int. J. Mol. Sci. 2025, 26, 908. [Google Scholar] [CrossRef] [PubMed]
- Bustillo, A.J.; Aleu, J.; Hernández-Galán, R.; Collado, I.G. Biotransformation of the fungistatic compound (R)-(+)-1-(4′-chlorophenyl)propan-1-ol by Botrytis cinerea. J. Mol. Catal. B Enzym. 2003, 21, 267–271. [Google Scholar] [CrossRef]
- Pinedo-Rivilla, C.; Moraga, J.; Pérez-Sasián, G.; Peña-Hernández, A.; Collado, I.G.; Aleu, J. Biocatalytic preparation of chloroindanol derivatives antifungal activity and detoxification by the phytopathogenic fungus Botrytis cinerea. Plants 2020, 9, 1648. [Google Scholar] [CrossRef]
- Virués-Segovia, J.R.; Millán, C.; Pinedo, C.; González-Rodríguez, V.E.; Papaspyrou, S.; Zorrilla, D.; Mackenzie, T.A.; Ramos, M.C.; de la Cruz, M.; Aleu, J.; et al. New eremophilane-type sesquiterpenes from the marine sediment-derived fungus Emericellopsis maritima BC17 and their cytotoxic and antimicrobial activities. Mar. Drugs 2023, 21, 634. [Google Scholar] [CrossRef] [PubMed]
- Martins, J.E.D.; Contreras Redondo, M.A.; Wills, M. Applications of N′-alkylated derivatives of TsDPEN in the asymmetric transfer hydrogenation of C=O and C=N bonds. Tetrahedron Asymmetry 2010, 21, 2258–2264. [Google Scholar] [CrossRef]
- Senaweera, S.; Cartwright, K.C.; Tunge, J.A. Decarboxylative acetoxylation of aliphatic carboxylic acids. J. Org. Chem. 2019, 84, 12553–12561. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Bruhn, T.; Schaumlöffel, A.; Hemberger, Y.; Bringmann, G. SpecDis: Quantifying the comparison of calculated and experimental Electronic Circular Dichroism spectra. Chirality 2013, 25, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Serrano, R.; González-Menéndez, V.; Tormo, J.R.; Genilloud, O. Development and validation of a HTS platform for the discovery of new antifungal agents against four relevant fungal phytopathogens. J. Fungi 2023, 9, 883. [Google Scholar] [CrossRef] [PubMed]
- Algaffar, S.O.A.; Verbon, A.; van de Sande, W.W.J.; Khalid, S.A. Development and validation of an in vitro resazurin-based susceptibility assay against Madurella mycetomatis. Antimicrob. Agents Chemother. 2021, 65, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-H.; Chung, T.D.Y.; Oldenburg, K.R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. SLAS Discov. 1999, 4, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Kroc, M.A.; Patil, A.; Carlos, A.; Ballantine, J.; Aguilar, S.; Mo, D.-L.; Wang, H.-Y.; Mueller, D.S.; Wink, D.J.; Anderson, L.L. Synthesis of α-oxygenated ketones and substituted catechols via the rearrangement of N-enoxy- and N-aryloxyphthalimides. Tetrahedron 2017, 73, 4125–4137. [Google Scholar] [CrossRef]
- Rebelo, S.L.H.; Simões, M.M.Q.; Neves, M.G.P.M.S.; Silva, A.M.S.; Tagliatesta, P.; Cavaleiro, J.A.S. Oxidation of bicyclic arenes with hydrogen peroxide catalysed by Mn(III) porphyrins. J. Mol. Catal. A Chem. 2005, 232, 135–142. [Google Scholar] [CrossRef]
- Fernández, R.; Ros, A.; Magriz, A.; Dietrich, H.; Lassaletta, J.M. Enantioselective synthesis of cis-α-substituted cycloalkanols and trans-cycloalkyl amines thereof. Tetrahedron 2007, 63, 6755–6763. [Google Scholar] [CrossRef]
- Murahashi, S.I.; Noji, S.; Hirabayashi, T.; Komiya, N. Manganese-catalyzed enantioselective oxidation of C-H bonds of alkanes and silyl ethers to optically active ketones. Tetrahedron Asymmetry 2005, 16, 3527–3535. [Google Scholar] [CrossRef]
- He, G.; Wu, C.; Zhou, J.; Yang, Q.; Zhang, C.; Zhou, Y.; Zhang, H.; Liu, H. A method for synthesis of 3-hydroxy-1-indanones via Cu-catalyzed intramolecular annulation reactions. J. Org. Chem. 2018, 83, 13356–13362. [Google Scholar] [CrossRef] [PubMed]
- Dafoe, J.T.S.; Daugulis, A.J. Bioproduction of cis-(1S,2R)-indandiol, a chiral pharmaceutical intermediate, using a solid–liquid two-phase partitioning bioreactor for enhanced removal of inhibitors. J. Chem. Technol. Biotechnol. 2011, 86, 1379–1385. [Google Scholar] [CrossRef]
- Stahl, S.; Ikemoto, N.; King, A.; Greasham, R.; Chartrain, M. Asymmetric direduction of 1,2-indanedione to cis (1s,2r) indanediol by Trichosporon cutaneum MY 1506. J. Biosci. Bioeng. 1999, 88, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Boyd, D.R.; Sharma, N.D.; Smith, A.E. Chemical synthesis and optical purity determination of optically active 1,2-epoxyindan and alcohol products which are also derived from mammalian or microbial metabolism of indene or indanones. J. Chem. Soc. Perkin Trans. 1982, 1, 2767. [Google Scholar] [CrossRef]
- Kišić, A.; Stephan, M.; Mohar, B. ansa-Ruthenium(II) complexes of R 2 NSO 2 DPEN-(CH 2) n (η 6-aryl) conjugate ligands for asymmetric transfer hydrogenation of aryl ketones. Adv. Synth. Catal. 2015, 357, 2540–2546. [Google Scholar] [CrossRef]
- Arp, F.O.; Fu, G.C. Catalytic enantioselective negishi reactions of racemic secondary benzylic halides. J. Am. Chem. Soc. 2005, 127, 10482–10483. [Google Scholar] [CrossRef] [PubMed]
- Ohkuma, T.; Utsumi, N.; Tsutsumi, K.; Watanabe, M.; Murata, K.; Arai, N.; Kurono, N. Asymmetric hydrogenation of aromatic heterocyclic ketones catalyzed by the MsDPEN–Cp*Ir(III) Complex. Heterocycles 2010, 80, 141. [Google Scholar] [CrossRef] [PubMed]
- Yoshimatsu, S.; Yamada, A.; Nakata, K. Silylative kinetic resolution of racemic 1-indanol derivatives catalyzed by chiral guanidine. J. Org. Chem. 2018, 83, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.-X.; Liu, G.-J.; Wang, J.; Li, F.; Liu, L. Synthesis of MeO-PEG2000-supported chiral ferrocenyl oxazoline carbinol ligand and its application in asymmetric catalysis. Tetrahedron Asymmetry 2016, 27, 1139–1144. [Google Scholar] [CrossRef]
- Passays, J.; Ayad, T.; Ratovelomanana-Vidal, V.; Gaumont, A.-C.; Jubault, P.; Leclerc, E. Synthesis and evaluation of a broad range of new chiral phosphine–carbene ligands for asymmetric hydrogenation. Tetrahedron Asymmetry 2011, 22, 562–574. [Google Scholar] [CrossRef]
- Zang, C.; Liu, Y.; Xu, Z.; Tse, C.; Guan, X.; Wei, J.; Huang, J.; Che, C. Highly enantioselective iron-catalyzed cis-dihydroxylation of alkenes with hydrogen peroxide oxidant via an Fe III-OOH reactive intermediate. Angew. Chem. Int. Ed. 2016, 55, 10253–10257. [Google Scholar] [CrossRef] [PubMed]
- Pelter, A.; Peverall, S.; Pitchford, A. Hindered organoboron groups in organic chemistry. 30. The production of erythro-1,2-diols by the condensation of dimesitylboron stabilised carbanions with aromatic aldehydes. Tetrahedron 1996, 52, 1085–1094. [Google Scholar] [CrossRef]
- Kuang, Y.-Q.; Zhang, S.-Y.; Jiang, R.; Wei, L.-L. A free ligand for the asymmetric dihydroxylation of olefins utilizing one-phase catalysis and two-phase separation. Tetrahedron Lett. 2002, 43, 3669–3671. [Google Scholar] [CrossRef]
- Adams, H.; Gilmore, N.J.; Jones, S.; Muldowney, M.P.; von Reuss, S.H.; Vemula, R. Asymmetric synthesis of corsifuran a by an enantioselective oxazaborolidine reduction. Org. Lett. 2008, 10, 1457–1460. [Google Scholar] [CrossRef] [PubMed]
- Hannedouche, J.; Clarkson, G.J.; Wills, M. A new class of “Tethered” Ruthenium(II) catalyst for asymmetric transfer hydrogenation reactions. J. Am. Chem. Soc. 2004, 126, 986–987. [Google Scholar] [CrossRef] [PubMed]
- Behnke, M.L.; Castro, A.C.; Evans, C.A.; Grenier, L.; Grogan, M.J.; Liu, T.; Snyder, D.A.; Tibbitts, T.T. Inhibitors of fatty acid amide hydrolase. PCT WO2009003140A1, 15 October 2009. [Google Scholar]
- Schnute, M.E.; Anderson, D.J. 4-Oxo-4,7-dihydrothieno[2,3-b]pyridine-5-carboxamides as antiviral agents. PCT WO2005003140A1, 13 January 2005. [Google Scholar]
- Kang, S.H.; Kim, C.M.; Youn, J.-H. An enantiocontrolled synthesis of the masked taxol C-13 side chain, oxazoline carboxylic acid. Tetrahedron Lett. 1999, 40, 3581–3582. [Google Scholar] [CrossRef]
- Fujioka, H.; Sawama, Y.; Kotoku, N.; Ohnaka, T.; Okitsu, T.; Murata, N.; Kubo, O.; Li, R.; Kita, Y. Concise asymmetric total synthesis of scyphostatin, a potent inhibitor of neutral sphingomyelinase. Chem. A Eur. J. 2007, 13, 10225–10238. [Google Scholar] [CrossRef] [PubMed]
- Sayyed, I.A.; Sudalai, A. Asymmetric synthesis of L-DOPA and (R)-selegiline via OsO4-catalyzed asymmetric dihydroxylation. Tetrahedron Asymmetry 2004, 15, 3111–3116. [Google Scholar] [CrossRef]
Compound | Concentration (µg/mL) | |||||
---|---|---|---|---|---|---|
256 | 128 | 64 | 32 | 16 | 8 | |
(R)-5 | 7 | 0 | 4 | 5 | 3 | 11 |
(S)-6 | −2 | −5 | 3 | −4 | 5 | −2 |
anti-(1R,2R)-7 | −3 | −8 | −5 | −3 | −4 | −2 |
syn-(1S,2R)-7 | −7 | −8 | −8 | −7 | −5 | −5 |
(R)-8 | 1 | −3 | −3 | −7 | −6 | −5 |
(R)-9 | 4 | −1 | 0 | −4 | −6 | −5 |
threo-(1R,2R)-11 | −4 | −2 | −1 | 4 | 16 | 11 |
erythro-(1R,2S)-11 | 3 | 3 | 7 | 18 | 19 | 21 |
Amphotericin B | 100 | 100 | 98 | 96 | 92 | 83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Virués-Segovia, J.R.; Muñoz-Mira, S.; Cabrera-Gómez, N.; Pacheco, M.; Gómez-Marín, M.; Moraga, J.; Durán-Patrón, R.; Aleu, J. Stereochemical Characterization of Optically Active Indane and Phenylpropyl Derivatives Obtained Through Biotransformation by the Marine-Derived Fungi Emericellopsis maritima BC17 and Purpureocillium lilacinum BC17-2. J. Mar. Sci. Eng. 2025, 13, 1386. https://doi.org/10.3390/jmse13081386
Virués-Segovia JR, Muñoz-Mira S, Cabrera-Gómez N, Pacheco M, Gómez-Marín M, Moraga J, Durán-Patrón R, Aleu J. Stereochemical Characterization of Optically Active Indane and Phenylpropyl Derivatives Obtained Through Biotransformation by the Marine-Derived Fungi Emericellopsis maritima BC17 and Purpureocillium lilacinum BC17-2. Journal of Marine Science and Engineering. 2025; 13(8):1386. https://doi.org/10.3390/jmse13081386
Chicago/Turabian StyleVirués-Segovia, Jorge R., Salvador Muñoz-Mira, Nuria Cabrera-Gómez, Marta Pacheco, María Gómez-Marín, Javier Moraga, Rosa Durán-Patrón, and Josefina Aleu. 2025. "Stereochemical Characterization of Optically Active Indane and Phenylpropyl Derivatives Obtained Through Biotransformation by the Marine-Derived Fungi Emericellopsis maritima BC17 and Purpureocillium lilacinum BC17-2" Journal of Marine Science and Engineering 13, no. 8: 1386. https://doi.org/10.3390/jmse13081386
APA StyleVirués-Segovia, J. R., Muñoz-Mira, S., Cabrera-Gómez, N., Pacheco, M., Gómez-Marín, M., Moraga, J., Durán-Patrón, R., & Aleu, J. (2025). Stereochemical Characterization of Optically Active Indane and Phenylpropyl Derivatives Obtained Through Biotransformation by the Marine-Derived Fungi Emericellopsis maritima BC17 and Purpureocillium lilacinum BC17-2. Journal of Marine Science and Engineering, 13(8), 1386. https://doi.org/10.3390/jmse13081386