Effects of Lifelong Low Social Status on Inflammatory Markers in Adult Female Macaques—Long-Term Inflammatory Effects of Low Social Status on Adult Macaques
Abstract
1. Introduction
2. Methods
- 2a.
- Animals
- 2b.
- Blood sample collection for baseline cortisol and cytokine levels
- 2c.
- LPS stimulation using whole blood culture
- 2d.
- Plasma cortisol and cytokine assays
- 2e.
- Statistical analyses
3. Results
- 3a.
- Basal (unstimulated) plasma cortisol levels
- 3b.
- Basal (unstimulated) plasma cytokine levels
- 3c.
- LPS-stimulated cytokine response (adulthood)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McEwen, B.S. Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiol. Rev. 2007, 87, 873–904. [Google Scholar] [CrossRef]
- Cohen, S.; Janicki-Deverts, D.; Miller, G.E. Psychological stress and disease. JAMA 2007, 298, 1685–1687. [Google Scholar] [CrossRef] [PubMed]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Sapolsky, R.M. The influence of social hierarchy on primate health. Science 2005, 308, 648–652. [Google Scholar] [CrossRef]
- Michopoulos, V.; Higgins, M.; Toufexis, D.; Wilson, M.E. Social subordination produces distinct stress-related phenotypes in female rhesus monkeys. Psychoneuroendocrinology 2012, 37, 1071–1085. [Google Scholar] [CrossRef] [PubMed]
- Snyder-Mackler, N.; Sanz, J.; Kohn, J.N.; Brinkworth, J.F.; Morrow, S.; Shaver, A.O.; Grenier, J.C.; Pique-Regi, R.; Johnson, Z.P.; Wilson, M.E.; et al. Social status alters immune regulation and response to infection in macaques. Science 2016, 354, 1041–1045. [Google Scholar] [CrossRef]
- Bernstein, I.S. Dominance, aggression and reproduction in primate societies. J. Theor. Biol. 1976, 60, 459–472. [Google Scholar] [CrossRef]
- Wilson, M.E. An introduction to the female macaque model of social subordination stress. In Social Inequalities in Health in Nonhuman Primates: The Biology of the Gradient; Developments in Primatology: Progress and Prospects; Springer International Publishing/Springer Nature: Cham, Switzerland, 2016; pp. 9–24. [Google Scholar]
- Shively, C.A.; Register, T.C.; Friedman, D.P.; Morgan, T.M.; Thompson, J.; Lanier, T. Social stress-associated depression in adult female cynomolgus monkeys (Macaca fascicularis). Biol. Psychol. 2005, 69, 67–84. [Google Scholar] [CrossRef]
- Sanz, J.; Maurizio, P.L.; Snyder-Mackler, N.; Simons, N.D.; Voyles, T.; Kohn, J.; Michopoulos, V.; Wilson, M.; Tung, J.; Barreiro, L.B. Social history and exposure to pathogen signals modulate social status effects on gene regulation in rhesus macaques. Proc. Natl. Acad. Sci. USA 2020, 117, 23317–23322. [Google Scholar] [CrossRef]
- Howell, B.R.; Godfrey, J.; Gutman, D.A.; Michopoulos, V.; Zhang, X.; Nair, G.; Hu, X.; Wilson, M.E.; Sanchez, M.M. Social subordination stress and serotonin transporter polymorphisms: Associations with brain white matter tract integrity and behavior in juvenile female macaques. Cereb. Cortex 2014, 24, 3334–3349. [Google Scholar] [CrossRef]
- Spencer-Booth, Y. The behaviour of group companions towards rhesus monkey infants. Anim. Behav. 1968, 16, 541–557. [Google Scholar] [CrossRef]
- Shively, C.; Kaplan, J. Effects of social factors on adrenal weight and related physiology of Macaca fascicularis. Physiol. Behav. 1984, 33, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Shively, C.A. Social subordination stress, behavior, and central monoaminergic function in female cynomolgus monkeys. Biol. Psychiatry 1998, 44, 882–891. [Google Scholar] [CrossRef]
- Collura, L.A.; Hoffman, J.B.; Wilson, M.E. Administration of human leptin differentially affects parameters of cortisol secretion in socially housed female rhesus monkeys. Endocrine 2009, 36, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Jarrell, H.; Hoffman, J.B.; Kaplan, J.R.; Berga, S.; Kinkead, B.; Wilson, M.E. Polymorphisms in the serotonin reuptake transporter gene modify the consequences of social status on metabolic health in female rhesus monkeys. Physiol. Behav. 2008, 93, 807–819. [Google Scholar] [CrossRef]
- Kaplan, J.R.; Chen, H.; Appt, S.E.; Lees, C.J.; Franke, A.A.; Berga, S.L.; Wilson, M.E.; Manuck, S.B.; Clarkson, T.B. Impairment of ovarian function and associated health-related abnormalities are attributable to low social status in premenopausal monkeys and not mitigated by a high-isoflavone soy diet. Hum. Reprod. 2010, 25, 3083–3094. [Google Scholar] [CrossRef]
- Michopoulos, V.; Reding, K.M.; Wilson, M.E.; Toufexis, D. Social subordination impairs hypothalamic-pituitary-adrenal function in female rhesus monkeys. Horm. Behav. 2012, 62, 389–399. [Google Scholar] [CrossRef]
- Shively, C.A.; Laber-Laird, K.; Anton, R.F. Behavior and physiology of social stress and depression in female cynomolgus monkeys. Biol. Psychiatry 1997, 41, 871–882. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, J.R.; Howell, B.R.; Mummert, A.; Shi, Y.; Styner, M.; Wilson, M.E.; Sanchez, M. Effects of social rank and pubertal delay on brain structure in female rhesus macaques. Psychoneuroendocrinology 2023, 149, 105987. [Google Scholar] [CrossRef]
- Gust, D.A.; Gordon, T.P.; Hambright, M.K.; Wilson, M.E. Relationship between social factors and pituitary-adrenocortical activity in female rhesus monkeys (Macaca mulatta). Horm. Behav. 1993, 27, 318–331. [Google Scholar] [CrossRef]
- Sapolsky, R.M.; Alberts, S.C.; Altmann, J. Hypercortisolism associated with social subordinance or social isolation among wild baboons. Arch. Gen. Psychiatry 1997, 54, 1137–1143. [Google Scholar] [CrossRef] [PubMed]
- Czoty, P.W.; Gould, R.W.; Nader, M.A. Relationship between social rank and cortisol and testosterone concentrations in male cynomolgus monkeys (Macaca fascicularis). J. Neuroendocrinol. 2009, 21, 68–76. [Google Scholar] [CrossRef]
- Arce, M.; Michopoulos, V.; Shepard, K.N.; Ha, Q.C.; Wilson, M.E. Diet choice, cortisol reactivity, and emotional feeding in socially housed rhesus monkeys. Physiol. Behav. 2010, 101, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Stavisky, R.C.; Adams, M.R.; Watson, S.L.; Kaplan, J.R. Dominance, cortisol, and behavior in small groups of female cynomolgus monkeys (Macaca fascicularis). Horm. Behav. 2001, 39, 232–238. [Google Scholar] [CrossRef]
- Kohn, J.N.; Snyder-Mackler, N.; Barreiro, L.B.; Johnson, Z.P.; Tung, J.; Wilson, M.E. Dominance rank causally affects personality and glucocorticoid regulation in female rhesus macaques. Psychoneuroendocrinology 2016, 74, 179–188. [Google Scholar] [CrossRef]
- Morgan, D.; Grant, K.A.; Prioleau, O.A.; Nader, S.H.; Kaplan, J.R.; Nader, M.A. Predictors of social status in cynomolgus monkeys (Macaca fascicularis) after group formation. Am. J. Primatol. 2000, 52, 115–131. [Google Scholar] [CrossRef]
- Miller, G.E.; Chen, E.; Parker, K.J. Psychological stress in childhood and susceptibility to the chronic diseases of aging: Moving toward a model of behavioral and biological mechanisms. Psychol. Bull. 2011, 137, 959–997. [Google Scholar] [CrossRef]
- Didier, E.S.; MacLean, A.G.; Mohan, M.; Didier, P.J.; Lackner, A.A.; Kuroda, M.J. Contributions of Nonhuman Primates to Research on Aging. Vet. Pathol. 2016, 53, 277–290. [Google Scholar] [CrossRef]
- Ershler, W.B.; Sun, W.H.; Binkley, N.; Gravenstein, S.; Volk, M.J.; Kamoske, G.; Klopp, R.G.; Roecker, E.B.; Daynes, R.A.; Weindruch, R. Interleukin-6 and aging: Blood levels and mononuclear cell production increase with advancing age and in vitro production is modifiable by dietary restriction. Lymphokine Cytokine Res. 1993, 12, 225–230. [Google Scholar]
- Ferrucci, L.; Corsi, A.; Lauretani, F.; Bandinelli, S.; Bartali, B.; Taub, D.D.; Guralnik, J.M.; Longo, D.L. The origins of age-related proinflammatory state. Blood 2005, 105, 2294–2299. [Google Scholar] [CrossRef] [PubMed]
- Mascarucci, P.; Taub, D.; Saccani, S.; Paloma, M.A.; Dawson, H.; Roth, G.S.; Lane, M.A.; Ingram, D.K. Cytokine responses in young and old rhesus monkeys: Effect of caloric restriction. J. Interferon Cytokine Res. 2002, 22, 565–571. [Google Scholar] [CrossRef]
- McFarlane, D.; Wolf, R.F.; McDaniel, K.A.; White, G.L. Age-associated alteration in innate immune response in captive baboons. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2011, 66, 1309–1317. [Google Scholar] [CrossRef]
- Hoffman, C.L.; Higham, J.P.; Heistermann, M.; Coe, C.L.; Prendergast, B.J.; Maestripieri, D. Immune function and HPA axis activity in free-ranging rhesus macaques. Physiol. Behav. 2011, 104, 507–514. [Google Scholar] [CrossRef]
- Danese, A.; McEwen, B.S. Adverse childhood experiences, allostasis, allostatic load, and age-related disease. Physiol. Behav. 2012, 106, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Bronk, G.; Lardenoije, R.; Koolman, L.; Klengel, C.; Dan, S.; Howell, B.R.; Morin, E.L.; Meyer, J.S.; Wilson, M.E.; Ethun, K.F.; et al. A novel epigenetic clock for rhesus macaques unveils an association between early life adversity and epigenetic age acceleration. bioRxiv 2024. [Google Scholar] [CrossRef] [PubMed Central]
- Coplan, J.D.; Lu, D.; El Sehamy, A.M.; Tang, C.; Jackowski, A.P.; Abdallah, C.G.; Nemeroff, C.B.; Owens, M.J.; Mathew, S.J.; Gorman, J.M. Early Life Stress Associated With Increased Striatal N-Acetyl-Aspartate: Cerebrospinal Fluid Corticotropin-Releasing Factor Concentrations, Hippocampal Volume, Body Mass and Behavioral Correlates. Chronic Stress 2018, 2, 2470547018768450. [Google Scholar] [CrossRef]
- Kovacs-Balint, Z.; Gopakumar, A.; Kyle, M.; Godfrey, J.R.; Bailey, K.; Jonesteller, T.; Gray, A.C.; Shabbir, K.; Wang, A.; Acevedo, J.; et al. Structural Effects of Low Social Status and Obesogenic Diet on Social and Emotional Neurocircuits in Female Macaques: A Longitudinal Study from Infancy to Adulthood. bioRxiv 2025. [Google Scholar] [CrossRef]
- Watowich, M.M.; Chiou, K.L.; Montague, M.J.; Simons, N.D.; Horvath, J.E.; Ruiz-Lambides, A.V.; Martínez, M.I.; Higham, J.P.; Brent, L.J.N.; Platt, M.L.; et al. Natural disaster and immunological aging in a nonhuman primate. Proc. Natl. Acad. Sci. USA 2022, 119, e2121663119. [Google Scholar] [CrossRef] [PubMed]
- Müller, S.; Kröger, C.; Schultze, J.L.; Aschenbrenner, A.C. Whole blood stimulation as a tool for studying the human immune system. Eur. J. Immunol. 2024, 54, e2350519. [Google Scholar] [CrossRef]
- McCormack, K.; Bramlett, S.; Morin, E.L.; Siebert, E.R.; Guzman, D.; Howell, B.; Sanchez, M.M. Long-Term Effects of Adverse Maternal Care on Hypothalamic-Pituitary-Adrenal (HPA) Axis Function of Juvenile and Adolescent Macaques. Biology 2025, 14, 204. [Google Scholar] [CrossRef] [PubMed]
- Raper, J.; Stephens, S.B.; Henry, A.; Villarreal, T.; Bachevalier, J.; Wallen, K.; Sanchez, M.M. Neonatal amygdala lesions lead to increased activity of brain CRF systems and hypothalamic-pituitary-adrenal axis of juvenile rhesus monkeys. J. Neurosci. 2014, 34, 11452–11460. [Google Scholar] [CrossRef]
- Gordon, D.; Kivitz, A.; Singhal, A.; Burt, D.; Bangs, M.C.; Huff, E.E.; Hope, H.R.; Monahan, J.B. Selective Inhibition of the MK2 Pathway: Data From a Phase IIa Randomized Clinical Trial in Rheumatoid Arthritis. ACR Open Rheumatol. 2023, 5, 63–70. [Google Scholar] [CrossRef]
- Hope, H.R.; Anderson, G.D.; Burnette, B.L.; Compton, R.P.; Devraj, R.V.; Hirsch, J.L.; Keith, R.H.; Li, X.; Mbalaviele, G.; Messing, D.M.; et al. Anti-Inflammatory Properties of a Novel N-Phenyl Pyridinone Inhibitor of p38 Mitogen-Activated Protein Kinase: Preclinical-to-Clinical Translation. J. Pharmacol. Exp. Ther. 2009, 331, 882–895. [Google Scholar] [CrossRef]
- Koch, H.; McCormack, K.; Sanchez, M.M.; Maestripieri, D. The development of the hypothalamic-pituitary-adrenal axis in rhesus monkeys: Effects of age, sex, and early experience. Dev. Psychobiol. 2014, 56, 86–95. [Google Scholar] [CrossRef]
- Born, J.; Uthgenannt, D.; Dodt, C.; Nünninghoff, D.; Ringvolt, E.; Wagner, T.; Fehm, H.L. Cytokine production and lymphocyte subpopulations in aged humans. An assessment during nocturnal sleep. Mech. Ageing Dev. 1995, 84, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Riancho, J.A.; Zarrabeitia, M.T.; Amado, J.A.; Olmos, J.M.; González-Macías, J. Age-related differences in cytokine secretion. Gerontology 1994, 40, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Castle, S.C.; Uyemura, K.; Crawford, W.; Wong, W.; Klaustermeyer, W.B.; Makinodan, T. Age-related impaired proliferation of peripheral blood mononuclear cells is associated with an increase in both IL-10 and IL-12. Exp. Gerontol. 1999, 34, 243–252. [Google Scholar] [CrossRef]
- Mascarucci, P.; Taub, D.; Saccani, S.; Paloma, M.A.; Dawson, H.; Roth, G.S.; Ingram, D.K.; Lane, M.A. Age-related changes in cytokine production by leukocytes in rhesus monkeys. Aging 2001, 13, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Sierra, A.; Gottfried-Blackmore, A.C.; McEwen, B.S.; Bulloch, K. Microglia derived from aging mice exhibit an altered inflammatory profile. Glia 2007, 55, 412–424. [Google Scholar] [CrossRef]
- Rosado, M.R.S.; Marzan-Rivera, N.; Watowich, M.M.; Valle, A.D.N.; Pantoja, P.; Pavez-Fox, M.A.; Siracusa, E.R.; Cooper, E.B.; Valle, J.E.N.; Phillips, D.; et al. Immune cell composition varies by age, sex and exposure to social adversity in free-ranging Rhesus Macaques. Geroscience 2024, 46, 2107–2122. [Google Scholar] [CrossRef] [PubMed]
- Russo, R.C.; Garcia, C.C.; Teixeira, M.M.; Amaral, F.A. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev. Clin. Immunol. 2014, 10, 593–619. [Google Scholar] [CrossRef]
- Paiardini, M.; Hoffman, J.; Cervasi, B.; Ortiz, A.M.; Stroud, F.; Silvestri, G.; Wilson, M.E. T-cell phenotypic and functional changes associated with social subordination and gene polymorphisms in the serotonin reuptake transporter in female rhesus monkeys. Brain Behav. Immun. 2009, 23, 286–293. [Google Scholar] [CrossRef][Green Version]
- Marie, C.; Muret, J.; Fitting, C.; Losser, M.R.; Payen, D.; Cavaillon, J.M. Reduced ex vivo interleukin-8 production by neutrophils in septic and nonseptic systemic inflammatory response syndrome. Blood 1998, 91, 3439–3446. [Google Scholar] [CrossRef] [PubMed]
- Marie, C.; Fitting, C.; Muret, J.; Payen, D.; Cavaillon, J.M. Interleukin 8 production in whole blood assays: Is interleukin 10 responsible for the downregulation observed in sepsis? Cytokine 2000, 12, 55–61. [Google Scholar] [CrossRef]
- Dalboni, T.M.; Abe, A.E.; de Oliveira, C.E.; Lara, V.S.; Campanelli, A.P.; Gasparoto, C.T.; Gasparoto, T.H. Activation profile of CXCL8-stimulated neutrophils and aging. Cytokine 2013, 61, 716–719. [Google Scholar] [CrossRef] [PubMed]
- Gasparoto, T.H.; Vieira, N.A.; Porto, V.C.; Campanelli, A.P.; Lara, V.S. Differences between salivary and blood neutrophils from elderly and young denture wearers. J. Oral Rehabil. 2011, 38, 41–51. [Google Scholar] [CrossRef]
- Gasparoto, T.H.; Vieira, N.A.; Porto, V.C.; Campanelli, A.P.; Lara, V.S. Ageing exacerbates damage of systemic and salivary neutrophils from patients presenting Candida-related denture stomatitis. Immun. Ageing 2009, 6, 3. [Google Scholar] [CrossRef] [PubMed]
- Reding, K.; Michopoulos, V.; Wallen, K.; Sanchez, M.; Wilson, M.E.; Toufexis, D. Social status modifies estradiol activation of sociosexual behavior in female rhesus monkeys. Horm. Behav. 2012, 62, 612–620. [Google Scholar] [CrossRef][Green Version]
- Hoffmann, J.P.; Liu, J.A.; Seddu, K.; Klein, S.L. Sex hormone signaling and regulation of immune function. Immunity 2023, 56, 2472–2491. [Google Scholar] [CrossRef]
- Wilson, M.E.; Fisher, J.; Fischer, A.; Lee, V.; Harris, R.B.; Bartness, T.J. Quantifying food intake in socially housed monkeys: Social status effects on caloric consumption. Physiol. Behav. 2008, 94, 586–594. [Google Scholar] [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sanchez, M.M.; Love, K.; van Schoor, A.; Bailey, K.; Jonesteller, T.; Bachevalier, J.; Alvarado, M.C.; Ethun, K.F.; Wilson, M.E.; Raper, J. Effects of Lifelong Low Social Status on Inflammatory Markers in Adult Female Macaques—Long-Term Inflammatory Effects of Low Social Status on Adult Macaques. Biomolecules 2026, 16, 159. https://doi.org/10.3390/biom16010159
Sanchez MM, Love K, van Schoor A, Bailey K, Jonesteller T, Bachevalier J, Alvarado MC, Ethun KF, Wilson ME, Raper J. Effects of Lifelong Low Social Status on Inflammatory Markers in Adult Female Macaques—Long-Term Inflammatory Effects of Low Social Status on Adult Macaques. Biomolecules. 2026; 16(1):159. https://doi.org/10.3390/biom16010159
Chicago/Turabian StyleSanchez, Mar M., Kaitlyn Love, Alex van Schoor, Kelly Bailey, Trina Jonesteller, Jocelyne Bachevalier, Maria C. Alvarado, Kelly F. Ethun, Mark E. Wilson, and Jessica Raper. 2026. "Effects of Lifelong Low Social Status on Inflammatory Markers in Adult Female Macaques—Long-Term Inflammatory Effects of Low Social Status on Adult Macaques" Biomolecules 16, no. 1: 159. https://doi.org/10.3390/biom16010159
APA StyleSanchez, M. M., Love, K., van Schoor, A., Bailey, K., Jonesteller, T., Bachevalier, J., Alvarado, M. C., Ethun, K. F., Wilson, M. E., & Raper, J. (2026). Effects of Lifelong Low Social Status on Inflammatory Markers in Adult Female Macaques—Long-Term Inflammatory Effects of Low Social Status on Adult Macaques. Biomolecules, 16(1), 159. https://doi.org/10.3390/biom16010159

