Synthesis and Antibacterial Evaluation of an Indole Triazole Conjugate with In Silico Evidence of Allosteric Binding to Penicillin-Binding Protein 2a
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemistry
2.1.1. Preparation of 1-Azido-4-methoxybenzene (AZMB)
2.1.2. Preparation of 3-(((2-(4-Methoxyphenyl)-2H-1,2,3-triazol-4-yl) methoxy)methyl)-1-tosyl-1H-indole (ITC)
- (i)
- Preparation of 1-tosyl-1H-indole-3-carbaldehyde (C)
- (ii)
- Preparation of (1-tosyl-1H-indol-3-yl) methanol (D)
- (iii)
- Preparation of 3-(chloromethyl)-1-tosyl-1H-indole (E)
- (iv)
- Preparation 3-((prop-2-yn-1-yloxy) methyl)-1-tosyl-1H-indole (F)
- (v)
- Preparation of ITC
- Molecular Formula: C26H25N4O4S.
- Molecular Weight (m/z): 488.1518.
- Observed Mass (m/z): 489.1596 [M + 1].
- Melting Point (°C): 189.
- Yield: 67.98%.
2.2. In Vitro Studies
2.2.1. Minimum Inhibitory Concentration (MIC50)
2.2.2. Minimum Bactericidal Concentration (MBC)
2.2.3. Time–Kill Kinetics
2.2.4. Cell Cytotoxicity
2.2.5. Post Antibiotic Effect
2.2.6. Synergy Testing
2.2.7. Antibiofilm Activity
2.3. In Silico Studies
2.3.1. Molecular Docking
2.3.2. MD Simulation Study
3. Results
3.1. Chemistry
3.2. In Vitro Analysis
3.2.1. MIC50 Analysis
3.2.2. MBC Analysis
3.2.3. Time–Kill Study
3.2.4. Cytotoxicity Study
3.2.5. Synergy Testing
3.2.6. Post-Antibiotic Effect (PAE)
3.2.7. Biofilm Activity
3.3. Computational Analysis
3.3.1. Molecular Docking
3.3.2. MD Analysis
- (i)
- RMSD
- (ii)
- RMSF
- (iii)
- Rg
- (iv)
- Intra and Inter Hydrogen Bond
- (v)
- SASA
- (vi)
- Free Energy Landscapes (FELs)
- (vii)
- Principal Component Analysis (PCA)
- (viii)
- Protein–Ligand Interactions
3.3.3. MM-PBSA
4. Conclusions
5. Patent
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABR | Antibacterial resistance |
MRSA | Methicillin-resistant Staphylococcus aureus |
PBP2a | Penicillin-binding protein 2a |
ITC | Indole triazole conjugate |
PDB | Protein Data Bank |
FEL | Free energy landscape |
PCA | Principal component analysis |
MD | Molecular dynamics simulation |
References
- Michael, C.A.; Dominey-Howes, D.; Labbate, M. The antimicrobial resistance crisis: Causes, consequences, and management. Front. Public Health 2014, 2, 145. [Google Scholar] [CrossRef]
- Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.; Gyssens, I.; Heure, O. The global threat of antimicrobial resistance: Science for intervention. New Microbes New Infect. 2015, 6, 22–29. [Google Scholar] [CrossRef]
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [PubMed]
- Typas, A.; Banzhaf, M.; Gross, C.A.; Vollmer, W. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat. Rev. Microbiol. 2012, 10, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Hawser, S.; Lociuro, S.; Islam, K. Dihydrofolate reductase inhibitors as antibacterial agents. Biochem. Pharmacol. 2006, 71, 941–948. [Google Scholar] [CrossRef]
- Wilson, D.N. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat. Rev. Microbiol. 2014, 12, 35–48. [Google Scholar] [CrossRef]
- Robinson, A.; van Oijen, A.M. Bacterial replication, transcription and translation: Mechanistic insights from single-molecule biochemical studies. Nat. Rev. Microbiol. 2013, 11, 303–315. [Google Scholar] [CrossRef]
- Silver, L.L. Challenges of antibacterial discovery. Clin. Microbiol. Rev. 2011, 24, 71–109. [Google Scholar] [CrossRef]
- Miller, J.R.; Waldrop, G.L. Discovery of novel antibacterials. Expert Opin. Drug Discov. 2010, 5, 145–154. [Google Scholar] [CrossRef]
- Kaushik, N.K.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C.H.; Verma, A.K.; Choi, E.H. Biomedical importance of indoles. Molecules 2013, 18, 6620–6662. [Google Scholar] [CrossRef]
- Shiri, M. Indoles in multicomponent processes (MCPs). Chem. Rev. 2012, 112, 3508–3549. [Google Scholar] [CrossRef] [PubMed]
- Sravanthi, T.; Manju, S. Indoles—A promising scaffold for drug development. Eur. J. Pharm. Sci. 2016, 91, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ciulla, M.G.; Kumar, K. The natural and synthetic indole weaponry against bacteria. Tetrahedron Lett. 2018, 59, 3223–3233. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, Y.; Lu, L.; Gong, Y.; Han, W.; Piao, G. Natural indole-containing alkaloids and their antibacterial activities. Arch. Der Pharm. 2020, 353, 2000120. [Google Scholar] [CrossRef]
- de Sa Alves, F.R.; Barreiro, E.J.; Manssour Fraga, C.A. From nature to drug discovery: The indole scaffold as a ‘privileged structure’. Mini Rev. Med. Chem. 2009, 9, 782–793. [Google Scholar] [CrossRef]
- Wan, Y.; Li, Y.; Yan, C.; Yan, M.; Tang, Z. Indole: A privileged scaffold for the design of anti-cancer agents. Eur. J. Med. Chem. 2019, 183, 111691. [Google Scholar] [CrossRef]
- Gribble, G.W. Recent developments in indole ring synthesis—Methodology and applications. J. Chem. Soc. Perkin Trans. 1 2000, 1045–1075. [Google Scholar] [CrossRef]
- Teraiya, N.; Agrawal, K.; Patel, T.M.; Patel, A.; Patel, S.; Shah, U.; Shah, S.; Rathod, K.; Patel, K. A review of the therapeutic importance of indole scaffold in drug discovery. Curr. Drug Discov. Technol. 2023, 20, 9–37. [Google Scholar] [CrossRef]
- Qin, H.-L.; Liu, J.; Fang, W.-Y.; Ravindar, L.; Rakesh, K. Indole-based derivatives as potential antibacterial activity against methicillin-resistance Staphylococcus aureus (MRSA). Eur. J. Med. Chem. 2020, 194, 112245. [Google Scholar] [CrossRef]
- Nieto, M.J.; Lupton, H.K. Indole and indoline scaffolds in antimicrobials: Overview, synthesis and recent advances in antimicrobial research. Curr. Med. Chem. 2021, 28, 4828–4844. [Google Scholar] [CrossRef]
- Bajad, N.G.; Singh, S.K.; Singh, S.K.; Singh, T.D.; Singh, M. Indole: A promising scaffold for the discovery and development of potential anti-tubercular agents. Curr. Res. Pharmacol. Drug Discov. 2022, 3, 100119. [Google Scholar] [CrossRef]
- Haider, S.; Alam, M.S.; Hamid, H. 1, 2, 3-Triazoles: Scaffold with medicinal significance. Inflamm. Cell Signal. 2014, 1, e95. [Google Scholar]
- Ayati, A.; Emami, S.; Foroumadi, A. The importance of triazole scaffold in the development of anticonvulsant agents. Eur. J. Med. Chem. 2016, 109, 380–392. [Google Scholar] [CrossRef] [PubMed]
- Kharb, R.; Sharma, P.C.; Yar, M.S. Pharmacological significance of triazole scaffold. J. Enzym. Inhib. Med. Chem. 2011, 26, 1–21. [Google Scholar] [CrossRef] [PubMed]
- El-Sebaey, S. Recent advances in 1, 2, 4-triazole scaffolds as antiviral agents. ChemistrySelect 2020, 5, 11654–11680. [Google Scholar] [CrossRef]
- Zhou, C.-H.; Wang, Y. Recent researches in triazole compounds as medicinal drugs. Curr. Med. Chem. 2012, 19, 239–280. [Google Scholar] [CrossRef]
- Guan, Q.; Xing, S.; Wang, L.; Zhu, J.; Guo, C.; Xu, C.; Zhao, Q.; Wu, Y.; Chen, Y.; Sun, H. Triazoles in medicinal chemistry: Physicochemical properties, bioisosterism, and application. J. Med. Chem. 2024, 67, 7788–7824. [Google Scholar] [CrossRef]
- Zhang, B. Comprehensive review on the anti-bacterial activity of 1, 2, 3-triazole hybrids. Eur. J. Med. Chem. 2019, 168, 357–372. [Google Scholar] [CrossRef]
- Rajasekaran, A.; Sivakumar, K.K.; Sureshkumar, K.; Manjushree, M. Design, synthesis, characterisation and in-vitro antimicrobial activity of some hybridized triazole scaffolds. Future J. Pharm. Sci. 2017, 3, 1–10. [Google Scholar] [CrossRef]
- Aneja, B.; Azam, M.; Alam, S.; Perwez, A.; Maguire, R.; Yadava, U.; Kavanagh, K.; Daniliuc, C.G.; Rizvi, M.M.A.; Haq, Q.M.R. Natural product-based 1, 2, 3-triazole/sulfonate analogues as potential chemotherapeutic agents for bacterial infections. ACS Omega 2018, 3, 6912–6930. [Google Scholar] [CrossRef]
- Kharb, R.; Shahar Yar, M.; C Sharma, P. New insights into chemistry and anti-infective potential of triazole scaffold. Curr. Med. Chem. 2011, 18, 3265–3297. [Google Scholar] [CrossRef]
- Singh, A.; Singh, K.; Sharma, A.; Kaur, J.; Kaur, R.; Kaur, J.; Kaur, K.; Chadha, R.; Bedi, P.M.S. Rational utilization of 1, 2, 3-triazole scaffold in anti-MRSA drug development: Design strategies, structural insights and pharmacological outcomes. J. Mol. Struct. 2024, 1295, 136557. [Google Scholar] [CrossRef]
- Al-Wabli, R.I.; Alsulami, M.A.; Bukhari, S.I.; Moubayed, N.M.; Al-Mutairi, M.S.; Attia, M.I. Design, synthesis, and antimicrobial activity of certain new indole-1, 2, 4 triazole conjugates. Molecules 2021, 26, 2292. [Google Scholar] [CrossRef] [PubMed]
- Rohilla, S.; Goyal, G.; Berwal, P.; Mathur, N. A Review on Indole-Triazole Molecular Hybrids as a Leading Edge in Drug Discovery: Current Landscape and Future Perspectives. Curr. Top. Med. Chem. 2024, 24, 1557–1588. [Google Scholar] [CrossRef] [PubMed]
- Minvielle, M.J.; Bunders, C.A.; Melander, C. Indole–triazole conjugates are selective inhibitors and inducers of bacterial biofilms. MedChemComm 2013, 4, 916–919. [Google Scholar] [CrossRef]
- Nagarsenkar, A.; Prajapti, S.K.; Guggilapu, S.D.; Birineni, S.; Kotapalli, S.S.; Ummanni, R.; Babu, B.N. Investigation of triazole-linked indole and oxindole glycoconjugates as potential anticancer agents: Novel Akt/PKB signaling pathway inhibitors. MedChemComm 2016, 7, 646–653. [Google Scholar] [CrossRef]
- Mishra, S.; Kaur, M.; Chander, S.; Murugesan, S.; Nim, L.; Arora, D.; Singh, P. Rational modification of a lead molecule: Improving the antifungal activity of indole-triazole-amino acid conjugates. Eur. J. Med. Chem. 2018, 155, 658–669. [Google Scholar] [CrossRef]
- Na, Y.-M. Synthesis and activity of novel indole linked triazole derivatives as antifungal agents. Bull. Korean Chem. Soc. 2010, 31, 3467–3470. [Google Scholar] [CrossRef]
- Agyare, C.; Koffuor, G.A.; Boamah, V.E.; Adu, F.; Mensah, K.B.; Adu-Amoah, L. Antimicrobial and anti-inflammatory activities of Pterygota macrocarpa and Cola gigantea (Sterculiaceae). Evid. -Based Complement. Altern. Med. 2012, 2012, 902394. [Google Scholar] [CrossRef]
- Ozturk, S.; Ercisli, S. Chemical composition and in vitro antibacterial activity of Seseli libanotis. World J. Microbiol. Biotechnol. 2006, 22, 261–265. [Google Scholar] [CrossRef]
- Yele, V.; Mohammed, A.A.; Wadhwani, A.D. Synthesis and Evaluation of Aryl/Heteroaryl Benzohydrazide and Phenylacetamide Derivatives as Broad-Spectrum Antibacterial Agents. ChemistrySelect 2020, 5, 10581–10587. [Google Scholar] [CrossRef]
- Yele, V.; Azam, M.A.; Wadhwani, A.D. Synthesis, Molecular Docking and Biological Evaluation of 2-Aryloxy-N-Phenylacetamide and N′-(2-Aryloxyoxyacetyl) Benzohydrazide Derivatives as Potential Antibacterial Agents. Chem. Biodivers. 2021, 18, e2000907. [Google Scholar] [CrossRef]
- Tsuji, B.T.; Yang, J.C.; Forrest, A.; Kelchlin, P.A.; Smith, P.F. In vitro pharmacodynamics of novel rifamycin ABI-0043 against Staphylococcus aureus. J. Antimicrob. Chemother. 2008, 62, 156–160. [Google Scholar] [CrossRef]
- Ahmad, N.; Shinwari, Z.K.; Hussain, J.; Ahmad, I.; Perveen, R.; Rehman, S. Phytochemical screening and biological activities of different parts of Centaurea montana. Int. J. Plant Sci. Ecol. 2015, 1, 237–240. [Google Scholar]
- Patel, S.; Gheewala, N.; Suthar, A.; Shah, A. In-vitro cytotoxicity activity of Solanum nigrum extract against Hela cell line and Vero cell line. Int. J. Pharm. Pharm. Sci. 2009, 1, 38–46. [Google Scholar]
- Suller, M.; Lloyd, D. The antibacterial activity of vancomycin towards Staphylococcus aureus under aerobic and anaerobic conditions. J. Appl. Microbiol. 2002, 92, 866–872. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, M.C.; de la Rosa, M.; Borobio, M.V. Application of a spectrophotometric method for the determination of post-antibiotic effect and comparison with viable counts in agar. J. Antimicrob. Chemother. 2001, 47, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Odds, F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 2003, 52, 1. [Google Scholar] [CrossRef]
- Odenholt, I.; Löwdin, E.; Cars, O. Postantibiotic, postantibiotic sub-MIC, and subinhibitory effects of PGE-9509924, ciprofloxacin, and levofloxacin. Antimicrob. Agents Chemother. 2003, 47, 3352–3356. [Google Scholar] [CrossRef]
- Kwasny, S.M.; Opperman, T.J. Static biofilm cultures of Gram-positive pathogens grown in a microtiter format used for anti-biofilm drug discovery. Curr. Protoc. Pharmacol. 2010, 50, 13A.8.1–13A.8.23. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Olson, A.J. Using autodock for ligand-receptor docking. Curr. Protoc. Bioinform. 2008, 24, 8.14.1–8.14.40. [Google Scholar] [CrossRef] [PubMed]
- DeLano, W.L. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 2002, 40, 82–92. [Google Scholar]
- Gangadharappa, B.S.; Sharath, R.; Revanasiddappa, P.D.; Chandramohan, V.; Balasubramaniam, M.; Vardhineni, T.P. Structural insights of metallo-beta-lactamase revealed an effective way of inhibition of enzyme by natural inhibitors. J. Biomol. Struct. Dyn. 2020, 38, 3757–3771. [Google Scholar] [CrossRef] [PubMed]
- Schüttelkopf, A.W.; Van Aalten, D.M. PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Biol. Crystallogr. 2004, 60, 1355–1363. [Google Scholar] [CrossRef]
- Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W. Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res. 2000, 33, 889–897. [Google Scholar] [CrossRef]
- Chen, X.; Fan, H.; Zhang, S.; Yu, C.; Wang, W. Facile Installation of 2-Reverse Prenyl Functionality into Indoles by a Tandem N-Alkylation-Aza-Cope Rearrangement Reaction and Its Application in Synthesis. Chem. A Eur. J. 2016, 22, 716–723. [Google Scholar] [CrossRef]
- Banday, A.H.; Shameem, S.A.; Gupta, B.; Kumar, H.S. D-ring substituted 1, 2, 3-triazolyl 20-keto pregnenanes as potential anticancer agents: Synthesis and biological evaluation. Steroids 2010, 75, 801–804. [Google Scholar] [CrossRef]
- Yele, V.; Pindiprolu, S.K.S.; Sana, S.; Ramamurty, D.; Madasi, J.R.; Vadlamani, S. Synthesis and preclinical evaluation of indole triazole conjugates as microtubule targeting agents that are effective against MCF-7 breast cancer cell lines. Anti-Cancer Agents Med. Chem. 2021, 21, 1047–1055. [Google Scholar] [CrossRef]
- Siddiki, A.A.; Takale, B.S.; Telvekar, V.N. One pot synthesis of aromatic azide using sodium nitrite and hydrazine hydrate. Tetrahedron Lett. 2013, 54, 1294–1297. [Google Scholar] [CrossRef]
- Liu, Q.; Tor, Y. Simple conversion of aromatic amines into azides. Org. Lett. 2003, 5, 2571–2572. [Google Scholar] [CrossRef]
- Pankey, G.A.; Sabath, L. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin. Infect. Dis. 2004, 38, 864–870. [Google Scholar] [CrossRef]
Organisms | MIC50 (μg/mL) | MBC (μg/mL) | MIC50/MBC Ratio | |||
---|---|---|---|---|---|---|
ITC | CIP | ITC | CIP | ITC | CIP | |
E. coli | 0.639 ± 0.018 | 0.468 ± 0.014 | 1.253 ± 0.007 | 0.441 ± 0.041 | 2 | 1 |
P. aeruginosa | 0.766 ± 0.016 | 0.595 ± 0.052 | 1.565 ± 0.186 | 0.551 ± 0.033 | 2 | 1 |
K. pneumonia | 0.564 ± 0.045 | 0.616 ± 0.007 | 1.247 ± 0.273 | 0.565 ± 0.041 | 2 | 1 |
S. typhi | 0.872 ± 0.019 | 0.732 ± 0.020 | 1.686 ± 0.010 | 0.706 ± 0.011 | 2 | 1 |
B. subtilis | 0.347 ± 0.036 | 0.460 ± 0.035 | 0.325 ± 0.045 | 0.434 ± 0.047 | 1 | 1 |
S. epidermis | 0.443 ± 0.027 | 0.354 ± 0.038 | 0.441 ± 0.055 | 0.561 ± 0.310 | 1 | 1 |
S. aureus | 0.368 ± 0.036 | 0.249 ± 0.036 | 0.347 ± 0.019 | 0.241 ± 0.009 | 1 | 1 |
MRSA (NCIM 5021) | 0.156 ± 0.003 | 0.256 ± 0.041 | 0.167 ± 0.028 | 0.237 ± 0.168 | 1 | 1 |
MRSA (ATCC43300) | 0.115 ± 0.021 | 0.331 ± 0.035 | 0.111 ± 0.021 | 0.371 ± 0.017 | 1 | 1 |
Strain | MIC50 (μg/mL) | CC50 (μg/mL) | Selectivity Index (CC50/MIC50) |
---|---|---|---|
MRSA (ATCC 43300) | 0.115 ± 0.021 | >5 | >43.47 |
MRSA (NCIM 5021) | 0.156 ± 0.003 | >5 | >32.05 |
Drug | MRSA (ATCC 43300) | MIC50 of ITC in the Presence of Drug (A) | MIC50 of Drug in the Presence of ITC (B) | FIC A | FIC B | ∑FIC A + FIC B | Inference |
---|---|---|---|---|---|---|---|
ITC | 0.368 | ||||||
Ciprofloxacin | 0.249 | 0.0098 | 0.00195 | 0.0266 | 0.0078 | 0.0344 | synergistic |
Gentamicin | 0.278 | 0.0256 | 0.00245 | 0.0695 | 0.0088 | 0.0783 | synergistic |
Linezolid | 1.896 | 0.0078 | 0.00912 | 0.0211 | 0.0048 | 0.0259 | synergistic |
Daptomycin | 0.988 | 0.0985 | 0.00078 | 0.2676 | 0.0007 | 0.2683 | synergistic |
Rifampicin | 0.237 | 0.0781 | 0.00913 | 0.2122 | 0.0385 | 0.2507 | synergistic |
Treatments | Time for 1 log10 (h) | PAE = T − C |
---|---|---|
MRSA ATCC43300 | 2 | 0 |
ITC 1× MIC50 | 3 | −1 |
ITC 10× MIC50 | 4 | −2 |
CIP 1× MIC50 | 3 | −1 |
CIP 10× MIC5 | 4 | −2 |
Complex | Docking Score (kcal/mol) | Interactions |
---|---|---|
4CJN-ITC | −6.7 | Asn104, Tyr105, Ile144, Asn146, Lys273, Asp275, Glu294, Asp295, Gly296, Tyr297, Lys316 |
4CJN-CCD (Cocrystal) | −6.3 | Asn104, Tyr105, Ile144, Glu145, Asn146, Lys273, Glu294, Asp295, Gly296, Tyr297, Lys316 |
Complexes | Van der Waals Energy | Electrostatic Energy | Polar Solvation Energy | Binding Energy |
---|---|---|---|---|
4CJN-ITC | −107.042 ± 26.010 kJ/mol | −9.905 ± 19.250 kJ/mol | 73.494 ± 26.797 kJ/mol | −55.507 ± 24.610 kJ/mol |
4CJN-CCD | −132.209 ± 28.286 kJ/mol | −1.847 ± 11.742 kJ/mol | 99.163 ± 24.527 kJ/mol | −50.128 ± 22.690 kJ/mol |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanapalli, V.; Sanapalli, B.K.R.; Mohammed, A.A. Synthesis and Antibacterial Evaluation of an Indole Triazole Conjugate with In Silico Evidence of Allosteric Binding to Penicillin-Binding Protein 2a. Pharmaceutics 2025, 17, 1013. https://doi.org/10.3390/pharmaceutics17081013
Sanapalli V, Sanapalli BKR, Mohammed AA. Synthesis and Antibacterial Evaluation of an Indole Triazole Conjugate with In Silico Evidence of Allosteric Binding to Penicillin-Binding Protein 2a. Pharmaceutics. 2025; 17(8):1013. https://doi.org/10.3390/pharmaceutics17081013
Chicago/Turabian StyleSanapalli, Vidyasrilekha, Bharat Kumar Reddy Sanapalli, and Afzal Azam Mohammed. 2025. "Synthesis and Antibacterial Evaluation of an Indole Triazole Conjugate with In Silico Evidence of Allosteric Binding to Penicillin-Binding Protein 2a" Pharmaceutics 17, no. 8: 1013. https://doi.org/10.3390/pharmaceutics17081013
APA StyleSanapalli, V., Sanapalli, B. K. R., & Mohammed, A. A. (2025). Synthesis and Antibacterial Evaluation of an Indole Triazole Conjugate with In Silico Evidence of Allosteric Binding to Penicillin-Binding Protein 2a. Pharmaceutics, 17(8), 1013. https://doi.org/10.3390/pharmaceutics17081013