Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (309)

Search Parameters:
Keywords = impact of liquid metal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 529 KB  
Proceeding Paper
Emerging Catalysts and Techniques in Microalgae-Based Biodiesel Production
by Partha Protim Borthakur and Pranjal Sarmah
Chem. Proc. 2025, 17(1), 9; https://doi.org/10.3390/chemproc2025017009 - 13 Aug 2025
Viewed by 330
Abstract
The production of biodiesel from microalgae presents a sustainable and renewable solution to the growing global energy demands, with catalysts playing a critical role in optimizing the transesterification process. This study examines the emerging catalysts and innovative techniques utilized in converting microalgal lipids [...] Read more.
The production of biodiesel from microalgae presents a sustainable and renewable solution to the growing global energy demands, with catalysts playing a critical role in optimizing the transesterification process. This study examines the emerging catalysts and innovative techniques utilized in converting microalgal lipids into fatty acid methyl esters, emphasizing their impact on reaction efficiency, yield, and environmental sustainability. Sulfuric acid demonstrates excellent performance in in situ transesterification, while NaOH/zeolite achieves high biodiesel yields using ultrasound- and microwave-assisted methods. Metal oxides such as CuO, NiO, and MgO supported on zeolite, as well as ZnAl-layered double hydroxides (LDHs), further enhance reaction performance through their high activity and stability. Enzymatic catalysts, particularly immobilized lipases, provide a more environmentally friendly option, offering high yields (>90%) and the ability to operate under mild conditions. However, their high cost and limited reusability pose significant challenges. Ionic liquid catalysts, such as tetrabutylphosphonium carboxylate, streamline the process by eliminating the need for drying and lipid extraction, achieving yields as high as 98% from wet biomass. The key novelty of this work lies in its detailed focus on the use of ionic liquids and nanocatalysts in microalgae-based biodiesel production, which are often underrepresented in previous reviews that primarily discuss homogeneous and heterogeneous catalysts. Full article
Show Figures

Figure 1

20 pages, 2073 KB  
Article
Tomato Seed Inoculation with Bacillus subtilis Biofilm Mitigates Toxic Effects of Excessive Copper in the Substrate
by Gabriela Cristina Sarti, Antonio Paz-González, Josefina Ana Eva Cristóbal-Míguez, Gonzalo Arnedillo, Ana Rosa García and Mirta Esther Galelli
Processes 2025, 13(8), 2509; https://doi.org/10.3390/pr13082509 - 8 Aug 2025
Viewed by 395
Abstract
Accumulation of copper (Cu) in soils devoted to intensive agriculture due to anthropogenic additions is becoming a significant threat to plant productivity. Biological inoculants may play an important role in alleviating toxic effects of heavy metals on plants. The plant-growth-promoting rhizobacteria (PGPR) Bacillus [...] Read more.
Accumulation of copper (Cu) in soils devoted to intensive agriculture due to anthropogenic additions is becoming a significant threat to plant productivity. Biological inoculants may play an important role in alleviating toxic effects of heavy metals on plants. The plant-growth-promoting rhizobacteria (PGPR) Bacillus subtilis subsp. spizizenii has demonstrated the ability to reduce harmful impacts of heavy metals on crops. This study aimed to evaluate the suitability of seed inoculation with biofilm produced by this bacterium to mitigate the severity of Cu toxicity on tomato. In the laboratory, first, B. subtilis was cultivated under increased Cu concentrations. Then, germination of inoculated and non-inoculated tomato seeds was tested for Cu concentrations of 0, 50, 100, 150, and 200 ppm. Next, a greenhouse experiment was conducted for four months to assess the effects of both inoculation and excess 150 ppm Cu in the substrate. The studied treatments included control, no inoculation and Cu surplus, inoculation and no Cu surplus, and inoculation plus Cu surplus. In the laboratory, first, the bacterium’s ability to grow in a liquid medium containing Cu was confirmed. Thereafter, we verified that the germination of non-inoculated seeds was negatively affected by Cu, with higher concentrations leading to a more detrimental effect. However, seed inoculation with biofilm mitigated the adverse impact of Cu on germination. Under greenhouse conditions, excess Cu significantly reduced root dry weight, tomato number, and tomato yield compared with the control, whereas shoot dry weight, plant height, leaf area, and soluble solid concentration (Brix index) did not experience significant changes (p < 0.05). However, seed inoculation mitigated the toxic effects of excess Cu, significantly enhancing all the aforementioned plant parameters, except plant height. Seed inoculation also significantly reduced the Cu contents in the fruits of tomato plants growing in the metal contaminated substrate. The biofilm of the B. subtilis strain used demonstrated its effectiveness as a bioinoculant, attenuating the detrimental effects induced by a substrate with excess Cu. Full article
(This article belongs to the Special Issue Processes in 2025)
Show Figures

Figure 1

15 pages, 1591 KB  
Article
Role of Cation Nature in FAU Zeolite in Both Liquid-Phase and Gas-Phase Adsorption
by Baylar Zarbaliyev, Nizami Israfilov, Shabnam Feyziyeva, Gaëtan Lutzweiler, Narmina Guliyeva and Benoît Louis
Catalysts 2025, 15(8), 734; https://doi.org/10.3390/catal15080734 - 1 Aug 2025
Viewed by 858
Abstract
This study focuses on the exchange of mono- and divalent metal cations in FAU-type zeolite and their behavior in gas-phase CO2 adsorption measurements and liquid-phase methylene blue (MB) adsorption in the absence of oxidizing agents under dark conditions. Firstly, zeolites exchanged with [...] Read more.
This study focuses on the exchange of mono- and divalent metal cations in FAU-type zeolite and their behavior in gas-phase CO2 adsorption measurements and liquid-phase methylene blue (MB) adsorption in the absence of oxidizing agents under dark conditions. Firstly, zeolites exchanged with different cations were characterized by several techniques, such as XRD, SEM, XRF, XPS, and N2 adsorption–desorption, to reveal the impact of the cations on the zeolite texture and structure. The adsorption studies revealed a positive effect of cation exchange on the adsorption capacity of the zeolite, particularly for silver-loaded FAU zeolite. In liquid-phase experiments, Ag-Y zeolite also demonstrated the highest MB removal, with a value of 79 mg/g. Kinetic studies highlighted that Ag-Y could reach the MB adsorption equilibrium within 1 h, with its highest rate of adsorption occurring during the first 5 min. In gas-phase adsorption studies, the highest CO2 adsorption capacity was also achieved over Ag-Y, yielding 10.4 µmol/m2 of CO2 captured. Full article
Show Figures

Graphical abstract

15 pages, 6090 KB  
Article
Vacuum Brazing of 6061 Aluminum Using Al-Si-Ge Filler Metals with Different Si Contents
by Sen Huang, Jiguo Shan, Jian Qin, Yuanxun Shen, Chao Jiang and Peiyao Jing
Metals 2025, 15(8), 857; https://doi.org/10.3390/met15080857 - 31 Jul 2025
Viewed by 343
Abstract
Al-xSi-35Ge (x = 4, 6, 8, 10, 12, wt.%) filler metals were prepared to vacuum braze 6061 aluminum alloy. The wettability of filler metals was studied. A thermodynamics model of the Al-Si-Ge ternary alloy was established to analyze the mechanism and impact of [...] Read more.
Al-xSi-35Ge (x = 4, 6, 8, 10, 12, wt.%) filler metals were prepared to vacuum braze 6061 aluminum alloy. The wettability of filler metals was studied. A thermodynamics model of the Al-Si-Ge ternary alloy was established to analyze the mechanism and impact of Si in the microstructure of the brazed joint. The findings indicated that Si addition had a slight effect on the melting point of Al-xSi-35Ge filler metals. Great molten temperature region of fillers was responsible for the loss of Ge during the wetting process, making residual filler metal difficult to melt. The microstructure of the joint was characterized by a multilayer structure that was primarily composed of three zones: two transition regions (Zone I) and a filler residual region (Zone II). There was liquidation of filler metal for Al-Si-35Ge filler metals during brazing, resulting in holes and cracks in joints. Increasing the Si content in fillers could alleviate the liquidation of filler metal, owing to diminishing difference of chemical potential of Ge (μGe) in fillers and 6061 substrates, hindering the diffusion of Ge from filler metal to substrates. Full article
Show Figures

Figure 1

20 pages, 4487 KB  
Article
Investigation on Corrosion-Induced Wall-Thinning Mechanisms in High-Pressure Steam Pipelines Based on Gas–Liquid Two-Phase Flow Characteristics
by Guangyin Li, Wei He, Pengyu Zhang, Hu Wang and Zhengxin Wei
Processes 2025, 13(7), 2096; https://doi.org/10.3390/pr13072096 - 2 Jul 2025
Viewed by 368
Abstract
In high-pressure thermal power systems, corrosion-induced wall thinning in steam pipelines poses a significant threat to operational safety and efficiency. This study investigates the effects of gas–liquid two-phase flow on corrosion-induced wall thinning in pipe bends of high-pressure heaters in power plants, with [...] Read more.
In high-pressure thermal power systems, corrosion-induced wall thinning in steam pipelines poses a significant threat to operational safety and efficiency. This study investigates the effects of gas–liquid two-phase flow on corrosion-induced wall thinning in pipe bends of high-pressure heaters in power plants, with particular emphasis on the mechanisms of void fraction and inner wall surface roughness. Research reveals that an increased void fraction significantly enhances flow turbulence and centrifugal effects, resulting in elevated pressure and Discrete Phase Model (DPM) concentration at the bend, thereby intensifying erosion phenomena. Simultaneously, the turbulence generated by bubble collapse at the bend promotes the accumulation and detachment of corrosion products, maintaining a cyclic process of erosion and corrosion that accelerates wall thinning. Furthermore, the increased surface roughness of the inner bend wall exacerbates the corrosion process. The rough surface alters local flow characteristics, leading to changes in pressure distribution and DPM concentration accumulation points, subsequently accelerating corrosion progression. Energy-Dispersive Spectroscopy (EDS) and Scanning Electron Microscopy (SEM) analyses reveal changes in the chemical composition and microstructural characteristics of corrosion products. The results indicate that the porous structure of oxide films fails to effectively protect against corrosive media, while bubble impact forces damage the oxide films, exposing fresh metal surfaces and further accelerating the corrosion process. Comprehensive analysis demonstrates that the interaction between void fraction and surface roughness significantly intensifies wall thinning, particularly under conditions of high void fraction and high roughness, where pressure and DPM concentration at the bend may reach extreme values, further increasing corrosion risk. Therefore, optimization of void fraction and surface roughness, along with the application of corrosion-resistant materials and surface treatment technologies, should be considered in pipeline design and operation to mitigate corrosion risks. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

14 pages, 1211 KB  
Article
Impact of Heavy Metals on the Antioxidant Activity of Vitamin D: A Metabolic Perspective
by Ji Seo Park, Mi-Ri Gwon, Jae Hwa Lee, Jin Ju Park, Hae Won Lee, Duk-Hee Lee, Sook Jin Seong and Young-Ran Yoon
Metabolites 2025, 15(7), 440; https://doi.org/10.3390/metabo15070440 - 1 Jul 2025
Viewed by 630
Abstract
Background/Objectives: Vitamin D (VD) is metabolized in the body and plays a crucial role in regulating the antioxidant system. While exposure to heavy metals (HMs) inhibits VD activity, HMs can also be absorbed following VD stimulation. Despite differing views on the interaction [...] Read more.
Background/Objectives: Vitamin D (VD) is metabolized in the body and plays a crucial role in regulating the antioxidant system. While exposure to heavy metals (HMs) inhibits VD activity, HMs can also be absorbed following VD stimulation. Despite differing views on the interaction between HM and VD activity, the effects of HM exposure on VD-related pathways have not been examined using metabolomics. This study aimed to investigate the impact of HM exposure on VD-related antioxidant activity under VD deficiency conditions using untargeted metabolic profiling. Methods: In this retrospective cohort study, 46 plasma samples were analyzed using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS). Metabolic profiling was performed on two groups: individuals with severe VD deficiency and low HM exposure (SVDD–LHM) and those with VD deficiency and high HM exposure (VDD–HHM). Results: As a compensatory response to oxidative stress induced by HMs, VD-related antioxidant pathways may be associated with elevated levels of antioxidants, including bilirubin, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). In-creases in EPA and DHA were also linked to alterations in lipid metabolism, including diacylglycerol and phosphatidylcholine levels. DHA showed an area under the curve (AUC) of 0.850 (95% CI: 0.651–0.990), suggesting that DHA could serve as a potential biomarker for VD activity in response to HM exposure. Conclusions: The identified metabolites and metabolic pathways suggest that HM exposure may stimulate VD-related antioxidant activity, even under VD-deficient conditions. Full article
(This article belongs to the Section Environmental Metabolomics)
Show Figures

Figure 1

15 pages, 966 KB  
Article
Isolation of a Novel Bioactive Fraction from Saffron (Crocus sativus L.) Leaf Waste: Optimized Extraction and Evaluation of Its Promising Antiproliferative and Chemoprotective Effects as a Plant-Based Antitumor Agent
by Raúl Sánchez-Vioque, Julio Girón-Calle, Manuel Alaiz, Javier Vioque-Peña, Adela Mena-Morales, Esteban García-Romero, Lourdes Marchante-Cuevas and Gonzalo Ortiz de Elguea-Culebras
Appl. Sci. 2025, 15(13), 7376; https://doi.org/10.3390/app15137376 - 30 Jun 2025
Viewed by 407
Abstract
Saffron spice is obtained from the flower’s stigmas through a labor-intensive process. However, other organs (particularly the leaves and tepals) are often regarded as waste. To investigate the health benefits of saffron leaf by-products, an optimized methodology was developed to obtain a phenol-enriched [...] Read more.
Saffron spice is obtained from the flower’s stigmas through a labor-intensive process. However, other organs (particularly the leaves and tepals) are often regarded as waste. To investigate the health benefits of saffron leaf by-products, an optimized methodology was developed to obtain a phenol-enriched fraction. The main components of this fraction were identified by HPLC-DAD/ESI-MS and the antiproliferative and metal-chelating effects on colon cancer cells (Caco-2) and Fe2+ and Cu2+ ions, respectively, were evaluated. The process involved the extraction of saffron leaves with a 70% hydroalcoholic solution, followed by purification using liquid chromatography. Chemical characterization revealed the presence of several phenolic compounds, including flavonoids (kaempferol, luteolin and quercetin glycosides) as major constituents; whereas, in vitro assays revealed a strong dose-dependent inhibition of cell proliferation. Likewise, the sample exhibited significant iron- and copper-chelating activity, suggesting its potential as a natural chelator to help mitigate the carcinogenic effects of metal accumulation in humans. In summary, this study underscores the potential of the saffron leaf fraction as a promising natural and complementary chemoprotective agent in colorectal cancer. Additionally, these results underscore the value of agricultural by-products, supporting a circular bioeconomy by reducing environmental impact and promoting the sustainable use of natural resources. Full article
Show Figures

Figure 1

21 pages, 3028 KB  
Article
Revolutionizing Hydrogen Production: Unveiling the Role of Liquid Metals in Methane Pyrolysis over Iron Catalysts Supported on Titanium Dioxide and Alumina
by Hamid Ahmed, Amal BaQais, Fekri Abdulraqeb Ahmed Ali, Ahmed I. Osman, Anis H. Fakeeha, Ahmed E. Abasaeed, Ahmed A. Ibrahim, Syed Farooq Adil, Tahani Saad Algarni and Ahmed S. Al-Fatesh
Catalysts 2025, 15(7), 631; https://doi.org/10.3390/catal15070631 - 27 Jun 2025
Viewed by 588
Abstract
Catalytic methane decomposition offers an attractive and sustainable pathway for producing COx-free hydrogen and valuable carbon nanotubes. This work investigates the innovative use of liquid metals, particularly gallium and indium, as promoters for iron catalysts based on a titanium dioxide and [...] Read more.
Catalytic methane decomposition offers an attractive and sustainable pathway for producing COx-free hydrogen and valuable carbon nanotubes. This work investigates the innovative use of liquid metals, particularly gallium and indium, as promoters for iron catalysts based on a titanium dioxide and alumina composite to improve this process even more. In a fixed-bed reactor operating at 800 °C and atmospheric pressure, all catalyst activities for methane decomposition were thoroughly assessed while keeping the gas hourly space velocity at 6 L/g h. Surface area and porosity, H2-temperature programmed reduction/oxidation, X-ray diffraction, Raman spectroscopy, scanning transmission electron microscopy, and thermogravimetry analysis were utilized to investigate the physicochemical properties of the catalyst. The result showed that iron supported on a titanium-alumina catalyst exhibited higher activity, stability, and reproducibility with a methane conversion of 90% and hydrogen production of 81% after three cycles, with 240 min for each cycle and stability for 480 min. In contrast, the liquid metal-promoted catalysts improved the metal-support interaction and textural properties, such as surface area, pore volume, and particle dispersion of the catalysts. Still, the catalytic efficiency significantly improved. However, the gallium-promoted catalyst displayed excellent reusability. The characterization of the spent catalyst proved that both the iron supported on a titanium-alumina and its gallium-promoted derivative produced graphitic carbon; on the contrary, the indium-promoted catalyst produced amorphous carbon. These results demonstrate how liquid metal promoters can be used to adjust the characteristics of catalysts, providing opportunities for improved reusability and regulated production of carbon byproducts during methane decomposition. Full article
Show Figures

Figure 1

12 pages, 2346 KB  
Article
Impact of Cetyl-Containing Ionic Liquids on Metal Halide Perovskite Structure and Photoluminescence
by Maegyn A. Grubbs, Roberto Gonzalez-Rodriguez, Sergei V. Dzyuba, Benjamin G. Janesko and Jeffery L. Coffer
Nanomaterials 2025, 15(13), 964; https://doi.org/10.3390/nano15130964 - 21 Jun 2025
Viewed by 619
Abstract
Ionic liquids (ILs) can ideally reduce defects and improve the film stability of emissive metal halide perovskite films. In this work, we measure how the structure and emission of methylammonium lead tribromide (MAPbBr3) perovskite films is modulated by long alkyl chain-containing [...] Read more.
Ionic liquids (ILs) can ideally reduce defects and improve the film stability of emissive metal halide perovskite films. In this work, we measure how the structure and emission of methylammonium lead tribromide (MAPbBr3) perovskite films is modulated by long alkyl chain-containing pyridinium, imidazolium, or pyrrolidinium ILs. Two different film deposition methods are compared, with the resultant films characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) spectroscopy. For the latter, the differences in PL intensity of the perovskite are quantified using photoluminescence quantum efficiency (PLQE) measurements. It is found that a spin coating method in conjunction with the use of an imidazolium-containing IL (for a given precursor concentration) produces the strongest emissive perovskite. This optimal enhancement is attributed to a function of accessible surface charges associated with the heterocyclic cation of a given IL and perovskite defect passivation by bromide, the latter elucidated with the help of density functional theory. Proof-of-concept device fabrication is demonstrated for the case of a light emitting diode (LED) with the IL present in the emissive perovskite layer. Full article
(This article belongs to the Special Issue Optoelectronic Functional Nanomaterials and Devices)
Show Figures

Graphical abstract

19 pages, 801 KB  
Review
Microplastics, Antibiotics, and Heavy Metals in Anaerobic Digestion Systems: A Critical Review of Sources, Impacts, and Mitigation Strategies
by Hongbo Liu, Xiang Yuan, Yuxuan Yao, Lijin Yao, Junbo Zhang and Claudia Maurer
Recycling 2025, 10(3), 116; https://doi.org/10.3390/recycling10030116 - 12 Jun 2025
Viewed by 2367
Abstract
The widespread implementation of anaerobic digestion (AD) systems for organic waste treatment is increasingly challenged by emerging contaminants, including microplastics (MPs), antibiotics, and heavy metals (HMs), which exhibit environmental persistence and pose risks to ecological and human health. This review critically examines the [...] Read more.
The widespread implementation of anaerobic digestion (AD) systems for organic waste treatment is increasingly challenged by emerging contaminants, including microplastics (MPs), antibiotics, and heavy metals (HMs), which exhibit environmental persistence and pose risks to ecological and human health. This review critically examines the sources, transformation pathways, and advanced mitigation strategies for these contaminants within AD systems. MPs, primarily derived from fragmented plastics and personal care products, accumulate in digestates and act as vectors for adsorbing toxic additives and pathogens. Antibiotics, introduced via livestock manure and wastewater, exert selective pressures that propagate antibiotic resistance genes (ARGs) while disrupting methanogenic consortia. HMs, originating from industrial and agricultural activities, impair microbial activity through bioaccumulation and enzymatic interference, with their bioavailability modulated by speciation shifts during digestion. To combat these challenges, promising mitigation approaches include the following: (1) bioaugmentation with specialized microbial consortia to enhance contaminant degradation and stabilize HMs; (2) thermal hydrolysis pretreatment to break down MPs and antibiotic residues; (3) chemical passivation using biochar or sulfides to immobilize HMs. Co-digestion practices inadvertently concentrate these contaminants, with MPs and HMs predominantly partitioning into solid phases, while antibiotics persist in both liquid and solid fractions. These findings highlight the urgency of optimizing mitigation strategies to minimize contaminant mobility and toxicity. However, critical knowledge gaps persist regarding the long-term impacts of biodegradable MPs, antibiotic transformation byproducts, and standardized regulatory thresholds for contaminant residues in digestate. This synthesis underscores the necessity for integrated engineering solutions and policy frameworks to ensure the safe resource recovery from AD systems, balancing energy production with environmental sustainability. Full article
Show Figures

Figure 1

12 pages, 7645 KB  
Article
Searching Optimum Self-Brazing Powder Mixtures Intended for Use in Powder Metallurgy Diamond Tools—A Statistical Approach
by Andrzej Romański, Piotr Matusiewicz and Elżbieta Cygan-Bączek
Materials 2025, 18(12), 2726; https://doi.org/10.3390/ma18122726 - 10 Jun 2025
Viewed by 420
Abstract
This paper presents a study on optimising self-brazing powder mixtures for powder metallurgy diamond tools, specifically focusing on wire saws used in cutting natural stone. The research aimed to understand the relationship between the chemical composition of powder mixtures and the hardness of [...] Read more.
This paper presents a study on optimising self-brazing powder mixtures for powder metallurgy diamond tools, specifically focusing on wire saws used in cutting natural stone. The research aimed to understand the relationship between the chemical composition of powder mixtures and the hardness of the sintered matrix. The experimental process involved the use of various commercially available powders, including carbonyl iron, carbonyl nickel, atomised bronze, atomised copper, and ferrophosphorus. The samples made of different powder mixtures were compacted and sintered and then characterised by dimensional change, density, porosity, and hardness. The obtained results were statistically analysed using an analysis of variance (ANOVA) tool to create linear regression models that relate the material properties to their chemical composition. The investigated materials exhibited excellent sintering behaviour and very low porosity, which are beneficial for diamond retention. Very good sinterability of powder mixtures can be achieved by tin bronze addition, which provides a sufficient content of the liquid phase and promotes the shrinkage during sintering. Statistical analysis revealed that hardness was primarily affected by phosphorous content, with nickel having a lesser but still significant impact. The statistical model can predict the hardness of the matrix based on its chemical composition. This model, with a determination coefficient of approximately 80%, can be valuable for developing new metal matrices for diamond-impregnated tools, particularly for wire saw beads production. Full article
Show Figures

Figure 1

23 pages, 12241 KB  
Article
Biodiesel Isomerization Using Sulfated Tin(IV) Oxide as a Superacid Catalyst to Improve Cold Flow Properties
by Yano Surya Pradana, I Gusti Bagus Ngurah Makertihartha, Tirto Prakoso, Tatang Hernas Soerawidjaja and Antonius Indarto
Technologies 2025, 13(5), 203; https://doi.org/10.3390/technologies13050203 - 16 May 2025
Cited by 1 | Viewed by 578
Abstract
The development of alternative energies has become a concern for all countries to ensure domestic energy supply and provide environmental friendliness. One of the providential alternative energies is biodiesel. Biodiesel, commonly stated as fatty acid alkyl ester (FAAE), is a liquid fuel intended [...] Read more.
The development of alternative energies has become a concern for all countries to ensure domestic energy supply and provide environmental friendliness. One of the providential alternative energies is biodiesel. Biodiesel, commonly stated as fatty acid alkyl ester (FAAE), is a liquid fuel intended to substitute petroleum diesel. Nevertheless, implementation of pure biodiesel is not recommended for conventional diesel engines. It holds poor values of cold flow properties, as the effect of high saturated FAAE content contributes to this constraint. Several processes have been proposed to enhance cold flow properties of biodiesel, but this work focuses on the skeletal isomerization process. This process rearranges the skeletal carbon chain of straight-chain FAAE into branched isomeric products to lower the melting point, related to the good cold flow behavior. This method specifically requires an acid catalyst to elevate the isomerization reaction rate. And then, sulfated tin(IV) oxide emerged as a solid superacid catalyst due to its superiority in acidity. The results of biodiesel isomerization over this catalyst and its modification with iron had not satisfied the expectation of high isomerization yield and significant CFP improvement. However, they emphasized that the skeletal isomers demonstrated minimum impact on biodiesel oxidation stability. They also affirmed the role of an acid catalyst in the reaction mechanism in terms of protonation, isomerization, and deprotonation. Furthermore, the metal promotion was theoretically necessary to boost the catalytic activity of this material. It initiated the dehydrogenation of linear hydrocarbon before protonation and terminated the isomerization by hydrogenating the branched carbon chain after deprotonation. Finally, the overall findings indicated promising prospects for further enhancement of catalyst performance and reusability. Full article
(This article belongs to the Topic Advances in Green Energy and Energy Derivatives)
Show Figures

Graphical abstract

11 pages, 842 KB  
Article
Development of an Electric Pulse Device for Coal Grinding
by Ayanbergen Khassenov, Dana Karabekova, Madina Bolatbekova, Bekbolat Nussupbekov, Perizat Kissabekova and Rakhman Orazbayev
Appl. Sci. 2025, 15(10), 5548; https://doi.org/10.3390/app15105548 - 15 May 2025
Viewed by 426
Abstract
Efficient coal grinding is a crucial aspect of the energy and mining industries. However, traditional grinding methods are known to be energy-intensive and cause significant wear on equipment as well as negative environmental impacts due to the release of small particles that can [...] Read more.
Efficient coal grinding is a crucial aspect of the energy and mining industries. However, traditional grinding methods are known to be energy-intensive and cause significant wear on equipment as well as negative environmental impacts due to the release of small particles that can harm air quality and affect human health. In response to these challenges, we are conducting research to develop an electric pulse device for coal grinding. This device will use high-voltage discharges in a liquid medium to create shock waves that selectively destroy coal particles while minimizing mechanical damage. The electric pulse installation consisted of a control unit (for monitoring the operating modes of the installation), a generator (for converting the AC input voltage into DC output voltage), a capacitor (for energy storage), a protection system (for shutting down the installation in cases when a voltage exceeding the set safe operating discharge voltage occurs on the capacitor), a spark gap (forming a gap consisting of two conductive hemispherical electrodes separated by an air gap, designed to form an electric spark between conductors), and an electric pulse grinding device. The input material for each experiment had consistent parameters: the coal particles were diameter 8–10 mm and weighed 400 g. Coal was processed using the electric pulse method with various voltage values, numbers of pulses, capacitor capacities, and pulse frequencies. The yield of the final product depended on these parameters, and effective settings for producing coal powder were identified. The research results demonstrate that a flat metal mesh plate is effective as the negative electrode in the electric pulse grinding device. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

24 pages, 14846 KB  
Article
The Development of an Optimized Impact Pad for a Six-Strand Tundish Using CFD Simulations
by Peter Demeter, Branislav Buľko, Róbert Dzurňák, Ivan Priesol, Slavomír Hubatka, Lukáš Fogaraš, Martina Hrubovčáková and Jaroslav Demeter
Appl. Sci. 2025, 15(10), 5450; https://doi.org/10.3390/app15105450 - 13 May 2025
Viewed by 441
Abstract
The behavior of molten steel within a tundish plays a crucial role in achieving uniform temperature and chemical composition, enhancing the removal efficiency of non-metallic inclusions, and reducing the wear of refractory linings. These aspects are key for ensuring the production of steel [...] Read more.
The behavior of molten steel within a tundish plays a crucial role in achieving uniform temperature and chemical composition, enhancing the removal efficiency of non-metallic inclusions, and reducing the wear of refractory linings. These aspects are key for ensuring the production of steel with superior quality. In multi-strand delta-type tundishes, such as the six-strand configuration, flow dynamics become particularly challenging. Key considerations include strand-specific residence times, the uniform distribution of steel flow, and the mitigation of refractory degradation. This paper presents a detailed numerical analysis aimed at designing an optimally shaped impact pad. The effectiveness of each proposed design was assessed through a tracer-based visualization of flow behavior and the evaluation of residence time distribution (RTD) curves. RTD curves were created in isothermal conditions, while the calculations of the temperature fields of steel in the tundish were made in non-isothermal conditions. The results of the simulations were verified by a real plant trial test and indicate that the use of the “SPHERIC-K4” impact pad can greatly enhance the flow characteristics of liquid steel during the continuous casting process. These improvements include preventing the erosion of the tundish refractory lining, improving the distribution of residence times between individual casting strands, and adjusting the proportions of the mixing zones. Full article
Show Figures

Figure 1

19 pages, 5657 KB  
Article
Optimized Hydrometallurgical Extraction of Molybdenum via Mechanoactivation and Nitric–Sulfuric Leaching
by Bagdaulet Kenzhaliyev, Almagul Ultarakova, Nina Lokhova, Arailym Mukangaliyeva and Kaisar Kassymzhanov
Processes 2025, 13(5), 1486; https://doi.org/10.3390/pr13051486 - 13 May 2025
Cited by 1 | Viewed by 725
Abstract
This study explores the intensification of molybdenite concentrate processing through a synergistic hydrometallurgical approach using sulfuric acid, nitric acid, and their combination to enhance leaching efficiency while minimizing environmental impact. Molybdenum, a strategic metal widely used in advanced engineering and catalytic systems, presents [...] Read more.
This study explores the intensification of molybdenite concentrate processing through a synergistic hydrometallurgical approach using sulfuric acid, nitric acid, and their combination to enhance leaching efficiency while minimizing environmental impact. Molybdenum, a strategic metal widely used in advanced engineering and catalytic systems, presents extraction challenges due to the refractory nature of molybdenite (MoS2). The experimental approach incorporated oxygen sparging and mechanoactivation to improve dissolution kinetics and molybdenum availability. A central composite design (CCD) of response surface methodology (RSM) was employed to develop a predictive model for optimizing the leaching parameters. Acid concentration, temperature, and leaching time were systematically varied, allowing for the identification of statistically significant factor interactions and optimal operating conditions. The model demonstrated strong predictive capability with high adjusted and predicted R2 values, validating its suitability for process optimization. Optimal leaching conditions were identified as 50 g/dm3 HNO3 + 200 g/dm3 H2SO4, a temperature of 95 °C, a leaching time of 240 min, and a solid-to-liquid ratio of 1:6, resulting in a maximum molybdenum extraction efficiency of 72.6%. This performance was attributed to enhanced oxidative decomposition and stable complexation of molybdenum species. This study provides a scalable and environmentally conscious framework for molybdenum extraction, with implications for sustainable metallurgy and industrial applications. Full article
(This article belongs to the Special Issue Process Systems Engineering for Environmental Protection)
Show Figures

Figure 1

Back to TopTop