Development of Bioresponsive Poloxamer-Based Self-Nanoemulsifying System for Enhanced Febuxostat Bioavailability: Solidification Strategy Using I-Optimal Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Drug Quantification
2.3. Solubility of Febuxostat
2.4. Emulsification Study
2.5. Preparation of SNEDDS Formulation
2.6. Design of Experiments
2.7. Preparation of Capsule-Filled Formulation
2.8. Melting Point Measurement
2.9. Melting Time Measurement
2.10. In-Vitro Melting Assessment
2.11. Dissolution Study
3. Results and Discussion
3.1. Selection of Oil
3.2. Selection of Surfactant
3.3. Investigating the Independent Factors’ Influence
3.4. Melting Point
3.5. Melting Time
3.6. Optimization Process
3.7. Validation of Design of Experiments
3.8. In-Vitro Melting Assessment
3.9. Dissolution Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baral, K.C.; Bajracharya, R.; Lee, S.H.; Han, H.-K. Advancements in the pharmaceutical applications of probiotics: Dosage forms and formulation technology. Int. J. Nanomed. 2021, 16, 7535–7556. [Google Scholar] [CrossRef]
- Bhalani, D.V.; Nutan, B.; Kumar, A.; Singh Chandel, A.K. Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics. Biomedicines 2022, 10, 2055. [Google Scholar] [CrossRef]
- Rocha, B.; de Morais, L.A.; Viana, M.C.; Carneiro, G. Promising strategies for improving oral bioavailability of poor water-soluble drugs. Expert Opin. Drug Discov. 2023, 18, 615–627. [Google Scholar] [CrossRef]
- Plaza-Oliver, M.; Santander-Ortega, M.J.; Lozano, M.V. Current approaches in lipid-based nanocarriers for oral drug delivery. Drug Deliv. Transl. Res. 2021, 11, 471–497. [Google Scholar] [CrossRef]
- Sailor, G.U. Self-nanoemulsifying drug delivery systems (SNEDDS): An innovative approach to improve oral bioavailability. In Nanocarriers: Drug Delivery System: An Evidence Based Approach; Springer: Singapore, 2021; pp. 255–280. [Google Scholar] [CrossRef]
- Yoshida, T.; Kojima, H.; Sako, K.; Kondo, H. Drug delivery to the intestinal lymph by oral formulations. Pharm. Dev. Technol. 2022, 27, 175–189. [Google Scholar] [CrossRef]
- Yu, J.-E.; You, B.H.; Bae, M.; Han, S.Y.; Jung, K.; Choi, Y.H. Evaluation of Pharmacokinetic Feasibility of Febuxostat/L-pyroglutamic Acid Cocrystals in Rats and Mice. Pharmaceutics 2023, 15, 2167. [Google Scholar] [CrossRef] [PubMed]
- Rangaraj, N.; Shah, S.; Maruthi, A.J.; Pailla, S.R.; Cheruvu, H.S.; Sujatha, D.; Sampathi, S. Quality by design approach for the development of self-emulsifying systems for oral delivery of febuxostat: Pharmacokinetic and pharmacodynamic evaluation. AAPS PharmSciTech 2019, 20, 267. [Google Scholar] [CrossRef] [PubMed]
- ElShagea, H.N.; ElKasabgy, N.A.; Fahmy, R.H.; Basalious, E.B. Freeze-dried self-nanoemulsifying self-nanosuspension (snesns): A new approach for the preparation of a highly drug-loaded dosage form. AAPS PharmSciTech 2019, 20, 258. [Google Scholar] [CrossRef]
- Habib, B.A.; Abd El-Samiae, A.S.; El-Houssieny, B.M.; Tag, R. Formulation, characterization, optimization, and in-vivo performance of febuxostat self-nano-emulsifying system loaded sublingual films. Drug Deliv. 2021, 28, 1321–1333. [Google Scholar] [CrossRef]
- Teaima, M.; Hababeh, S.; Khanfar, M.; Alanazi, F.; Alshora, D.; El-Nabarawi, M. Design and optimization of pioglitazone hydrochloride self-nanoemulsifying drug delivery system (SNEDDS) incorporated into an orally disintegrating tablet. Pharmaceutics 2022, 14, 425. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, A.; Paul, A.; Sen, S.O.; Sen, K.K. Studies on thermoresponsive polymers: Phase behaviour, drug delivery and biomedical applications. Asian J. Pharm. Sci. 2015, 10, 99–107. [Google Scholar] [CrossRef]
- Mfoafo, K.; Kwon, Y.; Omidi, Y.; Omidian, H. Contemporary applications of thermogelling PEO-PPO-PEO triblock copolymers. J. Drug Deliv. Sci. Technol. 2022, 70, 103182. [Google Scholar] [CrossRef]
- Matanović, M.R.; Kristl, J.; Grabnar, P.A. Thermoresponsive polymers: Insights into decisive hydrogel characteristics, mechanisms of gelation, and promising biomedical applications. Int. J. Pharm. 2014, 472, 262–275. [Google Scholar] [CrossRef]
- Bredikhin, A.A.; Fayzullin, R.R.; Gubaidullin, A.T.; Bredikhina, Z.A. Intermolecular hydrogen bonding in alpha-hydroxy carboxylic acids crystals: Connectivity, synthons, supramolecular motifs. Crystals 2022, 12, 1479. [Google Scholar] [CrossRef]
- Akkari, A.C.; Papini, J.Z.B.; Garcia, G.K.; Franco, M.K.D.; Cavalcanti, L.P.; Gasperini, A.; Alkschbirs, M.I.; Yokaichyia, F.; de Paula, E.; Tófoli, G.R.; et al. Poloxamer 407/188 binary thermosensitive hydrogels as delivery systems for infiltrative local anesthesia: Physico-chemical characterization and pharmacological evaluation. Mater. Sci. Eng. C 2016, 68, 299–307. [Google Scholar] [CrossRef]
- Beg, S.; Swain, S.; Rahman, M.; Hasnain, M.S.; Imam, S.S. Application of design of experiments (DoE) in pharmaceutical product and process optimization. In Pharmaceutical Quality by Design; Elsevier: Amsterdam, The Netherlands, 2019; pp. 43–64. [Google Scholar]
- Nuli, M.V.; Seemaladinne, R.; Tallam, A.K. Analytical quality by design (AQbD) based optimization of RP-UPLC method for determination of nivolumab and relatlimab in bulk and pharmaceutical dosage forms. Future J. Pharm. Sci. 2024, 10, 86. [Google Scholar] [CrossRef]
- Valverde-Som, L.; Arce, M.; Sarabia, L.; Ortiz, M. Analytical quality by design using a D-optimal design and parallel factor analysis in an automatic solid phase extraction system coupled to liquid chromatography. Determination of nine PAHs in coffee samples. Chemom. Intell. Lab. Syst. 2023, 243, 105008. [Google Scholar] [CrossRef]
- Kosaraju, S.L.; Puvanenthiran, A.; Lillford, P. Naturally crosslinked gelatin gels with modified material properties. Food Res. Int. 2010, 43, 2385–2389. [Google Scholar] [CrossRef]
- Wu, M.; Hu, X.-R.; Gu, J.-M.; Tang, G.-P. Crystal structure of febuxostat–acetic acid (1/1). Acta Crystallogr. E Crystallogr. Commun. 2015, 71, o295–o296. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.-Y.; Qian, J.-J.; Gu, J.-M.; Tang, G.-P.; Hu, X.-R. Febuxostat methanol solvate. Acta Crystallogr. E Crystallogr. Commun. 2011, 67, o1232. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Patel, M. Enhanced oral bioavailability of nintedanib esylate with nanostructured lipid carriers by lymphatic targeting: In vitro, cell line and in vivo evaluation. Eur. J. Pharm. Sci. 2021, 159, 105715. [Google Scholar] [CrossRef] [PubMed]
- Shahba, A.A.-W.; Mohsin, K.; Alanazi, F.K. Novel self-nanoemulsifying drug delivery systems (SNEDDS) for oral delivery of cinnarizine: Design, optimization, and in-vitro assessment. Aaps PharmSciTech 2012, 13, 967–977. [Google Scholar] [CrossRef] [PubMed]
- Pouton, C.W. Lipid formulations for oral administration of drugs: Non-emulsifying, self-emulsifying and ‘self-microemulsifying’drug delivery systems. Eur. J. Pharm. Sci. 2000, 11, S93–S98. [Google Scholar] [CrossRef] [PubMed]
- Pathak, K.; Raghuvanshi, S. Oral bioavailability: Issues and solutions via nanoformulations. Clin. Pharmacokinet. 2015, 54, 325–357. [Google Scholar] [CrossRef]
- Date, A.A.; Nagarsenker, M. Design and evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) for cefpodoxime proxetil. Int. J. Pharm. 2007, 329, 166–172. [Google Scholar] [CrossRef]
- Khutoryanskiy, V.V. Hydrogen-bonded interpolymer complexes as materials for pharmaceutical applications. Int. J. Pharm. 2007, 334, 15–26. [Google Scholar] [CrossRef]
- Wang, J.; Yu, S.; Zhou, J.; Liang, C.; Huang, W.; Hu, Z.; Chen, Z.; Xiang, H.; Zhu, M. Discrete molecular weight strategy modulates hydrogen bonding-induced crystallization and chain orientation for melt-spun high-strength polyamide fibers. Polym. Eng. Sci. 2024, 64, 4053–4063. [Google Scholar] [CrossRef]
- Liu, Y.; Jun, Y.; Steinberg, V. Concentration dependence of the longest relaxation times of dilute and semi-dilute polymer solutions. J. Rheol. 2009, 53, 1069–1085. [Google Scholar] [CrossRef]
- Sangitra, S.N.; Pujala, R.K. Temperature-dependent yield stress and wall slip behaviour of thermoresponsive Pluronic F127 hydrogels. RSC Adv. 2024, 14, 23772–23784. [Google Scholar] [CrossRef]
- Lupu, A.; Gradinaru, L.M.; Rusu, D.; Bercea, M. Self-healing of Pluronic® F127 hydrogels in the presence of various polysaccharides. Gels 2023, 9, 719. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.C.; Costa, P.C.; Velho, S.; Amaral, M.H. Injectable poloxamer hydrogels for local cancer therapy. Gels 2023, 9, 593. [Google Scholar] [CrossRef] [PubMed]
- Tran, P.; Park, J.-S. Recent trends of self-emulsifying drug delivery system for enhancing the oral bioavailability of poorly water-soluble drugs. J. Pharm. Investig. 2021, 51, 439–463. [Google Scholar] [CrossRef]
- Schmied, F.-P.; Bernhardt, A.; Klein, S. Preparation of solid self-nanoemulsifying drug delivery systems (S-SNEDDS) by co-extrusion of liquid SNEDDS and polymeric carriers—A new and promising formulation approach to improve the solubility of poorly water-soluble drugs. Pharmaceuticals 2022, 15, 1135. [Google Scholar] [CrossRef]
- Ashfaq, M.; Shah, S.; Rasul, A.; Hanif, M.; Khan, H.U.; Khames, A.; Abdelgawad, M.A.; Ghoneim, M.M.; Ali, M.Y.; Abourehab, M.A.; et al. Enhancement of the solubility and bioavailability of pitavastatin through a self-nanoemulsifying drug delivery system (SNEDDS). Pharmaceutics 2022, 14, 482. [Google Scholar] [CrossRef] [PubMed]
Run | Polymer Concentration (% w/w) | Molecular Weight |
---|---|---|
1 | 2 | High |
2 | 10 | High |
3 | 8.96 | Low |
4 | 8 | High |
5 | 2 | High |
6 | 5.04 | Low |
7 | 6 | High |
8 | 8.96 | Low |
9 | 7 | Low |
10 | 6 | High |
11 | 10 | High |
12 | 4 | High |
13 | 3.12 | Low |
14 | 2 | Low |
15 | 8.96 | Low |
Surfactant Type in SNEDDS Formulation | Physical Appearance | Transmittance (%) | Solubility (mg/g) |
---|---|---|---|
Tween-20 | Transparent | 97.73 ± 0.21 | 39.45 ± 0.36 a |
Tween-80 | Whitish appearance | 70.73 ± 0.06 | 38.68 ± 0.25 a |
Labrasol | Turbid | 0.30 ± 0.00 | 36.19 ± 0.65 b |
Kolliphor-EL | Slightly bluish | 92.03 ± 0.15 | 36.86 ± 0.46 b |
HCO-30 | Transparent | 96.13 ± 0.23 | 32.05 ± 0.61 c |
Runs | Melting Point (°C) | Melting Time (s) |
---|---|---|
1 | 36.5 | 93 |
2 | 39.5 | 168 |
3 | 37.5 | 132 |
4 | 39 | 143 |
5 | 36.5 | 96 |
6 | 36.5 | 111 |
7 | 39 | 140 |
8 | 37.5 | 122 |
9 | 38 | 141 |
10 | 38.5 | 138 |
11 | 39.5 | 169 |
12 | 38.5 | 117 |
13 | 36.5 | 95 |
14 | 35 | 82 |
15 | 38 | 130 |
Response | Selected Model | Freedom Degree | p-Value | Lack of Fit p-Value | R2 | Adequate Precision |
---|---|---|---|---|---|---|
Melting point (°C) | Quadratic | 4 | <0.0001 | 0.0699 | 0.9376 | 18.2950 |
Melting time (seconds) | 2FI | 3 | <0.0001 | 0.1029 | 0.9707 | 29.2014 |
Statistical Parameters | Melting Point | Melting Time |
---|---|---|
Polymer concentration | <0.0001 | <0.0001 |
Molecular weight | <0.0001 | <0.0001 |
Two-factor interaction | 0.5031 | 0.0138 |
polymer concentration2 | 0.0074 | --- |
Measured Response | Predicted Mean | Data Mean |
---|---|---|
Melting point (°C) | 36.5 | 36 |
Melting time (seconds) | 98.65 | 111.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sherif, A.Y.; Elzayat, E.M. Development of Bioresponsive Poloxamer-Based Self-Nanoemulsifying System for Enhanced Febuxostat Bioavailability: Solidification Strategy Using I-Optimal Approach. Pharmaceutics 2025, 17, 975. https://doi.org/10.3390/pharmaceutics17080975
Sherif AY, Elzayat EM. Development of Bioresponsive Poloxamer-Based Self-Nanoemulsifying System for Enhanced Febuxostat Bioavailability: Solidification Strategy Using I-Optimal Approach. Pharmaceutics. 2025; 17(8):975. https://doi.org/10.3390/pharmaceutics17080975
Chicago/Turabian StyleSherif, Abdelrahman Y., and Ehab M. Elzayat. 2025. "Development of Bioresponsive Poloxamer-Based Self-Nanoemulsifying System for Enhanced Febuxostat Bioavailability: Solidification Strategy Using I-Optimal Approach" Pharmaceutics 17, no. 8: 975. https://doi.org/10.3390/pharmaceutics17080975
APA StyleSherif, A. Y., & Elzayat, E. M. (2025). Development of Bioresponsive Poloxamer-Based Self-Nanoemulsifying System for Enhanced Febuxostat Bioavailability: Solidification Strategy Using I-Optimal Approach. Pharmaceutics, 17(8), 975. https://doi.org/10.3390/pharmaceutics17080975