Hair-Template Confinement Assembly of Nanomaterials Enables a Robust Single-Hair Surface-Enhanced Raman Spectrocopy Platform for Trace Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Noble Metal Nanomaterials
- Preparation of gold nanoparticle seeds: 103 μL of 1% HAuCl4 solution was mixed with 0.1 M CTAB under magnetic stirring at 29 °C until homogeneous. Then, 60 μL of freshly prepared 10 mM NaBH4 solution was rapidly added. Stirring was stopped after 2 min, and the solution was allowed to stand.
- Growth process: 206 μL of 1 w% HAuCl4 was mixed with 10 mL of 0.1 M CTAB, followed by sequential addition of 125 μL of 0.008 M AgNO3, 100 μL of 2 M HNO3, and 60 μL of 0.1 M AA at 29 °C. Finally, 12 μL of the seed solution from step (1) was added.
- Synthesis of CTAB-stabilized gold nanorods (CTAB-AuNR): The solution from step (2) was mixed thoroughly and left undisturbed in a 28 °C water bath for 12 h to obtain a gold nanorod colloid.
2.2. Instruments and Operation
2.3. Construction of the Visualized Single D-SERS Detection Platform
3. Results and Discussion
3.1. Morphology and Optical Properties of Nanomaterials on Single Hair Surface
3.1.1. UV-Vis Spectral Analysis and SEM Characterization
3.1.2. Mechanistic Investigation of the Confined Assembly of CTAB-AuNR on Single Hair Surface
3.2. Mechanistic Analysis of Active Entry of Target Molecules into Nanoparticle Gaps
3.3. SERS Performance Characterization of the Single D-SERS Detection Platform
3.4. Application of Nanomaterials on Single Hair Surface for Real Sample Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NaBH4 | Sodium borohydride |
NaOH | Sodium hydroxide |
AgNO3 | Silver nitrate |
HNO3 | Nitric acid |
PVP | Polyvinylpyrrolidone |
H2O2 | Hydrogen peroxide |
AA | Ascorbic acid |
PPD | p-Phenylenediamine |
SERS | Surface-enhanced raman spectroscopy |
D-SERS | Dynamic-SERS |
LSPR | Localized surface plasmon resonance |
UV-Vis | Ultraviolet-visible |
SEM | Scanning electron microscopy |
RSD | relative standard deviation |
References
- Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman Spectra of Pyridine Adsorbed at a Silver Electrode. Chem. Phys. Lett. 1974, 26, 163–166. [Google Scholar] [CrossRef]
- Huang, Z.; Peng, J.; Xu, L.; Liu, P. Development and Application of Surface-Enhanced Raman Scattering (SERS). Nanomaterials 2024, 14, 1417. [Google Scholar] [CrossRef]
- Ding, S.-Y.; Yi, J.; Li, J.-F.; Ren, B.; Wu, D.-Y.; Panneerselvam, R.; Tian, Z.-Q. Nanostructure-Based Plasmon-Enhanced Raman Spectroscopy for Surface Analysis of Materials. Nat. Rev. Mater. 2016, 1, 16021. [Google Scholar] [CrossRef]
- Zhuang, J.; Zhao, Z.; Lian, K.; Yin, L.; Wang, J.; Man, S.; Liu, G.; Ma, L. SERS-Based CRISPR/Cas Assay on Microfluidic Paper Analytical Devices for Supersensitive Detection of Pathogenic Bacteria in Foods. Biosens. Bioelectron. 2022, 207, 114167. [Google Scholar] [CrossRef]
- Zhao, Q.; Hilal, H.; Kim, J.; Park, W.; Haddadnezhad, M.; Lee, J.; Park, W.; Lee, J.-W.; Lee, S.; Jung, I.; et al. All-Hot-Spot Bulk Surface-Enhanced Raman Scattering (SERS) Substrates: Attomolar Detection of Adsorbates with Designer Plasmonic Nanoparticles. J. Am. Chem. Soc. 2022, 144, 13285–13293. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.; Ji, C.; Tan, J.; Du, B.; Zhao, X.; Yu, J.; Man, B.; Xu, K.; Zhang, C.; Li, Z. Ferroelectrically Modulate the Fermi Level of Graphene Oxide to Enhance SERS Response. Opto-Electron. Adv. 2023, 6, 230094. [Google Scholar] [CrossRef]
- Kim, W.H.; Lee, J.U.; Jeon, M.J.; Park, K.H.; Sim, S.J. Three-Dimensional Hierarchical Plasmonic Nano-Architecture Based Label-Free Surface-Enhanced Raman Spectroscopy Detection of Urinary Exosomal miRNA for Clinical Diagnosis of Prostate Cancer. Biosens. Bioelectron. 2022, 205, 114116. [Google Scholar] [CrossRef]
- Fu, J.; Zhang, H.; Xiang, Z.; Wu, L.; Jin, S. Biologically Inspired Superwetting Surface Enhanced Raman Scattering (SERS) Substrates. ACS Appl. Nano Mater. 2024, 7, 23337–23367. [Google Scholar] [CrossRef]
- Milliken, S.; Fraser, J.; Poirier, S.; Hulse, J.; Tay, L.-L. Self-Assembled Vertically Aligned Au Nanorod Arrays for Surface-Enhanced Raman Scattering (SERS) Detection of Cannabinol. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 196, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Ellis, M.G.; Pant, U.; Lou-Franco, J.; Logan, N.; Cao, C. Directed Assembly of Au Nanostar@Ag Satellite Nanostructures for SERS-Based Sensing of Hg2+ Ions. ACS Appl. Nano Mater. 2023, 6, 10431–10440. [Google Scholar] [CrossRef]
- Xu, L.; Lu, Z.-M.; Zhang, X.-J.; Chai, L.-J.; Wang, S.-T.; Zhang, S.-Y.; Shen, C.-H.; Li, B.; Shi, J.-S.; Xu, Z.-H. Metabolic Activity Profiling of High-Temperature Daqu Microbiota Using Single-Cell Raman Spectroscopy and Deuterium Isotope Probing. Anal. Chem. 2025, 97, 18199–18207. [Google Scholar] [CrossRef]
- Zheng, Z.; Shi, M.; Xu, Y.; Liu, S.; Zhong, H.; Shou, Q.; Huang, J.; Luan, T.; Li, Z.; Xing, X. Light-Induced Dynamic Assembly of Gold Nanoparticles in a Lab-on-Fiber Platform for Surface-Enhanced Raman Scattering Detection. ACS Appl. Nano Mater. 2022, 5, 8005–8011. [Google Scholar] [CrossRef]
- González-Gómez, X.; Cambeiro-Pérez, N.; Martínez-Carballo, E.; Simal-Gándara, J. Screening of Organic Pollutants in Pet Hair Samples and the Significance of Environmental Factors. Sci. Total Environ. 2018, 625, 311–319. [Google Scholar] [CrossRef]
- Le, N.D.B.; Hou, S.; Tonga, G.Y.; Jerri, H.A.; Elci, S.G.; Mizuhara, T.; Normand, V.; Benczédi, D.; Vachet, R.W.; Rotello, V.M. Nanoparticle Probes for Quantifying Supramolecular Determinants of Biosurface Affinity. Part. Part. Syst. Charact. 2017, 34, 1700100. [Google Scholar] [CrossRef]
- Labarre, L.; Squillace, O.; Liu, Y.; Fryer, P.J.; Kaur, P.; Whitaker, S.; Marsh, J.M.; Zhang, Z.J. Hair Surface Interactions against Different Chemical Functional Groups as a Function of Environment and Hair Condition. Int. J. Cosmet. Sci. 2023, 45, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhou, L.; Ding, Y.; Liu, C.; Mao, Z.; Jiang, Q.; Chen, J.; Chen, F.; Cao, Y. Fabrication of Flexible Electrospinning Nano-Fiber Membrane for Detection of Respiratory Tract Transmission Virus Based on SERS. Talanta 2024, 266, 125127. [Google Scholar] [CrossRef]
- Esparza, I.; Wang, R.; Kurouski, D. Surface-Enhanced Raman Analysis of Underlaying Colorants on Redyed Hair. Anal. Chem. 2019, 91, 7313–7318. [Google Scholar] [CrossRef] [PubMed]
- Eastman, R.R.; Jursa, T.P.; Benedetti, C.; Lucchini, R.G.; Smith, D.R. Hair as a Biomarker of Environmental Manganese Exposure. Environ. Sci. Technol. 2013, 47, 130117145235002. [Google Scholar] [CrossRef]
- Hsu, Y.-T.; Chen, C.-H.; Hsu, J.-Y.; Chen, H.-W.; Liu, K.-K. Femtosecond Laser-Induced Au Nanostructure-Decorated with Plasmonic Nanomaterials for Sensitive SERS-Based Detection of Fentanyl. Talanta 2025, 284, 127264. [Google Scholar] [CrossRef] [PubMed]
- Kamata, T.; Shima, N.; Sasaki, K.; Matsuta, S.; Takei, S.; Katagi, M.; Miki, A.; Zaitsu, K.; Nakanishi, T.; Sato, T.; et al. Time-Course Mass Spectrometry Imaging for Depicting Drug Incorporation into Hair. Anal. Chem. 2015, 87, 5476–5481. [Google Scholar] [CrossRef] [PubMed]
- Panchal, A.; Fakhrullina, G.; Fakhrullin, R.; Lvov, Y. Self-Assembly of Clay Nanotubes on Hair Surface for Medical and Cosmetic Formulations. Nanoscale 2018, 10, 18205–18216. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Shang, J.; Liu, C.; Zhao, S.; Huang, C.; Bai, Y.; Li, Y. A Universal Replica Molding Strategy Based on Natural Bio-Templates for Fabrication of Robust Superhydrophobic Surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2023, 660, 130879. [Google Scholar] [CrossRef]
- Nikoobakht, B.; El-Sayed, M.A. Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chem. Mater. 2003, 15, 1957–1962. [Google Scholar] [CrossRef]
- Cao, X.; Qin, M.; Li, P.; Zhou, B.; Tang, X.; Ge, M.; Yang, L.; Liu, J. Probing Catecholamine Neurotransmitters Based on Iron-Coordination Surface-Enhanced Resonance Raman Spectroscopy Label. Sens. Actuators B Chem. 2018, 268, 350–358. [Google Scholar] [CrossRef]
- Mitarai, N.; Nori, F. Wet Granular Materials. Adv. Phys. 2006, 55, 1–45. [Google Scholar] [CrossRef]
- Qin, M.; Ge, M.; Li, P.; Chen, S.; Huang, G.; Tong, X.; Han, W.; Ren, D.; He, Y.; Lin, D.; et al. Natural <3 Nm Interbedded Gaps to Trap Target Molecules and Provide an Enhanced Raman Spectroscopy Method. Adv. Opt. Mater. 2022, 10, 2200551. [Google Scholar] [CrossRef]
- Scatena, L.F.; Brown, M.G.; Richmond, G.L. Water at Hydrophobic Surfaces: Weak Hydrogen Bonding and Strong Orientation Effects. Science 2001, 292, 908–912. [Google Scholar] [CrossRef]
- Yu, Q.; Kong, X.; Chen, C.; Kang, C.; Meng, M.; Huang, S. Synthesis of Ag NPs Layer and Its Application as SERS Substrate in the Determination of P-Phenylenediamine. J. Solid State Electrochem. 2021, 25, 683–688. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, M.; Chen, S.; Xie, T.; Ma, M.; Wang, C. Hair-Template Confinement Assembly of Nanomaterials Enables a Robust Single-Hair Surface-Enhanced Raman Spectrocopy Platform for Trace Analysis. Nanomaterials 2025, 15, 1557. https://doi.org/10.3390/nano15201557
Qin M, Chen S, Xie T, Ma M, Wang C. Hair-Template Confinement Assembly of Nanomaterials Enables a Robust Single-Hair Surface-Enhanced Raman Spectrocopy Platform for Trace Analysis. Nanomaterials. 2025; 15(20):1557. https://doi.org/10.3390/nano15201557
Chicago/Turabian StyleQin, Miao, Siyu Chen, Tao Xie, Mingwen Ma, and Cong Wang. 2025. "Hair-Template Confinement Assembly of Nanomaterials Enables a Robust Single-Hair Surface-Enhanced Raman Spectrocopy Platform for Trace Analysis" Nanomaterials 15, no. 20: 1557. https://doi.org/10.3390/nano15201557
APA StyleQin, M., Chen, S., Xie, T., Ma, M., & Wang, C. (2025). Hair-Template Confinement Assembly of Nanomaterials Enables a Robust Single-Hair Surface-Enhanced Raman Spectrocopy Platform for Trace Analysis. Nanomaterials, 15(20), 1557. https://doi.org/10.3390/nano15201557