Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (29,776)

Search Parameters:
Keywords = in vivo studies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4513 KB  
Article
Ginseng Polysaccharides Protect Against Endoplasmic Reticulum Stress-Induced Damage via PI3K/Akt Signalling Pathway in Bovine Ovarian Granulosa Cells
by Hongjie Wang, Yi Fang, Lei Huang, Xu Yang, Xin Ma, Yang Lyu, Guo Jing, He Ding, Hongyu Liu and Wenfa Lyu
Cells 2026, 15(2), 172; https://doi.org/10.3390/cells15020172 (registering DOI) - 17 Jan 2026
Abstract
Necroptosis and dysfunction of ovarian granulosa cells are major contributors to follicular atresia and reduced fertility in cattle, processes that are closely associated with endoplasmic reticulum stress (ERS). Ginseng polysaccharides (GPSs) are known to reduce ER stress, display anti-inflammatory properties, and modulate reproductive [...] Read more.
Necroptosis and dysfunction of ovarian granulosa cells are major contributors to follicular atresia and reduced fertility in cattle, processes that are closely associated with endoplasmic reticulum stress (ERS). Ginseng polysaccharides (GPSs) are known to reduce ER stress, display anti-inflammatory properties, and modulate reproductive function; however, whether GPS can protect against granulosa cell injury and the underlying mechanisms remain unclear. To address this gap, this study aimed to investigate the protective effects of GPS on ERS-induced bovine granulosa cell damage and to elucidate the associated mechanisms. An ERS model was established in bovine granulosa cells using tunicamycin (Tm), and cellular responses were evaluated via flow cytometry, ELISA, and EdU assays. Further, a mouse model was used to validate the protective effects of GPS against Tm-induced ovarian injury. The results showed that 40 μg/mL of GPS significantly alleviated ERS-induced granulosa cell damage, inhibited necroptosis, and mitigated ERS. Moreover, using the PI3K/Akt pathway inhibitor LY294002, we demonstrated that the inhibitor antagonized the effects of GPS, indicating that GPS promotes granulosa cell proliferation and restores estrogen secretion via activating the PI3K/Akt pathway. In vivo experiments further confirmed that GPS effectively attenuates ERS-induced ovarian damage in mice. Collectively, these findings reveal that GPS improves granulosa cell function and ovarian tissue integrity by modulating the ERS network and the PI3K/Akt pathway, yielding a theoretical basis for preventing follicular atresia and enhancing reproductive efficiency in cattle. Full article
Show Figures

Figure 1

29 pages, 928 KB  
Review
The RTF-Compass: Navigating the Trade-Off Between Thermogenic Potential and Ferroptotic Stress in Adipocytes
by Minghao Fu, Manish Kumar Singh, Jyotsna Suresh Ranbhise, Kyung-Sik Yoon, Sung Soo Kim, Joohun Ha, Insug Kang, Suk Chon and Wonchae Choe
Cells 2026, 15(2), 170; https://doi.org/10.3390/cells15020170 (registering DOI) - 16 Jan 2026
Abstract
Adipose tissue thermogenesis is a promising strategy to counter obesity and metabolic disease, but sustained activation of thermogenic adipocytes elevates oxidative and lipid-peroxidation stress, increasing susceptibility to ferroptotic cell death. Existing models often treat redox buffering, hypoxia signaling and ferroptosis as separate processes, [...] Read more.
Adipose tissue thermogenesis is a promising strategy to counter obesity and metabolic disease, but sustained activation of thermogenic adipocytes elevates oxidative and lipid-peroxidation stress, increasing susceptibility to ferroptotic cell death. Existing models often treat redox buffering, hypoxia signaling and ferroptosis as separate processes, which cannot explain why similar interventions—such as antioxidants, β-adrenergic agonists or iron modulators—alternately enhance thermogenesis or precipitate tissue failure. Here, we propose the Redox–Thermogenesis–Ferroptosis Compass (RTF-Compass) as a framework that maps adipose depots within a space defined by ferroptosis resistance capacity (FRC), ferroptosis signaling intensity (FSI) and HIF-1α-dependent hypoxic tone. Within this space, thermogenic output follows a hormetic, inverted-U trajectory, with a Thermogenic Ferroptosis Window (TFW) bounded by two failure states: a Reductive-Blunted state with excessive antioxidant buffering and weak signaling, and a Cytotoxic state with high ferroptotic pressure and inadequate defense. We use this model to reinterpret genetic, nutritional and pharmacological studies as state-dependent vectors that move depots through FRC–FSI–HIF space and to outline principles for precision redox medicine. Although the TFW is represented as coordinates in FRC–FSI–HIF space, we use ‘Compass’ to denote a coordinate framework in which perturbations act as vectors that orient depots toward thermogenic or cytotoxic outcomes. Finally, we highlight priorities for testing the model in vivo, including defining lipid species that encode ferroptotic tone, resolving spatial heterogeneity within depots and determining how metabolic memory constrains reversibility of pathological states. Full article
16 pages, 2724 KB  
Article
Sustainable Routes to a Soluble Anthelmintic Thiabendazole Organic Salt
by Ilenia D’Abbrunzo, Elisa Zampieri, Maja Bjelošević Žiberna, Serena Bertoni, Cécile Häberli, Jennifer Keiser and Beatrice Perissutti
Crystals 2026, 16(1), 63; https://doi.org/10.3390/cryst16010063 - 16 Jan 2026
Abstract
A new organic salt of thiabendazole with p-toluenesulfonic acid was successfully synthesized by mechanochemistry. Notably, the same crystalline form and morphology were obtained both through neat grinding and liquid-assisted grinding using 4-methyltetrahydropyran, a sustainable solvent not yet commonly employed in mechanochemical processes. The [...] Read more.
A new organic salt of thiabendazole with p-toluenesulfonic acid was successfully synthesized by mechanochemistry. Notably, the same crystalline form and morphology were obtained both through neat grinding and liquid-assisted grinding using 4-methyltetrahydropyran, a sustainable solvent not yet commonly employed in mechanochemical processes. The resulting salt crystallizes as a hydrate with impressive physical stability for up to 18 months under four storage conditions, including 40 °C. Comprehensive solid-state characterization (PXRD, DSC, TGA, HSM, SEM) confirmed the phase identity, purity, and thermal behavior of the material, while FTIR spectroscopy provided insight into the intermolecular interactions driving salt formation and stabilizing the crystalline water. In comparison to pure thiabendazole, the hydrate salt exhibited a remarkable ~70-fold increase in solubility and significantly improved intrinsic dissolution rate over the entire study period. Importantly, the in vivo evaluation in the Heligmosomoides polygyrus mouse model of the salt and the pure drug revealed similar moderate reductions in worm burden, indicating that salt formation does not compromise anthelmintic efficacy. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

19 pages, 2601 KB  
Article
Photothermal Therapy-Induced Immunogenic Cell Death Synergistically Enhances the Therapeutic Effect of Immune Checkpoint Inhibitors
by Shogo Yasuda, Yui Horikawa, Mei Ohashi, Mai Amou, Taisei Kanamori, Duan Runjing, Yuta Tamemoto, Wei Xu, Takuro Niidome, Akihiro Hisaka and Hiroto Hatakeyama
Cancers 2026, 18(2), 287; https://doi.org/10.3390/cancers18020287 - 16 Jan 2026
Abstract
Background/Objectives: To improve the response rate of immune checkpoint inhibitors (ICIs), inducing immunogenic cell death (ICD) is a promising approach. Photothermal therapy (PTT) induces immunogenic cell death and activates anti-tumor immunity. While there are various ICD inducers, the difference in ICD induction by [...] Read more.
Background/Objectives: To improve the response rate of immune checkpoint inhibitors (ICIs), inducing immunogenic cell death (ICD) is a promising approach. Photothermal therapy (PTT) induces immunogenic cell death and activates anti-tumor immunity. While there are various ICD inducers, the difference in ICD induction by various modalities is poorly understood. In this study, we found previously unrecognized advantages of PTT compared to anti-cancer drugs and showed the usefulness of PTT as an anti-cancer drug-free approach to be combined with immunotherapy. Methods: Gold nanorods were synthesized as photothermal agents and added to culture medium or locally administered to tumor tissues. Mitoxantrone (MIT), an ICD inducer, and cisplatin (CDDP), a non-ICD inducer, were compared with PTT. To assess the induction of ICD, the subcellular localization and amounts of high mobility group box 1 (HMGB1) and calreticulin (CRT) were observed using immunofluorescent staining. FM3A tumor-bearing mice were treated with PTT or anti-cancer drugs, and cell death and DAMPs localization in tumor tissues were analyzed. Also, the supra-additive effect of PTT on ICI was observed. Tumor-infiltrating CD8+ T cells were examined to evaluate the immune status in tumor tissues. Results: In vivo assays showed that PTT induces HMGB1 release and increased expression of CRT on the cell membrane. Moreover, PTT showed a supra-additive effect in terms of therapeutic effect and anti-tumor activation when combined with an immune checkpoint inhibitor. Conclusions: In this study, we demonstrated that PTT induced ICD-related signaling and improved the response rate of ICI, which means PTT is a promising combination therapy with ICI. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
14 pages, 1856 KB  
Article
Autophagy Activation in Mesenchymal Stem Cells with Lithium Chloride and Trehalose: Implications for Regenerative Medicine
by Ali Fouad, Yasser ElSherbini, Elsayed Abdelhady and Mohamed Abdraboh
BioMed 2026, 6(1), 4; https://doi.org/10.3390/biomed6010004 - 16 Jan 2026
Abstract
Background/Objectives: Mesenchymal stem cells (MSCs) are deemed to be a highly safe model for autologous and allogeneic cellular therapy, owing to their inherent lack of HLA-DR expression, immunomodulatory properties, homing ability, and plasticity allowing differentiation into different cell types. The interest in [...] Read more.
Background/Objectives: Mesenchymal stem cells (MSCs) are deemed to be a highly safe model for autologous and allogeneic cellular therapy, owing to their inherent lack of HLA-DR expression, immunomodulatory properties, homing ability, and plasticity allowing differentiation into different cell types. The interest in activating autophagic signaling in MSCs has recently grown due to its significant potential in maintaining stemness, enhancing paracrine signaling, and providing therapeutic benefits for cancer and neurodegenerative diseases. This study aimed to explore the impact of autophagy induction on enhancing the therapeutic potential of MSCs by maintaining their plasticity and to assess different induction agents. Methods: In this study, MSCs were first extracted from the fat tissue of Sprague–Dawley (SD) rats and characterized phenotypically and molecularly by their positive expression of stemness markers CD29, CD106, and CD44, and their negative expression of hematopoietic surface markers CD14, CD34, and CD45, using a flow cytometry approach. Isolated MSCs were then treated separately with two FDA-approved autophagy inducers: Lithium Chloride and Trehalose, following assessment of autophagy activity. Results: Treated MSCs showed significant increases in autophagic activity at both the transcriptional and translational levels. The successful induction of autophagy in MSCs was confirmed through the elevated expression of autophagy-related genes such as ATG3, ATG13, ATG14, P62, and ULK1. These data were confirmed by the significant upregulation in LC3 protein expression and the formation of autophagosomes, which was detected using a transmission electron microscope. Furthermore, the expression of Oct4, Sox2, and Nanog genes was significantly enhanced after treatment with Trehalose and Lithium Chloride compared with untreated control MSCs which may indicate an upregulation of pluripotency. Meanwhile, Lithium Chloride and Trehalose did not significantly induce cellular apoptosis, indicated by the Bax/Bcl-2 expression ratio, and significantly decreased the expression of the antioxidant markers SOD and GPx. Conclusions: Treatment of MSCs with Trehalose and, in particular, Lithium Chloride significantly activated autophagic signaling, which showed a profound effect in enhancing cells’ pluripotency, reinforcing the usage of treated MSCs for autologous and/or allogenic cellular therapy. However, further in vivo studies for activating autophagy in cellular grafts should be conducted before their use in clinical trials. Full article
22 pages, 12812 KB  
Article
bFGF-Loaded PDA Microparticles Enhance Vascularization of Engineered Skin with a Concomitant Increase in Leukocyte Recruitment
by Britani N. Blackstone, Zachary W. Everett, Syed B. Alvi, Autumn C. Campbell, Emilio Alvalle, Olivia Borowski, Jennifer M. Hahn, Divya Sridharan, Dorothy M. Supp, Mahmood Khan and Heather M. Powell
Bioengineering 2026, 13(1), 110; https://doi.org/10.3390/bioengineering13010110 - 16 Jan 2026
Abstract
Engineered skin (ES) can serve as an advanced therapy for treatment of large full-thickness wounds, but delayed vascularization can cause ischemia, necrosis, and graft failure. To accelerate ES vascularization, this study assessed incorporation of polydopamine (PDA) microparticles loaded with different concentrations of basic [...] Read more.
Engineered skin (ES) can serve as an advanced therapy for treatment of large full-thickness wounds, but delayed vascularization can cause ischemia, necrosis, and graft failure. To accelerate ES vascularization, this study assessed incorporation of polydopamine (PDA) microparticles loaded with different concentrations of basic fibroblast growth factor (bFGF) into collagen scaffolds, which were subsequently seeded with human fibroblasts to create dermal templates (DTs), and then keratinocytes to create ES. DTs and ES were evaluated in vitro and following grafting to full-thickness wounds in immunodeficient mice. In vitro, metabolic activity of DTs was enhanced with PDA+bFGF, though this increase was not observed following seeding with keratinocytes to generate ES. After grafting, ES with bFGF-loaded PDA microparticles displayed dose-dependent increases in CD31-positive vessel formation vs. PDA-only controls (p < 0.001 at day 7; p < 0.05 at day 14). Interestingly, ES containing PDA+bFGF microparticles exhibited an almost 3-fold increase in water loss through the skin and a less-organized basal keratinocyte layer at day 14 post-grafting vs. controls. This was associated with significantly increased inflammatory cell infiltrate vs. controls at day 7 in vivo (p < 0.001). The results demonstrate that PDA microparticles are a viable method for delivery of growth factors in ES. However, further investigation of bFGF concentrations, and/or investigation of alternative growth factors, will be required to promote vascularization while reducing inflammation and maintaining epidermal health. Full article
Show Figures

Figure 1

22 pages, 2522 KB  
Article
Oncological Safety of High Hydrostatic Pressure Treatment: Effects on Cancer-Associated Fibroblast-like Transdifferentiation of Adipose Stromal Cells
by Julia Kristin Brach, Vivica Freiin Grote, Anika Jonitz-Heincke, Rainer Bader, Daniel Strüder, Marco Hoffmann, Sven Gerlach, Petra Fischer, Markus Wirth, Tim Ruhl, Justus P. Beier, Agmal Scherzad and Stephan Hackenberg
Curr. Issues Mol. Biol. 2026, 48(1), 91; https://doi.org/10.3390/cimb48010091 - 16 Jan 2026
Abstract
Oncological safety is essential for autologous reconstruction after resection of cartilage-infiltrating head and neck tumors. High hydrostatic pressure (HHP) enables complete devitalization of tumor-infiltrated tissue while preserving extracellular matrix integrity. However, residual soluble tumor-derived products may influence infiltrating stromal cells. This study examined [...] Read more.
Oncological safety is essential for autologous reconstruction after resection of cartilage-infiltrating head and neck tumors. High hydrostatic pressure (HHP) enables complete devitalization of tumor-infiltrated tissue while preserving extracellular matrix integrity. However, residual soluble tumor-derived products may influence infiltrating stromal cells. This study examined whether conditioned media (CM) from HHP-treated head and neck squamous cell carcinoma (HNSCC) cells induce cancer-associated fibroblast (CAF)-like transdifferentiation of human adipose stromal cells (hASCs). HASCs were exposed to CM from untreated or HHP-treated (300 MPa) HNSCC cells, tumor-CM (TCM), or TGF-β1. Morphological changes in hASCs were evaluated, and CAF marker expression was analyzed by qRT-PCR, immunofluorescence, Western blot, and ELISA. Cytokines were quantified via multiplex analysis. TGF-β1 induced a CAF-like phenotype with α-SMA upregulation, whereas TCM and 0 MPa-CM caused only modest increases in selected markers. Although 300 MPa-CM did not induce CAF-associated molecular signatures, hASCs exhibited morphological alterations, underscoring that morphology alone is insufficient to define CAF transdifferentiation. Cytokine secretion was elevated in response to all CM conditions. These findings indicate that HHP treatment at 300 MPa abolishes the paracrine CAF-inducing potential of tumor-derived mediators in vitro, supporting the oncological safety of HHP-treated tissues under these experimental condition, although further in vivo validation is warranted Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

15 pages, 1053 KB  
Systematic Review
Application of Medicinal Mushrooms for the Treatment of Peripheral Nerve Injury: A Systematic Review
by Nurul Aini Binti Taib, Zolkapli Bin Eshak, Hussin Bin Muhammad and Muhammad Danial Bin Che Ramli
Med. Sci. 2026, 14(1), 42; https://doi.org/10.3390/medsci14010042 - 16 Jan 2026
Abstract
Background/Objective: Current treatments for peripheral nerve injury (PNI) lack robust evidence to suggest complete recovery; hence, alternative therapeutics offer new opportunities to develop more effective protocols. Mushroom species and their related components are considered potential candidates for peripheral nerve repair, but their [...] Read more.
Background/Objective: Current treatments for peripheral nerve injury (PNI) lack robust evidence to suggest complete recovery; hence, alternative therapeutics offer new opportunities to develop more effective protocols. Mushroom species and their related components are considered potential candidates for peripheral nerve repair, but their specific effects and underlying mechanisms are not fully understood. This systematic review presents the available evidence on the use of mushroom species for PNI therapy, including the bioactive components and mechanisms of action. Methodology: A comprehensive literature search in three databases (PubMed, Scopus, and Google Scholar) led to the synthesis of 11 records published between 2010 and 2024. Qualitative analysis revealed the neuroregenerative potential of four mushrooms: Amanita muscaria (n = 2), Hericium erinaceus (n = 5), Lignosus rhinocerotis (n = 3), and Flammulina velutipes (n = 1), with aqueous extracts as the most common type of ingredients used (n = 4) relative to specific components such as muscimol, polysaccharide, Erinacine S, and nerve-guided conduits (NGCs). Results: These mushroom-derived treatments enhanced the migration of Schwann cells mainly via the FGF-2 signalling and MAPK pathway. In vivo studies also revealed the ability of H. erinaceus, A. muscaria, and L. rhinocerotis to promote peripheral nerve repair and functional recovery, with evidence suggesting the role of neurotrophic factors, anti-apoptotic signalling, and pro-inflammatory substances. H. erinaceus was identified as the most promising for potential clinical applications, given the stronger evidence-based data and its relatively safer components compared to A. muscuria and other mushroom species. Conclusions: Despite presenting the potential use of mushrooms in managing PNIs, the existing approaches need to be subjected to clinical research to accelerate the development of future therapeutics and preventive measures for PNIs. Full article
(This article belongs to the Collection Advances in the Pathogenesis of Neurodegenerative Diseases)
Show Figures

Figure 1

32 pages, 3412 KB  
Review
Engineering Immunity: Current Progress and Future Directions of CAR-T Cell Therapy
by Mouldy Sioud and Nicholas Paul Casey
Int. J. Mol. Sci. 2026, 27(2), 909; https://doi.org/10.3390/ijms27020909 - 16 Jan 2026
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has emerged as a transformative form of immunotherapy, enabling the precise engineering of T cells to recognize and eliminate pathogenic cells. In hematologic malignancies, CAR-T cells targeting CD19 or B cell maturation antigens have achieved remarkable remission [...] Read more.
Chimeric antigen receptor (CAR)-T cell therapy has emerged as a transformative form of immunotherapy, enabling the precise engineering of T cells to recognize and eliminate pathogenic cells. In hematologic malignancies, CAR-T cells targeting CD19 or B cell maturation antigens have achieved remarkable remission rates and durable responses in patients with otherwise refractory disease. Despite these successes, extending CAR-T cell therapy to solid tumors remains challenging due to antigen heterogeneity, poor T cell infiltration, and the immunosuppressive tumor microenvironment (TME). Beyond oncology, CAR-T cell therapy has also shown promise in autoimmune diseases, where early clinical studies suggest that B cell-directed CAR-T cells can induce sustained remission in conditions such as systemic lupus erythematosus. This review highlights advances in CAR-T cell engineering, including DNA- and mRNA-based platforms for ex vivo and in vivo programming, and discusses emerging strategies to enhance CAR-T cell trafficking, persistence, and resistance to TME. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Immunotherapy in Cancer)
Show Figures

Figure 1

20 pages, 9139 KB  
Article
Western Diet Dampens T Regulatory Cell Function to Fuel Hepatic Inflammation in Metabolic Dysfunction-Associated Steatotic Liver Disease
by Sudrishti Chaudhary, Ravi Rai, Pabitra B. Pal, Dana Tedesco, Daniel Rossmiller, Biki Gupta, Aatur D. Singhi, Satdarshan P. Monga, Arash Grakoui, Smita S. Iyer and Reben Raeman
Cells 2026, 15(2), 165; https://doi.org/10.3390/cells15020165 - 16 Jan 2026
Abstract
The immunosuppressive T regulatory cells (Tregs) regulate immune responses and maintain immune homeostasis, yet their functions in metabolic dysfunction-associated steatotic liver disease (MASLD) remain controversial. Here we report increased accumulation of Tregs and effector T cells within the liver parenchyma of mice fed [...] Read more.
The immunosuppressive T regulatory cells (Tregs) regulate immune responses and maintain immune homeostasis, yet their functions in metabolic dysfunction-associated steatotic liver disease (MASLD) remain controversial. Here we report increased accumulation of Tregs and effector T cells within the liver parenchyma of mice fed a Western diet (WD). This pattern was also observed in MASH patients, where an increase in intrahepatic Tregs was noted. In the absence of adaptive immune cells in Rag1 KO mice, WD promoted accumulation of intrahepatic neutrophils and macrophages and exacerbated hepatic inflammation and fibrosis. Similarly, targeted Treg depletion exacerbated WD-induced hepatic inflammation and fibrosis. In Treg-depleted mice, hepatic injury was associated with increased accumulation of neutrophils, macrophages, and activated T cells in the liver. Conversely, induction of Treg numbers using recombinant IL2/αIL2 mAb cocktail reduced hepatic steatosis, inflammation, and fibrosis in WD-fed mice. Analysis of intrahepatic Tregs from WD-fed mice revealed a phenotypic signature of impaired Treg function in MASLD. Ex vivo functional studies showed that glucose and palmitate, but not fructose, impaired the immunosuppressive ability of Treg cells. The findings indicate that the liver microenvironment in MASLD impairs the ability of Tregs to suppress effector immune cell activation, thus perpetuating chronic inflammation and driving MASLD progression. Full article
Show Figures

Figure 1

19 pages, 2055 KB  
Article
Punica granatum L. Modulates Antioxidant Activity in Vitrified Bovine Ovarian Tissue
by Solano Dantas Martins, Maria Alice Felipe Oliveira, Venância Antônia Nunes Azevedo, Francisco das Chagas Costa, Ingrid Gracielle Martins da Silva, Selene Maia de Morais, Sônia Nair Báo, José Roberto Viana Silva, Vânia Marilande Ceccatto and Valdevane Rocha Araújo
Int. J. Mol. Sci. 2026, 27(2), 903; https://doi.org/10.3390/ijms27020903 - 16 Jan 2026
Abstract
This study aimed to evaluate the effects of an ethanolic extract from Punica granatum L. (EE-PG) on bovine ovarian tissue vitrification, focusing on follicular morphology, ultrastructure, stromal cell density, collagen distribution, redox status, and mRNA expression of antioxidant-related genes. Bovine ovarian cortex fragments [...] Read more.
This study aimed to evaluate the effects of an ethanolic extract from Punica granatum L. (EE-PG) on bovine ovarian tissue vitrification, focusing on follicular morphology, ultrastructure, stromal cell density, collagen distribution, redox status, and mRNA expression of antioxidant-related genes. Bovine ovarian cortex fragments were divided into a fresh control group for in vivo tissue evaluation or vitrified either with the base vitrification solution (αMEM) alone or supplemented with different concentrations of EE-PG (10, 50, and 100 µg/mL), and subsequently stored in liquid nitrogen for 5 days. After warming, fragments were allocated for morphological and oxidative stress analyses or incubated for 24 h to resumption of cellular metabolism. The concentrations of 10 and 100 µg/mL preserved follicular morphology immediately after warming, and were therefore selected for ultrastructural evaluation. Both concentrations mitigated vitrification-induced damage. Gene expression analysis showed decreased levels of catalase (cat), Glutathione Peroxidase 1 (gpx1), and Nuclear Factor Erythroid 2-Related Factor 2 (nrf2) compared with the fresh control, whereas Superoxide Dismutase (SOD) enzymatic activity increased after incubation with 10 µg/mL EE-PG compared with all experimental groups. Moreover, Malondialdehyde (MDA) levels in tissues treated with 10 or 100 µg/mL were comparable to fresh controls after incubation. Overall, EE-PG at 10 or 100 µg/mL in the vitrification solution supported the maintenance of tissue morphology, redox balance—despite the downregulation of essential antioxidant genes, which may be associated with a reduced demand for enzymatic antioxidant defense—and cellular metabolism, indicating potential for improving bovine ovarian tissue vitrification outcomes. Full article
(This article belongs to the Special Issue New Advances in Animal Reproduction)
Show Figures

Figure 1

13 pages, 964 KB  
Article
Effects of Lifelong Low Social Status on Inflammatory Markers in Adult Female Macaques—Long-Term Inflammatory Effects of Low Social Status on Adult Macaques
by Mar M. Sanchez, Kaitlyn Love, Alex van Schoor, Kelly Bailey, Trina Jonesteller, Jocelyne Bachevalier, Maria C. Alvarado, Kelly F. Ethun, Mark E. Wilson and Jessica Raper
Biomolecules 2026, 16(1), 159; https://doi.org/10.3390/biom16010159 - 16 Jan 2026
Abstract
Low social status leads to chronic social stress that predicts risk for physical and mental illness, especially when it starts early in life. To examine the longitudinal effects of low social status on the immune system, this study assessed the effects of low [...] Read more.
Low social status leads to chronic social stress that predicts risk for physical and mental illness, especially when it starts early in life. To examine the longitudinal effects of low social status on the immune system, this study assessed the effects of low social status on developmental secretory patterns of pro- and anti-inflammatory markers under baseline conditions, as well as in response to an immune challenge (lipopolysaccharide (LPS)-induced activation of pro- and anti-inflammatory cytokines) in a translational rhesus monkey model of lifelong social subordination stress. Baseline blood samples were collected in 27 socially housed female rhesus monkeys (13 dominants, DOM, and 14 subordinates, SUB) during infancy (6 months), the juvenile pre-pubertal period (16 months), and adulthood (9–10 years) to examine the longitudinal effects of social status on inflammatory markers in unstimulated versus LPS-stimulated conditions mimicking exposure to bacterial infection. Basal levels of the stress hormone cortisol in blood were measured to examine associations between inflammation and activity of the hypothalamic–pituitary–adrenal (HPA) axis throughout the life span. Basal peripheral levels of inflammatory markers (e.g., IL-6) increased across development in both SUB and DOM animals with no significant differences. Basal cortisol levels were significantly higher in infancy as compared to adulthood, but no significant effects of social rank were detected. However, in adulthood, SUB animals showed a cytokine-specific immune response to ex vivo LPS stimulation with significantly higher secretions of IL-1β, IL-2, and IL-10 compared to DOM animals, whereas IL-8 response to LPS was lower in SUB animals than in DOMs. This cytokine-specific response to an immune challenge that mimics bacterial infection could reflect dysregulated immune cells that may have short-term adaptation, but at the cost of longer-term risks for low-grade chronic inflammation and accelerated immune aging for socially subordinate female macaques. Full article
Show Figures

Graphical abstract

26 pages, 5287 KB  
Article
Discovery of New Quinazolinone and Benzimidazole Analogs as Tubulin Polymerization Inhibitors with Potent Anticancer Activities
by Boye Jiang, Juan Zhang, Kai Shao, Conghao Gai, Bing Xu, Yan Zou, Yan Song, Qingjie Zhao, Qingguo Meng and Xiaoyun Chai
Pharmaceuticals 2026, 19(1), 161; https://doi.org/10.3390/ph19010161 - 15 Jan 2026
Abstract
Background/Objectives: Cancer persists as a leading concern in the current medical field, and current therapies are limited by toxicity, cost, and resistance. Targeted inhibition of tubulin polymerization is considered as a promising therapeutic strategy for cancer treatment. Methods: Thirty-one new tubulin polymerization [...] Read more.
Background/Objectives: Cancer persists as a leading concern in the current medical field, and current therapies are limited by toxicity, cost, and resistance. Targeted inhibition of tubulin polymerization is considered as a promising therapeutic strategy for cancer treatment. Methods: Thirty-one new tubulin polymerization inhibitors were designed via molecular hybridization techniques, and BLI technology was employed to quantitatively investigate their interactions with tubulin. Antiproliferative activities against MCF-7, MDA-MB-231, A549, and HeLa cell lines was evaluated using the CCK8 assay. Apoptosis induction and cell cycle arrest were analyzed by flow cytometry. The anti-tumor activity of compound B6 was validated in a mouse melanoma tumor model. Results: Compounds exhibited varying degrees of antiproliferative activity against four tumor cell lines. Among them, compound B6 was the most promising candidate and displayed strong broad-spectrum anticancer activity with an average IC50 value of 2 μM. The mechanism studies revealed that compound B6 inhibited tubulin polymerization in vitro, disrupted cell microtubule networks, and arrested the cell cycle at G2/M phase. Furthermore, B6 displayed significant in vivo antitumor efficacy in a melanoma tumor model with tumor growth inhibition rates of 70.21% (50 mg/kg). Conclusions: This work shows that B6 is a promising lead compound deserving further investigation as a potential anticancer agent. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

21 pages, 707 KB  
Article
Mathematical Modeling in Drug Metabolism and Pharmacokinetics: Correct In Vitro, Not Always Valid In Vivo
by Leslie Z. Benet and Jasleen K. Sodhi
Pharmaceuticals 2026, 19(1), 160; https://doi.org/10.3390/ph19010160 - 15 Jan 2026
Viewed by 23
Abstract
Background/Objectives: Chemical and metabolic kinetics have historically been derived from mass balance differential equations expressed in terms of amounts, and this framework was later extended to pharmacokinetics by converting amount-based equations to concentration-based clearance relationships. That conversion is valid for fixed-volume in [...] Read more.
Background/Objectives: Chemical and metabolic kinetics have historically been derived from mass balance differential equations expressed in terms of amounts, and this framework was later extended to pharmacokinetics by converting amount-based equations to concentration-based clearance relationships. That conversion is valid for fixed-volume in vitro experiments, but may be unreliable in vivo, where input, distribution, and elimination can occur in different volumes of distribution. The objective of this study is to present an alternate, mechanistically agnostic framework for deriving pharmacokinetic relationships by adapting Kirchhoff’s Laws to treat pharmacokinetic systems as networks of parallel and in-series rate-defining processes, and to identify where differential equation approaches fail in vivo. Methods: Clearance and rate constant equations were derived using the adapted Kirchhoff’s Laws by summing parallel rate-defining processes and summing inverses for in-series processes, explicitly incorporating organ blood flow, net transporter, and delivery site effects. The resulting expressions were compared with differential equation hepatic disposition elimination models (well-stirred, parallel tube, dispersion) and the Extended Clearance Concept (ECC). Mean residence time concepts were used to extend the framework to oral input, and the full approach was applied to a case study of a hypothetical drug (KL25A). Results: The adapted Kirchhoff-based approach reproduced standard pharmacokinetic analyses without mechanistic organ assumptions and yielded model-independent hepatic and renal clearance equations that include blood flow, net transport, and delivery kinetics. Inconsistencies with the traditional differential-based derivations were highlighted, including the interpretation of pharmacokinetics associated with slow absorption site clearance, as illustrated by KL25A. Conclusions: For linear drug metabolism and pharmacokinetics, clearance and rate constant relationships can be derived by summing parallel and in-series rate-defining processes, without differential equations. Differential equation methods may misestimate in vivo clearance and bioavailability when drug input is slow or when volumes of distribution differ across processes. The adapted Kirchhoff framework offers a simpler, model-independent basis for interpreting clinical data. Full article
(This article belongs to the Special Issue Mathematical Modeling in Drug Metabolism and Pharmacokinetics)
Show Figures

Graphical abstract

18 pages, 3450 KB  
Article
Acacetin Attenuates Lysophosphatidylcholine-Induced Vascular Smooth Muscle Cell Injury via Sirt1-Nrf2/p62 Signaling Axis
by Yun-Da Li, Yao Wu, Tian-Li Zhou, Qian Yuan, Gui-Rong Li, Wei-Yin Wu, Yan Wang and Gang Li
Biomedicines 2026, 14(1), 194; https://doi.org/10.3390/biomedicines14010194 - 15 Jan 2026
Viewed by 21
Abstract
Background: Acacetin, a naturally occurring flavone present in various plants, is known as a promising drug candidate for cardiovascular disorders. Our previous study demonstrated that acacetin ameliorates atherosclerosis through endothelial cell protection; however, its pharmacological effects on vascular smooth muscle cells (VSMCs) remain [...] Read more.
Background: Acacetin, a naturally occurring flavone present in various plants, is known as a promising drug candidate for cardiovascular disorders. Our previous study demonstrated that acacetin ameliorates atherosclerosis through endothelial cell protection; however, its pharmacological effects on vascular smooth muscle cells (VSMCs) remain unexplored. This study investigates the therapeutic potential of acacetin against lysophosphatidylcholine (LysoPC)-induced VSMC injury and elucidates the underlying molecular mechanisms. Methods and Results: Multiple biochemical techniques were employed in the present study. The results showed that acacetin significantly attenuated LysoPC-induced apoptosis and reactive oxygen species (ROS) generation in cultured VSMCs. Western blot analysis revealed that the cytoprotection of acacetin was associated with upregulated expression of antioxidant defense proteins, including nuclear factor erythroid 2-related factor 2 (Nrf2), catalase (CAT), NADPH quinone oxidoreductase 1 (NQO-1), and superoxide dismutase 1 (SOD1). Nrf2 silencing completely abolished these protective effects. Mechanistically, siRNA-silencing of Sirtuin 1 (Sirt1) abrogated acacetin-induced modulation of the Nrf2/Keap1/p62 signaling. In vivo validation using aortic tissues from high-fat-diet-fed ApoE−/− mice confirmed that acacetin effectively suppressed VSMC apoptosis and ROS overproduction associated with restoring the downregulated Sirt1 expression levels. Conclusions: These findings establish a novel mechanistic paradigm wherein acacetin confers protection against LysoPC-induced VSMC apoptosis and oxidative stress through Sirt1-dependent activation of the Nrf2/p62 signaling pathway, suggesting that acacetin is a promising therapeutic drug candidate for atherosclerotic plaque stabilization. Full article
(This article belongs to the Special Issue Recent Advances in Endocrine Disease and Atherosclerosis)
Show Figures

Figure 1

Back to TopTop