Abstract
Adipose tissue thermogenesis is a promising strategy to counter obesity and metabolic disease, but sustained activation of thermogenic adipocytes elevates oxidative and lipid-peroxidation stress, increasing susceptibility to ferroptotic cell death. Existing models often treat redox buffering, hypoxia signaling and ferroptosis as separate processes, which cannot explain why similar interventions—such as antioxidants, β-adrenergic agonists or iron modulators—alternately enhance thermogenesis or precipitate tissue failure. Here, we propose the Redox–Thermogenesis–Ferroptosis Compass (RTF-Compass) as a framework that maps adipose depots within a space defined by ferroptosis resistance capacity (FRC), ferroptosis signaling intensity (FSI) and HIF-1α-dependent hypoxic tone. Within this space, thermogenic output follows a hormetic, inverted-U trajectory, with a Thermogenic Ferroptosis Window (TFW) bounded by two failure states: a Reductive-Blunted state with excessive antioxidant buffering and weak signaling, and a Cytotoxic state with high ferroptotic pressure and inadequate defense. We use this model to reinterpret genetic, nutritional and pharmacological studies as state-dependent vectors that move depots through FRC–FSI–HIF space and to outline principles for precision redox medicine. Although the TFW is represented as coordinates in FRC–FSI–HIF space, we use ‘Compass’ to denote a coordinate framework in which perturbations act as vectors that orient depots toward thermogenic or cytotoxic outcomes. Finally, we highlight priorities for testing the model in vivo, including defining lipid species that encode ferroptotic tone, resolving spatial heterogeneity within depots and determining how metabolic memory constrains reversibility of pathological states.