Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (209)

Search Parameters:
Keywords = in situ templating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 4682 KB  
Article
Facile Galvanic Replacement Toward One-Dimensional Cu-Based Bimetallic Nanobelts
by Ying Xie, Qitong Sun, Yuanyuan Li, Wanwan Li, Zhiwei Hou, Lihui Wei and Sujun Guan
Nanomaterials 2026, 16(1), 38; https://doi.org/10.3390/nano16010038 - 26 Dec 2025
Abstract
We report a galvanic replacement-driven strategy for the in situ growth of highly uniform one-dimensional (1D) Cu@CuO-X (X = Ag, Bi) nanobelts directly on aluminum foils. Unlike conventional multi-step coating or hard-template replication strategies, the formation of these heterostructured nanobelts is governed by [...] Read more.
We report a galvanic replacement-driven strategy for the in situ growth of highly uniform one-dimensional (1D) Cu@CuO-X (X = Ag, Bi) nanobelts directly on aluminum foils. Unlike conventional multi-step coating or hard-template replication strategies, the formation of these heterostructured nanobelts is governed by a spontaneous interfacial galvanic replacement process between Cu and the introduced metal species, ensuring in situ growth and intimate interfacial integration. Comprehensive SEM, TEM, XRD, and XPS characterizations confirm the successful formation of Cu@CuO-Ag and Cu@CuO-Bi architectures, where Bi predominantly exists in the oxidized Bi3+ state, forming Bi2O3-like surface species. Benefiting from their 1D anisotropic framework and controllable heterointerfaces, this work underscores the distinctiveness and versatility of the self-templated galvanic replacement strategy for the design of multifunctional nanomaterials. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

20 pages, 6027 KB  
Article
Production and Characterization of Ti-6Al-4V Foams Produced by the Replica Impregnation Method
by Aynur İnan Üstün and Hasan Okuyucu
Metals 2025, 15(12), 1354; https://doi.org/10.3390/met15121354 - 9 Dec 2025
Viewed by 260
Abstract
Porous Ti-6Al-4V foams are excellent materials due to their low density, high specific strength, and excellent biocompatibility. This study investigates the fabrication of open-cell Ti-6Al-4V foams using the replica impregnation method with polyurethane templates of varying pore sizes (20, 25, and 30 ppi) [...] Read more.
Porous Ti-6Al-4V foams are excellent materials due to their low density, high specific strength, and excellent biocompatibility. This study investigates the fabrication of open-cell Ti-6Al-4V foams using the replica impregnation method with polyurethane templates of varying pore sizes (20, 25, and 30 ppi) and sintering temperatures (1170 °C, 1200 °C, 1250 °C, and 1280 °C). The effects of these parameters on microstructural evolution, phase composition, and mechanical properties were examined. Microstructural analysis showed that optimum densification occurred at 1250 °C. However, at 1280 °C, excessive grain growth and pore coarsening were observed. XRD, SEM, and EDS analyses confirmed that α-Ti was the matrix phase, while titanium carbide formed in situ as a result of the carbon residues released from the decomposed polyurethane template. With the development of the TiC phase and enhanced interparticle bonding due to sintering, the compressive strength progressively increased up to 1250 °C. At 1280 °C, strength decreased due to excessive TiC growth, causing brittleness and pore coarsening, reducing structural integrity. Maximum compressive strength of 40.2 MPa and elastic modulus of 858.9 MPa were achieved at 1250 °C with balanced TiC dispersion and pore structure. Max density of 1.234 g/cm3 was obtained at 1250 °C. Gibson-Ashby analysis and the fracture surfaces confirmed the brittle behavior of the foams, which is attributed to the presence of TiC particles and microcracks in the structure. The study concludes that 1250 °C provides an ideal balance between densification and structural integrity, offering valuable insights for biomedical and structural applications. Full article
Show Figures

Graphical abstract

19 pages, 1863 KB  
Article
Degradable Polymer-Based Oil–Water Separation Materials Prepared by High Internal Phase Emulsion Templating Method and Silica-Modification
by Yunpeng Hu, Jianqiao Lu, Maoning Li, Qingyuan Du, Jing Zhao, Dandan Li, Xiangrui Meng, Yu Nan, Zhi Zhang and Dazhi Sun
Polymers 2025, 17(24), 3254; https://doi.org/10.3390/polym17243254 - 6 Dec 2025
Viewed by 349
Abstract
The development of oil–water separation materials that combine high separation efficiency, robust mechanical properties, and environmental degradability remains a significant challenge. This study presents a novel degradable and superhydrophobic porous material fabricated via a multi-step process. A porous foam was first synthesized from [...] Read more.
The development of oil–water separation materials that combine high separation efficiency, robust mechanical properties, and environmental degradability remains a significant challenge. This study presents a novel degradable and superhydrophobic porous material fabricated via a multi-step process. A porous foam was first synthesized from degradable poly(ε-caprolactone-co-2-ethylhexyl acrylate) using a high internal phase emulsion templating technique. The foam was subsequently modified through in situ silica (SiO2) deposition via a sol–gel process, followed by grafting with hydrophobic hexadecyltrimethoxysilane (HDTMS) to produce the final oil–water separation porous materials. Various characterization results showed that the optimized material featured a hierarchical pore structure in micro scales and the porosity of the foam remained ~90% even after the 2-step modification. Mechanical tests indicate that the modified material exhibited significantly enhanced compressive strength and the water contact angle measurements revealed a superhydrophobic surface with a value of approximately 156°. The prepared material demonstrated excellent oil/water separation performance with notable absorption capacities ranging from 4.11 to 4.90 g/g for oils with different viscosity. Additionally, the porous material exhibited exceptional cyclic stability, maintaining over 90% absorption capacity after 10 absorption-desorption cycles. Moreover, the prepared material achieved a mass loss of approximately 30% within the first 3 days under alkaline hydrolysis conditions (pH 12, 25 °C), which further escalated to ~70% degradation within four weeks. The current work establishes a feasible strategy for developing sustainable, high-performance oil–water separation materials through rational structural design and surface engineering. Full article
(This article belongs to the Special Issue Eco-Friendly Polymer-Based Materials: Design and Applications)
Show Figures

Graphical abstract

16 pages, 3306 KB  
Article
Porous LiFePO4 Cathode Synthesized via Spray Drying for Enhanced Electrochemical Performance
by Jimin Kim and Seongki Ahn
Energies 2025, 18(23), 6228; https://doi.org/10.3390/en18236228 - 27 Nov 2025
Viewed by 443
Abstract
In this study, a rough-surfaced LiFePO4 (RS-LFP) cathode material with a well-defined porous architecture was successfully synthesized via a scalable, template-assisted spray drying method. The resulting RS-LFP exhibited a high specific surface area of 41.2 m2 g−1, significantly enhancing [...] Read more.
In this study, a rough-surfaced LiFePO4 (RS-LFP) cathode material with a well-defined porous architecture was successfully synthesized via a scalable, template-assisted spray drying method. The resulting RS-LFP exhibited a high specific surface area of 41.2 m2 g−1, significantly enhancing electrode–electrolyte contact. This tailored microstructure, combined with an in-situ-formed carbon network, reduced the charge-transfer resistance and facilitated efficient ion/electron transport. Consequently, the RS-LFP demonstrated outstanding electrochemical performance, including a high initial capacity of ~140 mAh g−1 at 0.2 C, excellent cycling stability with over 95% capacity retention after 30 cycles, and superior rate capability. The RS-LFP also exhibited a remarkable capacity recovery of ~99% when the current returned to 0.2 C. These findings highlight that engineering porous architectures through template-assisted spray drying is a promising and scalable strategy for developing high-performance phosphate-based cathodes for advanced energy storage applications. Full article
Show Figures

Figure 1

17 pages, 4414 KB  
Article
Coupling Photothermal Effect in N-Doped Hollow Carbon Spheres with ZnIn2S4 Boosts Solar Hydrogen Evolution
by Shanhao He, Li Liu, Min Liu, Jinjun Tian, Yan Xue and Keliang Wu
Molecules 2025, 30(22), 4368; https://doi.org/10.3390/molecules30224368 - 12 Nov 2025
Viewed by 312
Abstract
To address the challenges of low solar energy utilization efficiency and rapid recombination of photogenerated charge carriers in photocatalytic hydrogen evolution, this study successfully constructed a composite photocatalyst of ZnIn2S4 (ZIS) supported on N-doped hollow carbon spheres (N-HCS), denoted as [...] Read more.
To address the challenges of low solar energy utilization efficiency and rapid recombination of photogenerated charge carriers in photocatalytic hydrogen evolution, this study successfully constructed a composite photocatalyst of ZnIn2S4 (ZIS) supported on N-doped hollow carbon spheres (N-HCS), denoted as ZIS/N-HCS, via a combination of template etching and in situ growth strategies. Characterization results demonstrate that this hollow structure possesses a high specific surface area (48.41 m2/g) and a narrowed bandgap (2.41 eV), achieve broad-spectrum light absorption, thereby enabling the catalyst to generate a local hot spot temperature of 136 °C under AM1.5G conditions. The optimized ZIS/N-HCS-0.30 sample exhibited a significantly enhanced photocurrent response (8.26 μA cm−2) and improved charge separation efficiency. When evaluated at a set solution temperature of 20 °C, the material exhibited a photocatalytic hydrogen evolution rate of 17.03 mmol g−1·h−1, which is 7.06 times higher than that of pure ZIS. Furthermore, it demonstrated excellent cycling stability. This work elucidates the synergistic role of the hollow photothermal structure in enhancing solar energy utilization and catalytic reaction kinetics, providing a new strategy for designing efficient solar-driven hydrogen production systems. Full article
Show Figures

Graphical abstract

16 pages, 2468 KB  
Article
In Situ Synthesis of Porous SnO2/SnS2@PC Anode Material with High Capacity Using Calcium Carbonate as Template for Lithium-Ion Batteries
by Wen Chen, Chunling Li, Mengyang Zheng, Yanlin Li and Fuzhong Gong
Materials 2025, 18(21), 4987; https://doi.org/10.3390/ma18214987 - 31 Oct 2025
Viewed by 399
Abstract
Tin-based materials have emerged as promising anode candidates for advanced lithium-ion batteries (LIBs) due to their high theoretical capacity (e.g., 994 mAh·g−1 for Li4.4Sn), moderate operating potential, and natural abundance. However, Tin-based materials suffer from severe volume expansion [...] Read more.
Tin-based materials have emerged as promising anode candidates for advanced lithium-ion batteries (LIBs) due to their high theoretical capacity (e.g., 994 mAh·g−1 for Li4.4Sn), moderate operating potential, and natural abundance. However, Tin-based materials suffer from severe volume expansion (>300%) and rapid capacity decay during cycling. To mitigate these challenges, a composite composed of tin-based materials and porous carbon (PC), i.e., SnO2/SnS2@PC, was prepared by calcining a mixture of SnO2, petroleum asphalt and calcium carbonate at high temperature, where petroleum asphalt acted as the carbon and sulfur resource, and calcium carbonate acted as a pore-forming template. The prepared SnO2/SnS2@PC composite had a specific surface area of 190 m2·g−1 with total pore volume 0.386 cm3·g−1, and delivered an initial specific capacity of 1431 mAh·g−1 and retained 722 mAh·g−1 at 100th cycle at 0.2 A·g−1, which is nearly three folds that of the actual capacity (~260 mAh·g−1) of commercial graphite. The novelty of this work lies in that the abundant sulfur element in petroleum asphalt was fully utilized to react in situ with nano SnO2 to generate SnS2 and form a composite with high specific capacity and good structural stability, along with greatly reducing the emission of the harmful element sulfur into the atmosphere. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

19 pages, 5326 KB  
Article
Preparation of Temperature-Responsive Janus Nanosheets and Their Application in Emulsions
by Yue Gao, Xuan Qi, Hao Yan, Dan Xue, Xuefeng Xu, Suixin He, Wei Xia and Junfeng Zhang
Crystals 2025, 15(10), 891; https://doi.org/10.3390/cryst15100891 - 15 Oct 2025
Viewed by 419
Abstract
In this study, patch-structured C8/CHO template microspheres were successfully synthesized through in situ reduction and sol–gel reactions, providing a reusable platform for subsequent modifications. Based on these templates, temperature-responsive PW12O403−-PILs/PNIPAM Janus nanosheets were prepared via sequential [...] Read more.
In this study, patch-structured C8/CHO template microspheres were successfully synthesized through in situ reduction and sol–gel reactions, providing a reusable platform for subsequent modifications. Based on these templates, temperature-responsive PW12O403−-PILs/PNIPAM Janus nanosheets were prepared via sequential Schiff-base coupling and ATRP. Structural characterizations (XRD, SEM, TEM, FTIR, and TGA) confirmed successful functionalization and nanosheet formation. The PNIPAM moiety endowed the nanosheets with temperature responsiveness, while the incorporation of polymerized ionic liquids and phosphotungstate anions further enhanced amphiphilicity and dispersion stability. When applied as particulate emulsifiers in water/toluene systems, the Janus nanosheets formed stable Pickering emulsions at elevated temperatures and underwent reversible emulsification–demulsification upon temperature cycling. These findings demonstrate the potential of PW12O403−-PILs/PNIPAM Janus nanosheets as smart emulsifiers for responsive separation and formulation technologies. Full article
(This article belongs to the Section Macromolecular Crystals)
Show Figures

Figure 1

17 pages, 4046 KB  
Article
Harnessing Biogenic Silica: Nanoarchitected Pt3Pd1 on Nettle-Derived N,Si-CQDs for High-Performance Methanol Electrooxidation
by Seden Beyhan
Nanomaterials 2025, 15(20), 1561; https://doi.org/10.3390/nano15201561 - 14 Oct 2025
Viewed by 518
Abstract
This study introduces nitrogen- and silicon-containing carbon quantum dots (N,Si-CQDs), synthesized hydrothermally from the sustainable bioresource stinging nettle (Urtica dioica L.), as chemically active supports for Pt, Pd, and Pt3Pd1 electrocatalysts. The N,Si-CQDs were characterized by a high concentration [...] Read more.
This study introduces nitrogen- and silicon-containing carbon quantum dots (N,Si-CQDs), synthesized hydrothermally from the sustainable bioresource stinging nettle (Urtica dioica L.), as chemically active supports for Pt, Pd, and Pt3Pd1 electrocatalysts. The N,Si-CQDs were characterized by a high concentration of N/O surface functionalities and the presence of biogenic Si. A significant finding is that, with this support, biogenic Si acts as a nucleation template: Pd forms in situ as orthorhombic Pd9Si2 nanorods alongside spherical particles, whereas Pt predominantly develops as cubic/quasi-cubic crystals. This templating process promotes faceted (cubic) Pt3Pd1 alloy nanoparticles with robust interfacial contact with the support and a log-normal size distribution (14.2 ± 4.3 nm) on N,Si-CQDs (4.7 ± 1.4 nm). This configuration enhanced the electrochemically active surface area to 181 m2 gPt−1, significantly exceeding those of commercial Pt1Pd1/XC-72 (27.7 m2 gPt−1) and monometallic Pt/N,Si-CQDs (14.3 m2 gPt−1). Consequently, the catalyst demonstrated superior methanol oxidation performance, evidenced by a low onset potential (0.17 V), approximately 10-fold higher mass activity compared to Pt1Pd1/XC-72, and 53% activity retention after a 16 h accelerated durability test. The enhanced performance is attributed to the strong nanoparticle anchoring by N,Si-CQDs, the bifunctional/ligand effects of the Pt–Pd alloy that improve CO tolerance, and the templating role of biogenic Si. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

13 pages, 4830 KB  
Article
Hair-Template Confinement Assembly of Nanomaterials Enables a Robust Single-Hair Surface-Enhanced Raman Spectrocopy Platform for Trace Analysis
by Miao Qin, Siyu Chen, Tao Xie, Mingwen Ma and Cong Wang
Nanomaterials 2025, 15(20), 1557; https://doi.org/10.3390/nano15201557 - 13 Oct 2025
Viewed by 627
Abstract
Surface-enhanced Raman spectroscopy (SERS) enables ultra-sensitive molecular detection and has broad analytical and biomedical applications; recent advances focus on high-performance substrates and innovative detection strategies. However, achieving controllable and reproducible substrate fabrication—particularly using natural templates such as hair—remains challenging, limiting SERS application in [...] Read more.
Surface-enhanced Raman spectroscopy (SERS) enables ultra-sensitive molecular detection and has broad analytical and biomedical applications; recent advances focus on high-performance substrates and innovative detection strategies. However, achieving controllable and reproducible substrate fabrication—particularly using natural templates such as hair—remains challenging, limiting SERS application in trace analysis and on-site detection. This study developed a single-hair in situ SERS platform using a natural hair template. Confinement within hair cuticle grooves and capillary-evaporation assembly enables dense arrangement of cetyltrimethylammonium bromide-coated Au nanorods and polyvinylpyrrolidone-coated Au nanoparticles, forming uniform plasmonic nanoarrays. Spectroscopy and microscopy analyses confirmed the regular alignment of nanostructures along the hair axis with denser packing at the edges. The platform detected crystal violet at 10−9 M, yielding clear signals, negligible background, and stable peaks after repeated washing. For p-phenylenediamine, enhancement was observed down to 10−6 M. On the platform, a concentration-dependent response appeared within 10−3–10−5 M, with spatial Raman imaging along the hair axis. Capillary-evaporation coupling and interfacial wettability facilitated solute enrichment from larger to smaller gap hotspots, improving signal-to-noise ratio and reproducibility. This portable, low-cost, and scalable method supports rapid on-site screening in complex matrixes, offering a general strategy for hotspot engineering and programmable assembly on natural templates. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

12 pages, 2569 KB  
Article
A MOF-Mediated Strategy for In Situ Niobium Doping and Synthesis of High-Performance Single-Crystal Ni-Rich Cathodes
by Yinkun Gao, Huazhang Zhou, Shumin Liu, Shuyun Guan, Mingyang Liu, Peng Gao, Yongming Zhu and Xudong Li
Batteries 2025, 11(10), 368; https://doi.org/10.3390/batteries11100368 - 5 Oct 2025
Viewed by 968
Abstract
The development of single-crystal Ni-rich layered cathode materials (SC-NCMs) is regarded as an effective strategy to address the mechanical failure issues commonly associated with polycrystalline counterparts. However, the industrial production of SC-NCM faces challenges such as lengthy processing steps, high manufacturing costs, and [...] Read more.
The development of single-crystal Ni-rich layered cathode materials (SC-NCMs) is regarded as an effective strategy to address the mechanical failure issues commonly associated with polycrystalline counterparts. However, the industrial production of SC-NCM faces challenges such as lengthy processing steps, high manufacturing costs, and inconsistent product quality. In this study, we innovatively propose a metal/organic framework (MOF)-mediated one-step synthesis strategy to achieve controllable structural preparation and in situ Nb5+ doping in SC-NCM. Using a Ni–Co–Mn-based MOF as both precursor and self-template, we precisely regulated the thermal treatment pathway to guide the nucleation and oriented growth of high-density SC-NCM particles. Simultaneously, Nb5+ was pre-anchored within the MOF framework, enabling atomic-level homogeneous doping into the transition metal layers during crystal growth. Exceptional electrochemical performance is revealed in the in situ Nb-doped SC-NCM, with an initial discharge capacity reaching 176 mAh/g at a 1C rate and a remarkable capacity retention of 86.36% maintained after 200 cycles. This study paves a versatile and innovative pathway for the design of high-stability, high-energy-density cathode materials via a MOF-mediated synthesis strategy, enabling precise manipulation of both morphology and chemical composition. Full article
Show Figures

Graphical abstract

15 pages, 5098 KB  
Article
Peptide-Guided TiO2/Graphene Oxide–Cellulose Hybrid Aerogels for Visible-Light Photocatalytic Degradation of Organic Pollutants
by Haonan Dai, Wenliang Zhang, Wensheng Lei, Yan Wang and Gang Wei
Materials 2025, 18(19), 4565; https://doi.org/10.3390/ma18194565 - 30 Sep 2025
Viewed by 843
Abstract
Titanium dioxide (TiO2), owing to its excellent photocatalytic performance and environmental friendliness, holds great potential in the remediation of water pollution. In this study, we introduce a green and facile strategy to fabricate TiO2-based hybrid aerogels, in which the [...] Read more.
Titanium dioxide (TiO2), owing to its excellent photocatalytic performance and environmental friendliness, holds great potential in the remediation of water pollution. In this study, we introduce a green and facile strategy to fabricate TiO2-based hybrid aerogels, in which the peptide FQFQFIFK first self-assembles into peptide nanofibers (PNFs), followed by in situ biomineralization of TiO2 on the PNFs. The TiO2-loaded PNFs are then combined with graphene oxide (GO) via π–π interactions and integrated with microcrystalline cellulose (MCC) to construct a stable three-dimensional (3D) porous framework. The resulting GO/MCC/PNFs-TiO2 aerogels exhibit high porosity, low density, and good mechanical stability. Photocatalytic experiments show that the aerogels efficiently degrade various organic dyes (methylene blue, rhodamine B, crystal violet, and Orange II) and antibiotics (e.g., tetracycline) under visible-light irradiation, achieving final degradation efficiencies higher than 90%. The excellent performance is attributed to the synergistic effect of the ordered interface provided by the PNF template, the stabilization and uniform dispersion facilitated by GO, and the mechanically robust 3D scaffold constructed by MCC. This work provides an efficient and sustainable strategy for designing functional hybrid aerogels and lays a foundation for their application in water treatment and environmental remediation. Full article
(This article belongs to the Special Issue Progress in Porous Nanofibers: Fabrication and Applications)
Show Figures

Figure 1

23 pages, 3715 KB  
Article
Synthesis of Porous Materials on Hybrid Wormlike Micelles of Zwitterionic and Anionic Surfactants for Efficient Oilfield Wastewater Treatment
by Fei Liu, Zhenzhen Li, Chenye Yang, Ya Wu and Ying Tang
Gels 2025, 11(9), 714; https://doi.org/10.3390/gels11090714 - 5 Sep 2025
Viewed by 539
Abstract
Addressing the challenge of sulfonated lignite (SL) removal from oilfield wastewater, this study introduces a novel hierarchical MgFe-layered double hydroxide (LDH) adsorbent. The material was fabricated via in situ co-precipitation, utilizing a template formed by the NaCl-induced co-assembly of oleylaminopropyl betaine (OAPB) and [...] Read more.
Addressing the challenge of sulfonated lignite (SL) removal from oilfield wastewater, this study introduces a novel hierarchical MgFe-layered double hydroxide (LDH) adsorbent. The material was fabricated via in situ co-precipitation, utilizing a template formed by the NaCl-induced co-assembly of oleylaminopropyl betaine (OAPB) and sodium dodecyl sulfate (SLS) into zwitterionic, anionic, shear-responsive viscoelastic gels. This gel-templating approach yielded an LDH structure featuring a hierarchical pore network spanning 1–80 nm and a notably high specific surface area of 199.82 m2/g, as characterized by SEM and BET. The resulting MgFe-LDH demonstrated exceptional efficacy, achieving a SL removal efficiency exceeding 96% and a maximum adsorption capacity of 90.68 mg/g at neutral pH. Adsorption kinetics were best described by a pseudo-second-order model (R2 > 0.99), with intra-particle diffusion identified as the rate-determining step. Equilibrium adsorption data conformed to the Langmuir isotherm, signifying monolayer uptake. Thermodynamic analysis confirmed the process was spontaneous (ΔG < 0) and exothermic (ΔH = −20.09 kJ/mol), driven primarily by electrostatic interactions and ion exchange. The adsorbent exhibited robust recyclability, maintaining over 79% of its initial capacity after three adsorption–desorption cycles. This gel-directed synthesis presents a sustainable pathway for developing high-performance adsorbents targeting complex contaminants in oilfield effluents. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Figure 1

28 pages, 5893 KB  
Article
A Study of the In-Vial Crystallization of Ice in Sucrose–Salt Solutions—An Application for Through-Vial Impedance Spectroscopy (TVIS)
by Geoff Smith and Yowwares Jeeraruangrattana
Appl. Sci. 2025, 15(17), 9728; https://doi.org/10.3390/app15179728 - 4 Sep 2025
Cited by 1 | Viewed by 813
Abstract
Ice nucleation temperatures and associated ice growth rates are critical parameters in defining the initial ice morphology template, which governs dry layer resistance during sublimation and therefore impacts primary drying kinetics and overall process time. In this study, we developed a through-vial impedance [...] Read more.
Ice nucleation temperatures and associated ice growth rates are critical parameters in defining the initial ice morphology template, which governs dry layer resistance during sublimation and therefore impacts primary drying kinetics and overall process time. In this study, we developed a through-vial impedance spectroscopy (TVIS) method to determine both ice nucleation temperature and average ice growth rate, from which future estimation of average ice crystal size may be possible. Whereas previous TVIS applications were limited to solutions containing simple, uncharged solutes such as sugars, our adapted approach enables the analysis of conductive solutions (5% sucrose with 0%, 0.26%, and 0.55% NaCl), covering osmolarities below and above isotonicity. We established that the real part capacitance at low and high frequencies—either side of the dielectric relaxation of ice—provides the following: (i) a temperature-sensitive parameter for detecting the onset of ice formation, and (ii) a temperature-insensitive parameter for determining the end of the ice growth phase (unaffected by temperature changes in the frozen solution). This expanded capability demonstrates the potential of TVIS as a process analytical technology (PAT) for non-invasive, in situ monitoring of freezing dynamics in pharmaceutical freeze-drying. Full article
Show Figures

Figure 1

26 pages, 4438 KB  
Review
Carbon Nitride Gels: Synthesis, Modification, and Water Decontamination Applications
by Qinglan Tang, Zhen Zhang, Yuwei Pan, Michael K. H. Leung, Yizhen Zhang and Keda Chen
Gels 2025, 11(9), 685; https://doi.org/10.3390/gels11090685 - 27 Aug 2025
Cited by 1 | Viewed by 898
Abstract
Graphitic carbon nitride (g-C3N4)-based materials hold significant promise for environmental remediation, particularly water purification, owing to their unique electronic structure, metal-free composition, and robust chemical stability. However, powdered g-C3N4 faces challenges such as particle aggregation, poor [...] Read more.
Graphitic carbon nitride (g-C3N4)-based materials hold significant promise for environmental remediation, particularly water purification, owing to their unique electronic structure, metal-free composition, and robust chemical stability. However, powdered g-C3N4 faces challenges such as particle aggregation, poor recyclability, and limited exposure of active sites. Structuring g-C3N4 into hydrogels or aerogels—three-dimensional porous networks offering high surface area, rapid mass transport, and tunable porosity—represents a transformative solution. This review comprehensively examines recent advances in g-C3N4-based gels, covering synthesis strategies such as crosslinking (physical/chemical), in situ polymerization, and the sol–gel and template method. Modification approaches including chemical composition and structural engineering are systematically categorized to elucidate their roles in optimizing catalytic activity, stability, and multifunctionality. Special emphasis is placed on environmental applications, including the removal of emerging contaminants and heavy metal ions, as well as solar-driven interfacial evaporation for desalination. Throughout, the critical interplay between gel structure/composition and performance is evaluated to establish design principles for next-generation materials. Finally, this review identifies current challenges regarding scalable synthesis, long-term stability, in-depth mechanistic understanding, and performance in complex real wastewater matrices. This work aims to provide valuable insights and guidance for advancing g-C3N4-based hydrogel and aerogel technologies in environmental applications. Full article
(This article belongs to the Topic Wastewater Treatment Based on AOPs, ARPs, and AORPs)
Show Figures

Graphical abstract

14 pages, 2584 KB  
Article
Enhanced Catalytic Ozonation of Formaldehyde over MOFs- Derived MnOx Catalysts with Diverse Morphologies: The Role of Oxygen Vacancies
by Yulin Sun, Yiwei Zhang, Yong He, Wubin Weng, Yanqun Zhu and Zhihua Wang
Catalysts 2025, 15(8), 752; https://doi.org/10.3390/catal15080752 - 6 Aug 2025
Viewed by 1149
Abstract
Metal–organic frameworks (MOFs) have become a hot topic in various research fields nowadays. And MOF-derived metal oxides prepared by the sacrificial template method have been widely applied as catalysts for pollutant removal. Accordingly, we prepared a series of MOF-derived MnOx catalysts with [...] Read more.
Metal–organic frameworks (MOFs) have become a hot topic in various research fields nowadays. And MOF-derived metal oxides prepared by the sacrificial template method have been widely applied as catalysts for pollutant removal. Accordingly, we prepared a series of MOF-derived MnOx catalysts with diverse morphologies (rod-like, flower-like, slab-like) via the pyrolysis of MOF precursors, and the as-prepared MnOx catalysts demonstrated superior performance compared to the one prepared using the co-precipitation method. MnOx-II, with a flower-like structure, exhibited excellent activity for formaldehyde (HCHO) catalytic ozonation at room temperature, reaching complete HCHO conversion at O3/HCHO of 1.5 and more than 90% CO2 selectivity at an O3/HCHO ratio of 2.5. On the basis of various characterization methods, it was clarified that the enhanced catalytic performance of MnOx-II benefited from its larger BET surface area, abundant oxygen vacancies, better redox ability at lower temperature, and more Lewis acid sites. The H2O resistance and stability tests were also conducted. Furthermore, DFT calculations substantiated the enhanced adsorption of HCHO and O3 on oxygen vacancies, while in–situ DRIFTS measurements elucidated the degradation pathway of HCHO during catalytic ozonation through detected intermediates. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

Back to TopTop