Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,740)

Search Parameters:
Keywords = in vitro drug development

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3431 KiB  
Article
Synthesis and Antibacterial Evaluation of an Indole Triazole Conjugate with In Silico Evidence of Allosteric Binding to Penicillin-Binding Protein 2a
by Vidyasrilekha Sanapalli, Bharat Kumar Reddy Sanapalli and Afzal Azam Mohammed
Pharmaceutics 2025, 17(8), 1013; https://doi.org/10.3390/pharmaceutics17081013 (registering DOI) - 3 Aug 2025
Abstract
Background: Antibacterial resistance (ABR) poses a major challenge to global health, with methicillin-resistant Staphylococcus aureus (MRSA) being one of the prominent multidrug-resistant strains. MRSA has developed resistance through the expression of Penicillin-Binding Protein 2a (PBP2a), a key transpeptidase enzyme involved in bacterial [...] Read more.
Background: Antibacterial resistance (ABR) poses a major challenge to global health, with methicillin-resistant Staphylococcus aureus (MRSA) being one of the prominent multidrug-resistant strains. MRSA has developed resistance through the expression of Penicillin-Binding Protein 2a (PBP2a), a key transpeptidase enzyme involved in bacterial cell wall biosynthesis. Objectives: The objective was to design and characterize a novel small-molecule inhibitor targeting PBP2a as a strategy to combat MRSA. Methods: We synthesized a new indole triazole conjugate (ITC) using eco-friendly and click chemistry approaches. In vitro antibacterial tests were performed against a panel of strains to evaluate the ITC antibacterial potential. Further, a series of in silico evaluations like molecular docking, MD simulations, free energy landscape (FEL), and principal component analysis (PCA) using the crystal structure of PBP2a (PDB ID: 4CJN), in order to predict the mechanism of action, binding mode, structural stability, and energetic profile of the 4CJN-ITC complex. Results: The compound ITC exhibited noteworthy antibacterial activity, which effectively inhibited the selected strains. Binding score and energy calculations demonstrated high affinity of ITC for the allosteric site of PBP2a and significant interactions responsible for complex stability during MD simulations. Further, FEL and PCA provided insights into the conformational behavior of ITC. These results gave the structural clues for the inhibitory action of ITC on the PBP2a. Conclusions: The integrated in vitro and in silico studies corroborate the potential of ITC as a promising developmental lead targeting PBP2a in MRSA. This study demonstrates the potential usage of rational drug design approaches in addressing therapeutic needs related to ABR. Full article
Show Figures

Figure 1

24 pages, 1396 KiB  
Article
Design of Experiments Leads to Scalable Analgesic Near-Infrared Fluorescent Coconut Nanoemulsions
by Amit Chandra Das, Gayathri Aparnasai Reddy, Shekh Md. Newaj, Smith Patel, Riddhi Vichare, Lu Liu and Jelena M. Janjic
Pharmaceutics 2025, 17(8), 1010; https://doi.org/10.3390/pharmaceutics17081010 (registering DOI) - 1 Aug 2025
Viewed by 30
Abstract
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription [...] Read more.
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription medication for pain reaching approximately USD 17.8 billion. Theranostic pain nanomedicine therefore emerges as an attractive analgesic strategy with the potential for increased efficacy, reduced side-effects, and treatment personalization. Theranostic nanomedicine combines drug delivery and diagnostic features, allowing for real-time monitoring of analgesic efficacy in vivo using molecular imaging. However, clinical translation of these nanomedicines are challenging due to complex manufacturing methodologies, lack of standardized quality control, and potentially high costs. Quality by Design (QbD) can navigate these challenges and lead to the development of an optimal pain nanomedicine. Our lab previously reported a macrophage-targeted perfluorocarbon nanoemulsion (PFC NE) that demonstrated analgesic efficacy across multiple rodent pain models in both sexes. Here, we report PFC-free, biphasic nanoemulsions formulated with a biocompatible and non-immunogenic plant-based coconut oil loaded with a COX-2 inhibitor and a clinical-grade, indocyanine green (ICG) near-infrared fluorescent (NIRF) dye for parenteral theranostic analgesic nanomedicine. Methods: Critical process parameters and material attributes were identified through the FMECA (Failure, Modes, Effects, and Criticality Analysis) method and optimized using a 3 × 2 full-factorial design of experiments. We investigated the impact of the oil-to-surfactant ratio (w/w) with three different surfactant systems on the colloidal properties of NE. Small-scale (100 mL) batches were manufactured using sonication and microfluidization, and the final formulation was scaled up to 500 mL with microfluidization. The colloidal stability of NE was assessed using dynamic light scattering (DLS) and drug quantification was conducted through reverse-phase HPLC. An in vitro drug release study was conducted using the dialysis bag method, accompanied by HPLC quantification. The formulation was further evaluated for cell viability, cellular uptake, and COX-2 inhibition in the RAW 264.7 macrophage cell line. Results: Nanoemulsion droplet size increased with a higher oil-to-surfactant ratio (w/w) but was no significant impact by the type of surfactant system used. Thermal cycling and serum stability studies confirmed NE colloidal stability upon exposure to high and low temperatures and biological fluids. We also demonstrated the necessity of a solubilizer for long-term fluorescence stability of ICG. The nanoemulsion showed no cellular toxicity and effectively inhibited PGE2 in activated macrophages. Conclusions: To our knowledge, this is the first instance of a celecoxib-loaded theranostic platform developed using a plant-derived hydrocarbon oil, applying the QbD approach that demonstrated COX-2 inhibition. Full article
(This article belongs to the Special Issue Quality by Design in Pharmaceutical Manufacturing)
12 pages, 776 KiB  
Article
In Vitro Schistosomicidal Activity and Molecular Modeling of Quercitrin and Afzelin Isolated from the Leaves of Copaifera oblongifolia
by Rafael Corrêa Ramos, Lizandra G. Magalhães, Rodrigo C. S. Veneziani, Sérgio R. Ambrósio, Renato Pereira Orenha, Renato Luis Tame Parreira, Márcio L. Andrade e Silva, Jairo K. Bastos, Murilo de Oliveira Souza, Híllary Ozorio Gobeti Caprini, Ana Carla Rangel Rosa, Wanderson Zuza Cosme, Mario F. C. Santos and Wilson R. Cunha
Compounds 2025, 5(3), 30; https://doi.org/10.3390/compounds5030030 (registering DOI) - 1 Aug 2025
Viewed by 29
Abstract
Neglected diseases significantly impact the world, and there is a lack of effective treatments, requiring therapeutic alternatives. Thus, the study of the phytochemical and schistosomicidal activity evaluation of Copaifera oblongifolia leaves’ crude extract was conducted. The quercitrin (1) and afzelin ( [...] Read more.
Neglected diseases significantly impact the world, and there is a lack of effective treatments, requiring therapeutic alternatives. Thus, the study of the phytochemical and schistosomicidal activity evaluation of Copaifera oblongifolia leaves’ crude extract was conducted. The quercitrin (1) and afzelin (2) were isolated from the crude extract. In the in vitro schistosomicidal activity test, the isolated compounds demonstrated promising results, with 75% mortality at a concentration of 12.5 µM after 72 h. Molecular docking calculations indicated that compounds 1 and 2 could potentially interact with the amino acids of the FAD binding site in the TGR enzyme, a crucial enzyme for the survival of Schistosoma mansoni. These interactions could have binding energies comparable to praziquantel, a preferred drug for treating schistosomiasis. Therefore, in silico and in vitro investigations are crucial for developing new studies that can reveal the antiparasitic potential of compounds of plant origin. Full article
(This article belongs to the Special Issue Organic Compounds with Biological Activity)
Show Figures

Figure 1

12 pages, 1739 KiB  
Article
Tailored Levofloxacin Incorporated Extracellular Matrix Nanoparticles for Pulmonary Infections
by Raahi Patel, Ignacio Moyano, Masahiro Sakagami, Jason D. Kang, Phillip B. Hylemon, Judith A. Voynow and Rebecca L. Heise
Int. J. Mol. Sci. 2025, 26(15), 7453; https://doi.org/10.3390/ijms26157453 (registering DOI) - 1 Aug 2025
Viewed by 34
Abstract
Cystic fibrosis produces viscous mucus in the lung that increases bacterial invasion, causing persistent infections and subsequent inflammation. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most common infections in cystic fibrosis patients that are resistant to antibiotics. One antibiotic approved to [...] Read more.
Cystic fibrosis produces viscous mucus in the lung that increases bacterial invasion, causing persistent infections and subsequent inflammation. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most common infections in cystic fibrosis patients that are resistant to antibiotics. One antibiotic approved to treat these infections is levofloxacin (LVX), which functions to inhibit bacterial replication but can be further developed into tailorable particles. Nanoparticles are an emerging inhaled therapy due to enhanced targeting and delivery. The extracellular matrix (ECM) has been shown to possess pro-regenerative and non-toxic properties in vitro, making it a promising delivery agent. The combination of LVX and ECM formed into nanoparticles may overcome barriers to lung delivery to effectively treat cystic fibrosis bacterial infections. Our goal is to advance CF care by providing a combined treatment option that has the potential to address both bacterial infections and lung damage. Two hybrid formulations of a 10:1 and 1:1 ratio of LVX to ECM have shown neutral surface charges and an average size of ~525 nm and ~300 nm, respectively. The neutral charge and size of the particles may suggest their ability to attract toward and penetrate through the mucus barrier in order to target the bacteria. The NPs have also been shown to slow the drug dissolution, are non-toxic to human airway epithelial cells, and are effective in inhibiting Pseudomonas aeruginosa and Staphylococcus aureus. LVX-ECM NPs may be an effective treatment for pulmonary CF bacterial treatments. Full article
(This article belongs to the Special Issue The Advances in Antimicrobial Biomaterials)
Show Figures

Figure 1

21 pages, 6211 KiB  
Article
In Silico and In Vitro Potential Antifungal Insights of Insect-Derived Peptides in the Management of Candida sp. Infections
by Catarina Sousa, Alaka Sahoo, Shasank Sekhar Swain, Payal Gupta, Francisco Silva, Andreia S. Azevedo and Célia Fortuna Rodrigues
Int. J. Mol. Sci. 2025, 26(15), 7449; https://doi.org/10.3390/ijms26157449 (registering DOI) - 1 Aug 2025
Viewed by 56
Abstract
The worldwide increase in antifungal resistance, particularly in Candida sp., requires the exploration of novel therapeutic agents. Natural compounds have been a rich source of antimicrobial molecules, where peptides constitute the class of the most bioactive components. Therefore, this study looks into the [...] Read more.
The worldwide increase in antifungal resistance, particularly in Candida sp., requires the exploration of novel therapeutic agents. Natural compounds have been a rich source of antimicrobial molecules, where peptides constitute the class of the most bioactive components. Therefore, this study looks into the target-specific binding efficacy of insect-derived antifungal peptides (n = 37) as possible alternatives to traditional antifungal treatments. Using computational methods, namely the HPEPDOCK and HDOCK platforms, molecular docking was performed to evaluate the interactions between selected key fungal targets, lanosterol 14-demethylase, or LDM (PDB ID: 5V5Z), secreted aspartic proteinase-5, or Sap-5 (PDB ID: 2QZX), N-myristoyl transferase, or NMT (PDB ID: 1NMT), and dihydrofolate reductase, or DHFR, of C. albicans. The three-dimensional peptide structure was modelled through the PEP-FOLD 3.5 tool. Further, we predicted the physicochemical properties of these peptides through the ProtParam and PEPTIDE 2.0 tools to assess their drug-likeness and potential for therapeutic applications. In silico results show that Blap-6 from Blaps rhynchopeter and Gomesin from Acanthoscurria gomesiana have the most antifungal potential against all four targeted proteins in Candida sp. Additionally, a molecular dynamics simulation study of LDM-Blap-6 was carried out at 100 nanoseconds. The overall predictions showed that both have strong binding abilities and are good candidates for drug development. In in vitro studies, Gomesin achieved complete biofilm eradication in three out of four Candida species, while Blap-6 showed moderate but consistent reduction across all species. C. tropicalis demonstrated relative resistance to complete eradication by both peptides. The present study provides evidence to support the antifungal activity of certain insect peptides, with potential to be used as alternative drugs or as a template for a new synthetic or modified peptide in pursuit of effective therapies against Candida spp. Full article
Show Figures

Figure 1

24 pages, 5797 KiB  
Article
Topical Meglumine Antimoniate Gel for Cutaneous Leishmaniasis: Formulation, Evaluation, and In Silico Insights
by Lilian Sosa, Lupe Carolina Espinoza, Alba Pujol, José Correa-Basurto, David Méndez-Luna, Paulo Sarango-Granda, Diana Berenguer, Cristina Riera, Beatriz Clares-Naveros, Ana Cristina Calpena, Rafel Prohens and Marcelle Silva-Abreu
Gels 2025, 11(8), 601; https://doi.org/10.3390/gels11080601 (registering DOI) - 1 Aug 2025
Viewed by 55
Abstract
Leishmaniasis is an infectious disease common in tropical and subtropical regions worldwide. This study aimed to develop a topical meglumine antimoniate gel (MA-gel) for the treatment of cutaneous leishmaniasis. The MA-gel was characterized in terms of morphology, pH, swelling, porosity, rheology, and thermal [...] Read more.
Leishmaniasis is an infectious disease common in tropical and subtropical regions worldwide. This study aimed to develop a topical meglumine antimoniate gel (MA-gel) for the treatment of cutaneous leishmaniasis. The MA-gel was characterized in terms of morphology, pH, swelling, porosity, rheology, and thermal properties by differential scanning calorimetry (DSC). Biopharmaceutical evaluation included in vitro drug release and ex vivo skin permeation. Safety was evaluated through biomechanical skin property measurements and cytotoxicity in HaCaT and RAW 267 cells. Leishmanicidal activity was tested against promastigotes and amastigotes of Leishmania infantum, and in silico studies were conducted to explore possible mechanisms of action. The composition of the MA-gel included 30% MA, 20% Pluronic® F127 (P407), and 50% water. Scanning electron microscopy revealed a sponge-like and porous internal structure of the MA-gel. This formula exhibited a pH of 5.45, swelling at approximately 12 min, and a porosity of 85.07%. The DSC showed that there was no incompatibility between MA and P407. Drug release followed a first-order kinetic profile, with 22.11 µg/g/cm2 of the drug retained in the skin and no permeation into the receptor compartment. The MA-gel showed no microbial growth, no cytotoxicity in keratinocytes, and no skin damage. The IC50 for promastigotes and amastigotes of L. infantum were 3.56 and 23.11 µg/mL, respectively. In silico studies suggested that MA could act on three potential therapeutic targets according to its binding mode. The MA-gel demonstrated promising physicochemical, safety, and antiparasitic properties, supporting its potential as a topical treatment for cutaneous leishmaniasis. Full article
(This article belongs to the Special Issue Functional Hydrogels: Design, Processing and Biomedical Applications)
Show Figures

Figure 1

17 pages, 7013 KiB  
Article
A Novel HDAC6 Inhibitor Ameliorates Imiquimod-Induced Psoriasis-Like Inflammation in Mice
by Anqi Cao, Yurong Li, Yanqiao Feng, Xiaoquan Wang, Wenyu Wei, Hongyan Sun and Junmin Quan
Molecules 2025, 30(15), 3224; https://doi.org/10.3390/molecules30153224 (registering DOI) - 31 Jul 2025
Viewed by 189
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by abnormal proliferation of keratinocytes and infiltration of inflammatory cells. Significant challenges remain in developing effective and safe targeted therapies for psoriasis. Here, we reported the discovery of novel cystamine derivatives for the treatment of [...] Read more.
Psoriasis is a chronic inflammatory skin disease characterized by abnormal proliferation of keratinocytes and infiltration of inflammatory cells. Significant challenges remain in developing effective and safe targeted therapies for psoriasis. Here, we reported the discovery of novel cystamine derivatives for the treatment of psoriasis. These compounds effectively attenuated LPS-induced inflammation in vitro, and the optimal candidate CS1 ameliorated imiquimod-induced psoriasis-like inflammation in mice. Mechanistically, CS1 bound and inhibited the deacetylase HDAC6, subsequently inhibited the AKT, MAPK, and STAT3 pathways, attenuated the hyperproliferation and altered differentiation of keratinocytes and reduced the infiltration of immune cells. These findings suggest that HDAC6 may serve as a potential target for drug development in the treatment of psoriasis. Full article
Show Figures

Graphical abstract

25 pages, 3263 KiB  
Article
Repurposing Nirmatrelvir for Hepatocellular Carcinoma: Network Pharmacology and Molecular Dynamics Simulations Identify HDAC3 as a Key Molecular Target
by Muhammad Suleman, Hira Arbab, Hadi M. Yassine, Abrar Mohammad Sayaf, Usama Ilahi, Mohammed Alissa, Abdullah Alghamdi, Suad A. Alghamdi, Sergio Crovella and Abdullah A. Shaito
Pharmaceuticals 2025, 18(8), 1144; https://doi.org/10.3390/ph18081144 - 31 Jul 2025
Viewed by 179
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most common and fatal malignancies worldwide, characterized by remarkable molecular heterogeneity and poor clinical outcomes. Despite advancements in diagnosis and treatment, the prognosis for HCC remains dismal, largely due to late-stage diagnosis and limited therapeutic [...] Read more.
Background: Hepatocellular carcinoma (HCC) is one of the most common and fatal malignancies worldwide, characterized by remarkable molecular heterogeneity and poor clinical outcomes. Despite advancements in diagnosis and treatment, the prognosis for HCC remains dismal, largely due to late-stage diagnosis and limited therapeutic efficacy. Therefore, there is a critical need to identify novel therapeutic targets and explore alternative strategies, such as drug repurposing, to improve patient outcomes. Methods: In this study, we employed network pharmacology, molecular docking, and molecular dynamics (MD) simulations to explore the potential therapeutic targets of Nirmatrelvir in HCC. Results: Nirmatrelvir targets were predicted through SwissTarget (101 targets), SuperPred (1111 targets), and Way2Drug (38 targets). Concurrently, HCC-associated genes (5726) were retrieved from DisGeNet. Cross-referencing the two datasets identified 29 overlapping proteins. A protein–protein interaction (PPI) network constructed from the overlapping proteins was analyzed using CytoHubba, identifying 10 hub genes, with HDAC1, HDAC3, and STAT3 achieving the highest degree scores. Molecular docking revealed a strong binding affinity of Nirmatrelvir to HDAC1 (docking score = −7.319 kcal/mol), HDAC3 (−6.026 kcal/mol), and STAT3 (−6.304 kcal/mol). Moreover, Nirmatrelvir displayed stable dynamic behavior in repeated 200 ns simulation analyses. Binding free energy calculations using MM/GBSA showed values of −23.692 kcal/mol for the HDAC1–Nirmatrelvir complex, −33.360 kcal/mol for HDAC3, and −21.167 kcal/mol for STAT3. MM/PBSA analysis yielded −17.987 kcal/mol for HDAC1, −27.767 kcal/mol for HDAC3, and −16.986 kcal/mol for STAT3. Conclusions: The findings demonstrate Nirmatrelvir’s strong binding affinity towards HDAC3, underscoring its potential for future drug development. Collectively, the data provide computational evidence for repurposing Nirmatrelvir as a multi-target inhibitor in HCC therapy, warranting in vitro and in vivo studies to confirm its clinical efficacy and safety and elucidate its mechanisms of action in HCC. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

2 pages, 1081 KiB  
Correction
Correction: Khalid et al. Development of Rapidly Dissolving Microneedles Integrated with Valsartan-Loaded Nanoliposomes for Transdermal Drug Delivery: In Vitro and Ex Vivo Evaluation. Pharmaceutics 2025, 17, 483
by Ramsha Khalid, Syed Mahmood, Zarif Mohamed Sofian, Zamri Chik and Yi Ge
Pharmaceutics 2025, 17(8), 1001; https://doi.org/10.3390/pharmaceutics17081001 - 31 Jul 2025
Viewed by 71
Abstract
In the original publication [...] Full article
Show Figures

Figure 1

20 pages, 15855 KiB  
Article
Resistance Response and Regulatory Mechanisms of Ciprofloxacin-Induced Resistant Salmonella Typhimurium Based on Comprehensive Transcriptomic and Metabolomic Analysis
by Xiaohan Yang, Jinhua Chu, Lulu Huang, Muhammad Haris Raza Farhan, Mengyao Feng, Jiapeng Bai, Bangjuan Wang and Guyue Cheng
Antibiotics 2025, 14(8), 767; https://doi.org/10.3390/antibiotics14080767 - 29 Jul 2025
Viewed by 275
Abstract
Background: Salmonella infections pose a serious threat to both animal and human health worldwide. Notably, there is an increasing trend in the resistance of Salmonella to fluoroquinolones, the first-line drugs for clinical treatment. Methods: Utilizing Salmonella Typhimurium CICC 10420 as the test strain, [...] Read more.
Background: Salmonella infections pose a serious threat to both animal and human health worldwide. Notably, there is an increasing trend in the resistance of Salmonella to fluoroquinolones, the first-line drugs for clinical treatment. Methods: Utilizing Salmonella Typhimurium CICC 10420 as the test strain, ciprofloxacin was used for in vitro induction to develop the drug-resistant strain H1. Changes in the minimum inhibitory concentrations (MICs) of various antimicrobial agents were determined using the broth microdilution method. Transcriptomic and metabolomic analyses were conducted to investigate alterations in gene and metabolite expression. A combined drug susceptibility test was performed to evaluate the potential of exogenous metabolites to restore antibiotic susceptibility. Results: The MICs of strain H1 for ofloxacin and enrofloxacin increased by 128- and 256-fold, respectively, and the strain also exhibited resistance to ceftriaxone, ampicillin, and tetracycline. A single-point mutation of Glu469Asp in the GyrB was detected in strain H1. Integrated multi-omics analysis showed significant differences in gene and metabolite expression across multiple pathways, including two-component systems, ABC transporters, pentose phosphate pathway, purine metabolism, glyoxylate and dicarboxylate metabolism, amino sugar and nucleotide sugar metabolism, pantothenate and coenzyme A biosynthesis, pyrimidine metabolism, arginine and proline biosynthesis, and glutathione metabolism. Notably, the addition of exogenous glutamine, in combination with tetracycline, significantly reduced the resistance of strain H1 to tetracycline. Conclusion: Ciprofloxacin-induced Salmonella resistance involves both target site mutations and extensive reprogramming of the metabolic network. Exogenous metabolite supplementation presents a promising strategy for reversing resistance and enhancing antibiotic efficacy. Full article
(This article belongs to the Section Mechanism and Evolution of Antibiotic Resistance)
Show Figures

Figure 1

22 pages, 6478 KiB  
Article
Human Small Intestinal Tissue Models to Assess Barrier Permeability: Comparative Analysis of Caco-2 Cells, Jejunal and Duodenal Enteroid-Derived Cells, and EpiIntestinalTM Tissues in Membrane-Based Cultures with and Without Flow
by Haley L. Moyer, Leoncio Vergara, Clifford Stephan, Courtney Sakolish, Hsing-Chieh Lin, Weihsueh A. Chiu, Remi Villenave, Philip Hewitt, Stephen S. Ferguson and Ivan Rusyn
Bioengineering 2025, 12(8), 809; https://doi.org/10.3390/bioengineering12080809 - 28 Jul 2025
Viewed by 264
Abstract
Accurate in vitro models of intestinal permeability are essential for predicting oral drug absorption. Standard models like Caco-2 cells have well-known limitations, including lack of segment-specific physiology, but are widely used. Emerging models such as organoid-derived monolayers and microphysiological systems (MPS) offer enhanced [...] Read more.
Accurate in vitro models of intestinal permeability are essential for predicting oral drug absorption. Standard models like Caco-2 cells have well-known limitations, including lack of segment-specific physiology, but are widely used. Emerging models such as organoid-derived monolayers and microphysiological systems (MPS) offer enhanced physiological relevance but require comparative validation. We performed a head-to-head evaluation of Caco-2 cells, human jejunal (J2) and duodenal (D109) enteroid-derived cells, and EpiIntestinalTM tissues cultured on either static Transwell and flow-based MPS platforms. We assessed tissue morphology, barrier function (TEER, dextran leakage), and permeability of three model small molecules (caffeine, propranolol, and indomethacin), integrating the data into a physiologically based gut absorption model (PECAT) to predict human oral bioavailability. J2 and D109 cells demonstrated more physiologically relevant morphology and higher TEER than Caco-2 cells, while the EpiIntestinalTM model exhibited thicker and more uneven tissue structures with lower TEER and higher passive permeability. MPS cultures offered modest improvements in epithelial architecture but introduced greater variability, especially with enteroid-derived cells. Predictions of human fraction absorbed (Fabs) were most accurate when using static Caco-2 data with segment-specific corrections based on enteroid-derived values, highlighting the utility of combining traditional and advanced in vitro gut models to optimize predictive performance for Fabs. While MPS and enteroid-based systems provide physiological advantages, standard static models remain robust and predictive when used with in silico modeling. Our findings support the need for further refinement of enteroid-MPS integration and advocate for standardized benchmarking across gut model systems to improve translational relevance in drug development and regulatory reviews. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

15 pages, 1743 KiB  
Article
Development of Bioresponsive Poloxamer-Based Self-Nanoemulsifying System for Enhanced Febuxostat Bioavailability: Solidification Strategy Using I-Optimal Approach
by Abdelrahman Y. Sherif and Ehab M. Elzayat
Pharmaceutics 2025, 17(8), 975; https://doi.org/10.3390/pharmaceutics17080975 - 28 Jul 2025
Viewed by 217
Abstract
Background/Objectives: The major limitations of self-nanoemulsifying systems include complex processing and expensive instrumentation required for solidification approaches. In this study, smart poloxamer-based solidification strategies were used to develop and optimize febuxostat-loaded formulations. Methods: A self-nanoemulsifying drug delivery system (SNEDDS) component was selected based [...] Read more.
Background/Objectives: The major limitations of self-nanoemulsifying systems include complex processing and expensive instrumentation required for solidification approaches. In this study, smart poloxamer-based solidification strategies were used to develop and optimize febuxostat-loaded formulations. Methods: A self-nanoemulsifying drug delivery system (SNEDDS) component was selected based on solubility and emulsification tests. The influence of poloxamer molecular weight (low or high) and its concentration (2–10% w/w) on formulation performance was assessed through the design of experiments. Finally, in-vitro melting assessment and a comparative dissolution test were performed on the optimized SNEDDS formulation. Results: Imwitor 988 and Tween 20 were selected to prepare the formulations. Increasing the molecular weight and concentration of the poloxamer significantly increased the temperature and time required for the melting of the SNEDDS formulation. The optimized SNEDDS formulation comprised 3.98% w/w poloxamer 188, which melts at 36 °C within 111 s. In-vitro melting showed that the formulation completely converted to a liquid state upon exposure to body temperature. Finally, the optimized SNEDDS formulation exhibited superior dissolution efficiency (96.66 ± 0.28%) compared to raw febuxostat (72.09 ± 4.33%) and marketed tablets (82.23 ± 3.10%). Conclusions: The poloxamer-based approach successfully addressed the limitations associated with conventional solidification while maintaining superior dissolution performance. Therefore, it emerges as a promising alternative approach for enhancing the bioavailability of poorly water-soluble drugs. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

54 pages, 3105 KiB  
Review
Insight into the in Silico Structural, Physicochemical, Pharmacokinetic and Toxicological Properties of Antibacterially Active Viniferins and Viniferin-Based Compounds as Derivatives of Resveratrol Containing a (2,3-Dihydro)benzo[b]furan Privileged Scaffold
by Dominika Nádaská and Ivan Malík
Appl. Sci. 2025, 15(15), 8350; https://doi.org/10.3390/app15158350 - 27 Jul 2025
Viewed by 410
Abstract
Resistance of various bacterial pathogens to the activity of clinically approved drugs currently leads to serious infections, rapid spread of difficult-to-treat diseases, and even death. Taking the threats for human health in mind, researchers are focused on the isolation and characterization of novel [...] Read more.
Resistance of various bacterial pathogens to the activity of clinically approved drugs currently leads to serious infections, rapid spread of difficult-to-treat diseases, and even death. Taking the threats for human health in mind, researchers are focused on the isolation and characterization of novel natural products, including plant secondary metabolites. These molecules serve as inspiration and a suitable structural platform in the design and development of novel semi-synthetic and synthetic derivatives. All considered compounds have to be adequately evaluated in silico, in vitro, and in vivo using relevant approaches. The current review paper briefly focuses on the chemical and metabolic properties of resveratrol (1), as well as its oligomeric structures, viniferins, and viniferin-based molecules. The core scaffolds of these compounds contain so-called privileged structures, which are also present in many clinically approved drugs, indicating that those natural, properly substituted semi-synthetic, and synthetic molecules can provide a notably broad spectrum of beneficial pharmacological activities, including very impressive antimicrobial efficiency. Except for spectral verification of their structures, these compounds suffer from the determination or prediction of other structural and physicochemical characteristics. Therefore, the structure–activity relationships for specific dihydrodimeric and dimeric viniferins, their bioisosteres, and derivatives with notable efficacy in vitro, especially against chosen Gram-positive bacterial strains, are summarized. In addition, a set of descriptors related to their structural, physicochemical, pharmacokinetic, and toxicological properties is generated using various computational tools. The obtained values are compared to those of clinically approved drugs. The particular relationships between these in silico parameters are also explored. Full article
Show Figures

Figure 1

20 pages, 4660 KiB  
Article
Neuroprotective Evaluation of Murraya Carbazoles: In Vitro and Docking Insights into Their Anti-AChE and Anti-Aβ Activities
by Himadri Sharma, Niti Sharma and Seong Soo A. An
Molecules 2025, 30(15), 3138; https://doi.org/10.3390/molecules30153138 - 26 Jul 2025
Viewed by 188
Abstract
The present study investigated the neuroprotective potential of the Murraya carbazole derivatives murrayanol, mahanimbine, murrayafoline A, and 9-methyl-9H-carbazole-2-carbaldehyde using in silico and in vitro assays. The pharmacokinetic properties and potential toxicity (ADME/T) of the carbazole derivatives were assessed to evaluate their prospects as [...] Read more.
The present study investigated the neuroprotective potential of the Murraya carbazole derivatives murrayanol, mahanimbine, murrayafoline A, and 9-methyl-9H-carbazole-2-carbaldehyde using in silico and in vitro assays. The pharmacokinetic properties and potential toxicity (ADME/T) of the carbazole derivatives were assessed to evaluate their prospects as up-and-coming drug candidates. Molecular docking was used to investigate the interactions of the compounds with Aβ (PDB: 1IYT, 2BEG, and 8EZE) and AChE receptors (PDB: 4EY7 and 1C2B). The results from the in vitro assays were used to validate and support the findings from the in silico assays. The compounds demonstrated significant inhibition of acetylcholinesterase (AChE), a key target in neurodegenerative disorders. Murrayanol and mahanimbine presented superior inhibitory activity (IC50 ~0.2 μg/mL), outperforming the reference drug, galantamine. The inhibition mechanisms were competitive (murrayanol, murrayafoline A, and 9-methyl-9H-carbazole-2-carbaldehyde) and non-competitive (mahanimbine), supported by low Ki values and strong docking affinities. The compounds also proved effective in reducing Aβ fibrillization (murrayanol: 40.83 ± 0.30%; murrayafoline A: 33.60 ± 0.55%, mahanimbine: 27.68 ± 2.71%). These findings highlight Murraya carbazoles as promising scaffolds for multifunctional agents in AD therapy. Further optimization and mechanistic studies are warranted to advance their development into clinically relevant neuroprotective agents. Full article
(This article belongs to the Special Issue Bioactive Compounds from Foods for Health Benefits)
Show Figures

Graphical abstract

19 pages, 2002 KiB  
Article
A Dual-Payload Bispecific ADC Improved Potency and Efficacy over Single-Payload Bispecific ADCs
by Nicole A. Wilski, Peter Haytko, Zhengxia Zha, Simin Wu, Ying Jin, Peng Chen, Chao Han and Mark L. Chiu
Pharmaceutics 2025, 17(8), 967; https://doi.org/10.3390/pharmaceutics17080967 - 25 Jul 2025
Viewed by 601
Abstract
Background/Objectives: All current FDA-approved antibody–drug conjugates (ADCs) are single-target and single-payload molecules that have limited efficacy in patients due to drug resistance. Therefore, our goal was to generate a novel ADC that was less susceptible to single points of resistance to reduce the [...] Read more.
Background/Objectives: All current FDA-approved antibody–drug conjugates (ADCs) are single-target and single-payload molecules that have limited efficacy in patients due to drug resistance. Therefore, our goal was to generate a novel ADC that was less susceptible to single points of resistance to reduce the likelihood of patient relapse. Methods: We developed a dual-targeting, dual-payload ADC by conjugating a bispecific EGFR x cMET antibody to two payloads (MMAF and SN38) that had separate mechanisms of action using a novel tri-functional linker. This dual-payload ADC was tested for potency and efficacy in dividing and nondividing in vitro cell models using multiple tumor cell types. Efficacy of the dual-payload ADC was confirmed using in vivo models. Results: Our ADC with dual MMAF and SN38 payloads was more efficacious in inhibiting cell proliferation than single-payload ADCs across multiple cancer cell lines. In addition, the dual-payload molecule inhibited nondividing cells, which were more resistant to traditional ADC payloads. The dual-payload ADC also exhibited more potent tumor growth inhibition in vivo compared to that of single-payload ADCs. Conclusions: Overall, the bispecific antibody conjugated with both the MMAF and SN38 payloads inhibited tumor growth more strongly than ADCs conjugated with MMAF or SN38 alone. Developing dual-payload ADCs could limit the impact of acquired resistance in patients as well as lower the effective dose of each payload. Full article
(This article belongs to the Special Issue Advancements and Innovations in Antibody Drug Conjugates)
Show Figures

Figure 1

Back to TopTop