Emerging Catalysts and Techniques in Microalgae-Based Biodiesel Production †
Abstract
1. Introduction
2. Use of Homogeneous Catalysts in Microalgae-Based Biodiesel Production
3. Use of Heterogeneous Catalysts in Microalgae-Based Biodiesel Production
4. Use of Enzymatic Catalysts in Microalgae-Based Biodiesel Production
5. Use of Ionic Liquids in Microalgae-Based Biodiesel Production
6. Use of Nanocatalysts in Microalgae-Based Biodiesel Production
7. Environmental Sustainability
8. Challenges and Future Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vijayalakshmi, S.; Anand, M.; Ranjitha, J. Microalgae-based biofuel production using low-cost nanobiocatalysts. In Microalgae Cultivation for Biofuels Production; Academic Press: Cambridge, MA, USA; Elsevier: London, UK, 2020; pp. 251–263. [Google Scholar] [CrossRef]
- Rawat, I.; Ranjith Kumar, R.; Mutanda, T.; Bux, F. Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Appl. Energy 2013, 103, 444–467. [Google Scholar] [CrossRef]
- Rahul, S.M.; Sundaramahalingam, M.A.; Shivamthi, C.S.; Shyam Kumar, R.; Varalakshmi, P.; Karthikumar, S.; Kanimozhi, J.; Vinoth Kumar, R.; Sabarathinam, S.; Ganesh Moorthy, I.; et al. Insights about sustainable biodiesel production from microalgae biomass: A review. Int. J. Energy Res. 2021, 45, 17028–17056. [Google Scholar] [CrossRef]
- Kim, K.; Yoo, J.; Lee, W.G. Recent advances in photobioreactor systems for sustainable and enhanced microalgal biofuel production. Sustain. Energy Fuels 2022, 6, 5459–5473. [Google Scholar] [CrossRef]
- Zhu, L.D.; Hiltunen, E.; Antila, E.; Zhong, J.J.; Yuan, Z.H.; Wang, Z.M. Microalgal biofuels: Flexible bioenergies for sustainable development. Renew. Sustain. Energy Rev. 2014, 30, 1035–1046. [Google Scholar] [CrossRef]
- Singh, B.; Liu, Y.; Sharma, Y.C. Synthesis of biodiesel/bio-oil from microalgae. In Biotechnological Applications of Microalgae: Biodiesel and Value-Added Products; CRC Press: Boca Raton, FL, USA, 2013; pp. 99–112. [Google Scholar] [CrossRef]
- Goh, B.H.H.; Ong, H.C.; Cheah, M.Y.; Chen, W.-H.; Yu, K.L.; Mahlia, T.M.I. Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review. Renew. Sustain. Energy Rev. 2019, 107, 59–74. [Google Scholar] [CrossRef]
- Banerjee, S.; Atta, A. Lipid extraction and biodiesel production from microalgae: Recent advances. In An Integration of Phycoremediation Processes in Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–16. [Google Scholar] [CrossRef]
- Santana, A.; Jesus, S.; Larrayoz, M.A.; Filho, R.M. Supercritical carbon dioxide extraction of algal lipids for the biodiesel production. Procedia Eng. 2012, 42, 1755–1761. [Google Scholar] [CrossRef]
- Srivastava, G.; Maravi, D.K.; Singh, A. Biodiesel production from algae through catalytic transesterification. In Algal Biorefinery: Developments, Challenges and Opportunities; Routledge: London, UK; Taylor & Francis Group: Abingdon, UK, 2021; pp. 85–109. ISBN 9781003100317. [Google Scholar]
- Borthakur, P.P. Nanoparticle enhanced biodiesel blends: Recent insights and developments. Hybrid Adv. 2025, 10, 100442. [Google Scholar] [CrossRef]
- Kazemifard, S.; Nayebzadeh, H.; Saghatoleslami, N.; Safakish, E. Application of magnetic alumina-ferric oxide nanocatalyst supported by KOH for in-situ transesterification of microalgae cultivated in wastewater medium. Biomass Bioenergy 2019, 129, 105338. [Google Scholar] [CrossRef]
- Nazloo, E.K.; Moheimani, N.R.; Ennaceri, H. Graphene-based catalysts for biodiesel production: Characteristics and performance. Sci. Total Environ. 2023, 859, 160000. [Google Scholar] [CrossRef]
- Ariffin, M.I.; Abdullah, N.; Bahruji, H.; Mohd Kasim, N.A.; Abdul Halim, N.; Yun Hin, T.Y. Optimization of biodiesel production from Chlorella Vulgaris using CuO, NiO, and MgO on zeolite 4A catalysts. J. Phys. Conf. Ser. 2019, 1349, 012065. [Google Scholar] [CrossRef]
- Fu, X.; Li, D.; Chen, J.; Zhang, Y.; Huang, W.; Zhu, Y.; Yang, J.; Zhang, C. A microalgae residue based carbon solid acid catalyst for biodiesel production. Bioresour. Technol. 2013, 146, 767–770. [Google Scholar] [CrossRef]
- Makareviciene, V.; Sendzikiene, E.; Gaide, I. Application of heterogeneous catalysis to biodiesel synthesis using microalgae oil. Front. Environ. Sci. Eng. 2021, 15, 97. [Google Scholar] [CrossRef]
- Sowan, E.; Mozumder, M.S.; Taher, H.; Al-Zuhair, S. Innovative approaches to enhanced enzymatic microalgae-to-biodiesel production. ChemBioEng Rev. 2023, 10, 860–883. [Google Scholar] [CrossRef]
- Devi, T.; Baskar, G.; Pravin, R. Process optimization and kinetics of biodiesel production from microalgal oil using potassium doped biochar heterogeneous catalyst. Energy Environ. 2025, 36, 2087–2110. [Google Scholar] [CrossRef]
- Malekghasemi, S.; Kariminia, H.-R.; Plechkova, N.K.; Ward, V.C.A. Direct transesterification of wet microalgae to biodiesel using phosphonium carboxylate ionic liquid catalysts. Biomass Bioenergy 2021, 150, 106126. [Google Scholar] [CrossRef]
- Brar, P.K.; Örmeci, B.; Dhir, A. Parametric optimization of rice bran-based bi-functional catalyst in the one-pot conversion of indigenous algal biomass into biodiesel using response surface methodology. Biomass Convers. Biorefinery 2024, 14, 1481–1493. [Google Scholar] [CrossRef]
- Mansur, D.; Fitriady, M.A.; Susilaningsih, D.; Simanungkalit, S.P. Production of biodiesel from Coelastrella sp. microalgae. AIP Conf. Proc. 2017, 1904, 020068. [Google Scholar] [CrossRef]
- Pradana, Y.S.; Masruri, W.; Azmi, F.A.; Suyono, E.A.; Sudibyo, H.; Rochmadi. Extractive-transesterification of Microalgae Arthrospira sp. using methanol-hexane mixture as solvent. Int. J. Renew. Energy Res. 2018, 8, 1499–1507. [Google Scholar]
- Ferreira, G.F.; Pinto, L.F.R.; Filho, R.M.; Fregolente, L.V.; Hayward, J.; Bartley, J.K. Ethanol-based transesterification of rapeseed oil with CaO catalyst: Process optimization and validation using microalgal lipids. Catal. Lett. 2025, 155, 84. [Google Scholar] [CrossRef]
- Musavi, S.A.; Bakhshi, H.; Khoobkar, Z. Biodiesel production from Chlorella sp. microalgae using new derived calcium methoxide-microalgae based catalyst. Fuel 2025, 387, 134459. [Google Scholar] [CrossRef]
- Mittal, V.; Talapatra, K.N.; Ghosh, U.K. A comprehensive review on biodiesel production from microalgae through nanocatalytic transesterification process: Lifecycle assessment and methodologies. Int. Nano Lett. 2022, 12, 351–378. [Google Scholar] [CrossRef]
- Kam, Y.L.; Agutaya, J.K.C.N.; Quitain, A.T.; Ogasawara, Y.; Sasaki, M.; Lam, M.K.; Yusup, S.; Assabumrungrat, S.; Kida, T. In-situ transesterification of microalgae using carbon-based catalyst under pulsed microwave irradiation. Biomass Bioenergy 2023, 168, 106662. [Google Scholar] [CrossRef]
- Dianursanti, S.; Sistiafi, A.G.; Putri, D.N. Biodiesel synthesis from Nannochloropsis oculata and Chlorella vulgaris through transesterification process using NaOH/zeolite heterogeneous catalyst. IOP Conf. Ser. Earth Environ. Sci. 2018, 105, 012053. [Google Scholar] [CrossRef]
- De Jesus, S.S.; Ferreira, G.F.; Moreira, L.S.; Filho, R.M. Biodiesel production from microalgae by direct transesterification using green solvents. Renew. Energy 2020, 160, 1283–1294. [Google Scholar] [CrossRef]
- Velasquez-Orta, S.B.; Lee, J.G.M.; Harvey, A.P. Evaluation of FAME production from wet marine and freshwater microalgae by in situ transesterification. Biochem. Eng. J. 2013, 76, 83–89. [Google Scholar] [CrossRef]
- Hartono, R.; Wijanarko, A.; Hermansyah, H. Synthesis of biodiesel using local natural zeolite as heterogeneous anion exchange catalyst. IOP Conf. Ser. Mater. Sci. Eng. 2018, 345, 012002. [Google Scholar] [CrossRef]
- Dianursanti Delaamira, M.; Bismo, S.; Muharam, Y. Effect of reaction temperature on biodiesel production from Chlorella vulgaris using CuO/zeolite as heterogeneous catalyst. IOP Conf. Ser. Earth Environ. Sci. 2017, 55, 012033. [Google Scholar] [CrossRef]
- Javed, F.; Zimmerman, W.B.; Fazal, T.; Hafeez, A.; Mustafa, M.; Rashid, N.; Rehman, F. Green synthesis of biodiesel from microalgae cultivated in industrial wastewater via microbubble induced esterification using bio-MOF-based heterogeneous catalyst. Chem. Eng. Res. Des. 2023, 189, 707–720. [Google Scholar] [CrossRef]
- Neag, E.; Stupar, Z.; Maicaneanu, S.A.; Roman, C. Advances in Biodiesel Production from Microalgae. Energies 2023, 16, 1129. [Google Scholar] [CrossRef]
- Liu, H.; Liu, T.-J.; Guo, H.-W.; Wang, Y.-J.; Ji, R.; Kang, L.-L.; Wang, Y.-T.; Guo, X.; Li, J.-G.; Jiang, L.-Q.; et al. A review of the strategy to promote microalgae value in CO2 conversion-lipid enrichment-biodiesel production. J. Clean. Prod. 2024, 436, 140538. [Google Scholar] [CrossRef]
- Tsavatopoulou, V.D.; Vakros, J.; Manariotis, I.D. Lipid conversion of Scenedesmus rubescens biomass into biodiesel using biochar catalysts from malt spent rootlets. J. Chem. Technol. Biotechnol. 2020, 95, 2421–2429. [Google Scholar] [CrossRef]
- De Luna, M.D.G.; Doliente, L.M.T.; Ido, A.L.; Chung, T.-W. In situ transesterification of Chlorella sp. microalgae using LiOH-pumice catalyst. J. Environ. Chem. Eng. 2017, 5, 2830–2835. [Google Scholar] [CrossRef]
- Ma, G.; Hu, W.; Pei, H.; Jiang, L.; Song, M.; Mu, R. In situ heterogeneous transesterification of microalgae using combined ultrasound and microwave irradiation. Energy Convers. Manag. 2015, 90, 41–46. [Google Scholar] [CrossRef]
- Jeremiah, P.A.; Jalil, A.A.; Olutoye, M.A. Heterogeneous catalyst application in biodiesel production: Needs to focus on cost effective and reusable catalysts. IOP Conf. Ser. Mater. Sci. Eng. 2020, 808, 012013. [Google Scholar] [CrossRef]
- Nasya binti Ramlee, N.; Mahdi, H.I.; Wan Azelee, N.I. Biodiesel production using enzymatic catalyst. In Biofuels and Bioenergy: Opportunities and Challenges; Elsevier: Amsterdam, The Netherlands, 2022; pp. 133–169. [Google Scholar] [CrossRef]
- Marcon, N.S.; Colet, R.; Balen, D.S.; Pereira de Pereira, C.M.; Bibilio, D.; Priamo, W.; Bender, J.P.; Steffens, C.; Rosa, C.D. Enzymatic biodiesel production from microalgae biomass using propane as pressurized fluid. Can. J. Chem. Eng. 2017, 95, 1340–1344. [Google Scholar] [CrossRef]
- Tian, X.; Dai, L.; Liu, M.; Liu, D.; Du, W.; Wu, H. Lipase-catalyzed methanolysis of microalgae oil for biodiesel production and PUFAs concentration. Catal. Commun. 2016, 84, 44–47. [Google Scholar] [CrossRef]
- Hossain, S.M.Z.; Razzak, S.A.; Al-Shater, A.F.; Moniruzzaman, M.; Hossain, M.M. Recent advances in enzymatic conversion of microalgal lipids into biodiesel. Energy Fuels 2020, 34, 6735–6750. [Google Scholar] [CrossRef]
- Oliveira, J.; Costa, E.; Maia Dias, J.; Pires, J.C. Biodiesel production by biocatalysis using lipids extracted from microalgae oil of Chlorella vulgaris and Aurantiochytrium sp. Bioenergy Res. 2024, 17, 1080–1089. [Google Scholar] [CrossRef]
- Miao, C.; Li, H.; Lü, P.; Wang, Z.; Zhuang, X.; Yuan, Z. Preparation of biodiesel from microalgae by direct transesterification under ultrasonic-assisted ionic liquid composite conditions. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2017, 33, 248–254. [Google Scholar] [CrossRef]
- Ong, H.C.; Tiong, Y.W.; Goh, B.H.H.; Gan, Y.Y.; Mofijur, M.; Fattah, I.M.R.; Chong, C.T.; Alam, M.A.; Lee, H.V.; Silitonga, A.S.; et al. Recent advances in biodiesel production from agricultural products and microalgae using ionic liquids: Opportunities and challenges. Energy Convers. Manag. 2021, 228, 113647. [Google Scholar] [CrossRef]
- Han, B.Y.; Zhang, W.D.; Chen, Y.B.; Yin, F.; Liu, S.Q.; Zhao, X.L. A review on biodiesel synthesis using catalyzed transesterification base ionic liquids as catalyst. Adv. Mater. Res. 2013, 772, 303–308. [Google Scholar] [CrossRef]
- Andreani, L.; Rocha, J.D. Use of ionic liquids in biodiesel production: A review. Braz. J. Chem. Eng. 2012, 29, 1–13. [Google Scholar] [CrossRef]
- Sangeetha, B.; Baskar, G. Biodiesel production using ionic liquid-based catalysts. In Biodiesel Production: Feedstocks, Catalysts, and Technologies; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2022; pp. 249–267. [Google Scholar] [CrossRef]
- Shrikhande, S.; Deshpande, G.; Sawarkar, A.N.; Ahmad, Z.; Patle, D.S. Design and retrofitting of ultrasound intensified and ionic liquid catalyzed in situ algal biodiesel production. Chem. Eng. Res. Des. 2021, 171, 168–185. [Google Scholar] [CrossRef]
- Gautam, A.; Pandey, A.; Balinge, K.R.; Khajone, V.B.; Bhagat, P.R.; Ahmad, Z.; Kumar, S.; Patle, D.S. Optimization, kinetics and thermodynamics of ultrasound assisted and ionic liquid catalyzed in-situ biodiesel synthesis from wet microalgae. AIP Conf. Proc. 2023, 2785, 030014. [Google Scholar] [CrossRef]
- Ding, D.; Shen, Z.; Ma, T.; Sun, Y.; Shi, M.; Lu, T.; Wu, B.; Luque, R.; Sun, Y. Competition of dual roles of ionic liquids during in situ transesterification of wet algae. ACS Sustain. Chem. Eng. 2022, 10, 13692–13701. [Google Scholar] [CrossRef]
- Safakish, E.; Nayebzadeh, H.; Saghatoleslami, N.; Kazemifard, S. Comprehensive assessment of the preparation conditions of a separable magnetic nanocatalyst for biodiesel production from algae. Algal Res. 2020, 49, 101949. [Google Scholar] [CrossRef]
- Im, H.; Lee, H.; Park, M.S.; Yang, J.-W.; Lee, J.W. Concurrent extraction and reaction for the production of biodiesel from wet microalgae. Bioresour. Technol. 2014, 152, 534–537. [Google Scholar] [CrossRef]
- Karpagam, R.; Rani, K.; Ashokkumar, B.; Ganesh Moorthy, I.; Dhakshinamoorthy, A.; Varalakshmi, P. Green energy from Coelastrella sp. M-60: Bio-nanoparticles mediated whole biomass transesterification for biodiesel production. Fuel 2020, 279, 118490. [Google Scholar] [CrossRef]
- Saikia, M.; Sarmah, P.; Borthakur, P.P. A review of challenges to adoption of biodiesel as a diesel substitute in India. Renew. Energy Res. Appl. 2024, 5, 221–227. [Google Scholar]
- Borthakur, P.P.; Sarma, G.; Hazarika, H.; Bhattacharyya, S.; Hazarika, T. Microalgae Asterarcys sp.: A potential source for biodiesel production. Indian J. Nat. Sci. 2021, 12, 35547–35555. [Google Scholar]
- Kibar, M.E.; Hilal, L.; Çapa, B.T.; Bahçıvanlar, B.; Abdeljelil, B.B. Assessment of homogeneous and heterogeneous catalysts in transesterification reaction: A mini review. ChemBioEng Rev. 2023, 10, 412–422. [Google Scholar] [CrossRef]
- MacArio, A.; Giordano, G. Catalytic conversion of renewable sources for biodiesel production: A comparison between biocatalysts and inorganic catalysts. Catal. Lett. 2013, 143, 159–168. [Google Scholar] [CrossRef]
- Reza Talaghat, M.; Mokhtari, S.; Saadat, M. Modeling and optimization of biodiesel production from microalgae in a batch reactor. Fuel 2020, 280, 118578. [Google Scholar] [CrossRef]
- Zhu, L.; Huo, S.; Qin, L. A microalgae-based biodiesel refinery: Sustainability concerns and challenges. Int. J. Green Energy 2015, 12, 595–602. [Google Scholar] [CrossRef]
- Li, Y.-R.; Shue, M.-F.; Hsu, Y.-C.; Lai, W.-L.; Chen, J.-J. Application of factorial design methodology for optimization of transesterification reaction of microalgae lipids. Energy Procedia 2014, 52, 377–382. [Google Scholar] [CrossRef]
- Bello, B.Z.; Nwokoagbara, E.; Wang, M. Comparative techno-economic analysis of biodiesel production from microalgae via transesterification methods. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2012; Volume 30, pp. 132–136. [Google Scholar] [CrossRef]
- Gouda, S.P.; Dhakshinamoorthy, A.; Rokhum, S.L. Metal-organic framework as a heterogeneous catalyst for biodiesel production: A review. Chem. Eng. J. Adv. 2022, 12, 100415. [Google Scholar] [CrossRef]
- Carvalho Júnior, R.M.; Vargas, J.V.C.; Ramos, L.P.; Marino, C.E.B.; Torres, J.C.L. Microalgae biodiesel via in situ methanolysis. J. Chem. Technol. Biotechnol. 2011, 86, 1418–1427. [Google Scholar] [CrossRef]
- Ramadhani, A.P.; Prashantyo, M.H.; Soedarmodjo, T.P.; Widjaja, A. The effect UV-B mutation on biodiesel from microalgae Botryococcus braunii using esterification, transesterification and combination of esterification-transesterification. AIP Conf. Proc. 2020, 2217, 030021. [Google Scholar] [CrossRef]
- Razzak, S.A.; Khan, M.; Irfan, F.; Shah, M.A.; Nawaz, A.; Hossain, M.M. Catalytic co-pyrolysis and kinetic study of microalgae biomass with solid waste feedstock for sustainable biofuel production. J. Anal. Appl. Pyrolysis 2024, 183, 106755. [Google Scholar] [CrossRef]
- Raheem, A.; Abbasi, S.A.; Mangi, F.H.; Ahmed, S.; He, Q.; Ding, L.; Memon, A.A.; Zhao, M.; Yu, G. Gasification of algal residue for synthesis gas production. Algal Res. 2021, 58, 102411. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, X.; Yuan, X. Energy and carbon balances in microalgae biodiesel. Qinghua Daxue Xuebao/J. Tsinghua Univ. 2018, 58, 324–329. [Google Scholar] [CrossRef]
- Lardon, L.; Hélias, A.; Sialve, B.; Steyer, J.-P.; Bernard, O. Life-cycle assessment of biodiesel production from microalgae. Environ. Sci. Technol. 2009, 43, 6475–6481. [Google Scholar] [CrossRef] [PubMed]
- Saranya, G.; Ramachandra, T.V. Life cycle assessment of biodiesel from estuarine microalgae. Energy Convers. Manag. X 2020, 8, 100065. [Google Scholar] [CrossRef]
- Peccia, J.; Haznedaroglu, B.; Gutierrez, J.; Zimmerman, J.B. Nitrogen supply is an important driver of sustainable microalgae biofuel production. Trends Biotechnol. 2013, 31, 134–138. [Google Scholar] [CrossRef]
- Zhou, S.; Lin, M.; Zhang, X.; Zhan, L.; Li, R.; Wu, Y. Study of life cycle assessment: Transforming microalgae to biofuel through hydrothermal liquefaction and upgrading in organic or aqueous medium. J. Clean. Prod. 2024, 444, 140942. [Google Scholar] [CrossRef]
- Ajala, E.O.; Ajala, M.A.; Akinpelu, G.S.; Akubude, V.C. Cultivation and processing of microalgae for its sustainability as a feedstock for biodiesel production. Niger. J. Technol. Dev. 2021, 18, 322–343. [Google Scholar] [CrossRef]
- Parvatker, A.G.; Prashant, K. Environmental sustainability analysis tool for biodiesel from microalgae. In Proceedings of the CHISA 2012—20th International Congress of Chemical and Process Engineering and PRES 2012—15th Conference PRES, Prague, Czech Republic, 25–29 August 2012; Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84874845270 (accessed on 13 May 2025).
- Cancela, Á.; Maceiras, R.; Sánchez, Á.; Alfonsin, V.; Urrejola, S. Transesterification of marine macroalgae using microwave technology. Energy Sources Part A Recovery Util. Environ. Eff. 2016, 38, 1598–1603. [Google Scholar] [CrossRef]
- Patnaik, R.; Mallick, N. Microalgal biodiesel production: Realizing the sustainability index. Front. Bioeng. Biotechnol. 2021, 9, 620777. [Google Scholar] [CrossRef]
- Kazemi Shariat Panahi, H.; Tabatabaei, M.; Aghbashlo, M.; Dehhaghi, M.; Rehan, M.; Nizami, A.-S. Recent updates on the production and upgrading of bio-crude oil from microalgae. Bioresour. Technol. Rep. 2019, 7, 100216. [Google Scholar] [CrossRef]
- Mondal, A.S.; Sharma, R.; Trivedi, N. Cutting-edge approaches for overcoming challenges in microalgal biodiesel production. In Microalgal Biomass for Bioenergy Applications; Elsevier: Amsterdam, The Netherlands, 2023; pp. 355–394. [Google Scholar] [CrossRef]
- Fazril, I.; Shamsuddin, A.H.; Nomanbhay, S.; Kusomo, F.; Hanif, M.; Ahmad Zamri, M.F.M.; Akhiar, A.; Ismail, M.F. Microwave-assisted in situ transesterification of wet microalgae for the production of biodiesel: Progress review. IOP Conf. Ser. Earth Environ. Sci. 2020, 476, 012078. [Google Scholar] [CrossRef]
- Soares, A.T.; D’Alessandro, E.B.; Lopes, R.G.; Derner, R.B.; Antoniosi Filho, N.R. Optimization of biodiesel production by in situ transesterification from dry biomass of Choricystis minor var. minor via response surface methodology. Biofuels 2021, 12, 1301–1307. [Google Scholar] [CrossRef]
- Salam, K.A.; Velasquez-Orta, S.B.; Harvey, A.P. Algal FAME production with a novel surfactant based catalyst in a reactive extraction. In Process Development Division 2013—Core Programming Area at the 2013 AIChE Annual Meeting: Global Challenges for Engineering a Sustainable Future; 2014; pp. 65–70. Available online: https://proceedings.aiche.org/conferences/aiche-annual-meeting/2013/proceeding/paper/220j-algal-fame-production-novel-surfactant-based-catalyst-reactive-extraction-1 (accessed on 13 May 2025).
- Matchim Kamdem, M.C.; Lai, N. Alkyl carbamate ionic liquids for permeabilization of microalgae biomass to enhance lipid recovery for biodiesel production. Heliyon 2023, 9, e12754. [Google Scholar] [CrossRef]
- Han, F.Y.; Komiyama, M.; Uemura, Y.; Rabat, N.E. One-path catalytic supercritical methanothermal production of fatty acid methyl ester fractions from wet microalgae Chlorella vulgaris. Biomass Bioenergy 2020, 143, 105834. [Google Scholar] [CrossRef]
- Zhang, X.; Rong, J.; Chen, H.; He, C.; Wang, Q. Current status and outlook in the application of microalgae in biodiesel production and environmental protection. Front. Energy Res. 2014, 2, 32. [Google Scholar] [CrossRef]
- Garlapati, V.K.; Gour, R.S.; Sharma, V.; Roy, L.S.; Prashant, J.K.S.; Kant, A.; Banerjee, R. Current status of biodiesel production from microalgae in India. In Advances in Biofeedstocks and Biofuels: Production Technologies for Biofuels; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2016; Volume 2, pp. 129–154. [Google Scholar] [CrossRef]
Study | Catalyst Type | Microalgae Species | Catalyst Characteristics | Optimal Conditions | Biodiesel Yield | Highlights |
---|---|---|---|---|---|---|
[20] | KOH/rice bran-derived activated carbon | Not specified | Bi-functional, heterogeneous | 10:1 solvent-to-biomass ratio, 5 wt% catalyst, 70 °C, 1.5 h | 80.9% | In situ transesterification |
[21] | HCl, H2SO4, montmorillonit K-10, ledgestone | Coelastrella sp. | Homogeneous and heterogeneous | Not specified | High with H2SO4 and dimethyl carbonate | Different methyl group sources tested |
[22] | Sodium hydroxide, sulfuric acid | Arthrospira sp. | Alkaline and acid | 1:5 biomass-to-solvent ratio, 50 °C | 13.85% | Extractive transesterification |
[15] | Carbon-based solid acid | Not specified | Derived from microalgae residue | Not specified | High activity, reusable | Esterification and transesterification |
[23] | Metal oxides (CaO) | Scenedesmus sp. | Heterogeneous | 114:1 ethanol-to-oil ratio, autoclave reactor | 81.3% | Ethanol as green alternative to methanol |
[24] | Calcium methoxide on magnetic biochar | Chlorella sp. | Biochar-based, eggshell-derived | 20:1 methanol—to-oil ratio, 6% catalyst, 65 °C | 99.12% | High stability and reusability |
[25] | Nanocatalysts | Not specified | High activity, stability, reusable | Not specified | 93% and 99% | Wet impregnation method |
[26] | Graphene oxide | Chlorella vulgaris | Carbon-based, sustainable | Microwave irradiation, methanol reflux | Higher than metal-based catalysts | Efficient heating and lipid release |
[27] | NaOH/zeolite | N. oculata, C. vulgaris | Heterogeneous | 20.5% Na loading | 83.5% (N. oculata), 98% (C. vulgaris) | High FAME content |
[14] | Metal oxides on zeolite (MgO, CuO, NiO) | Chlorella vulgaris | Heterogeneous | Optimized conditions | 69% (CuO/zeolite) | CuO showed highest performance |
[18] | Potassium-doped biochar | Chlorella vulgaris | Wood dust-based | 10.39:1 methanolto oil, 61.41 °C, 75.3 min | 91.9% | First-order kinetics, reusable |
[28] | Hydrochloric acid | Chlorella pyrenoidosa | Acid-catalyzed | 3:3 factorial design, 150 min | 71–92% (CPME), 67–91% (MTHF) | Green solvents used |
Catalyst Type | Performance | Environmental Implications | References |
---|---|---|---|
Homogeneous Catalysts | High conversion efficiency and reactivity; suitable for lab-scale use; sensitive to FFA content; methanol-based systems perform well. | Generates wastewater and soap; difficult separation; not recyclable; environmentally unfriendly for large-scale applications. | [21,57] |
Heterogeneous Catalysts | Reusable; compatible with ethanol and green solvents; good conversion rates with metal oxides, natural zeolites, and biochar. | Easier post-reaction separation; reduced waste; supports greener processes and lower emissions. | [23,30,35] |
Biocatalysts (Enzymes) | High selectivity and FAME yield; operates under mild conditions; immobilized enzymes show enhanced durability. | Clean process with minimal byproducts; high cost can be offset by reusability; scalable with improved immobilization. | [16,58] |
Acid Catalysts | Effective for high-FFA oils; enables in situ transesterification; commonly used in batch reactors. | Strong acids require careful handling and disposal; potential for environmental hazards if mismanaged. | [21,59,60] |
Alkaline Catalysts | High yield for low-FFA oils; fast reaction rates; widely used in conventional transesterification. | Not ideal for wet or unrefined biomass; soap formation can occur; waste treatment needed. | [61,62] |
Metal–Organic Frameworks (MOFs) | High porosity and surface area; emerging performance in catalysis; tunable structure suitable for biodiesel synthesis. | Recyclable; thermally stable; promising for sustainable biodiesel pathways. | [63] |
Nanocatalysts | High surface area-to-volume ratio enhances reaction rate and yield; effective for in situ and microwave-assisted transesterification; reusable and stable. | Supports green processing through lower energy use and high efficiency; magnetic and carbon-based options facilitate easy recovery and reduced waste. | [25,26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borthakur, P.P.; Sarmah, P. Emerging Catalysts and Techniques in Microalgae-Based Biodiesel Production. Chem. Proc. 2025, 17, 9. https://doi.org/10.3390/chemproc2025017009
Borthakur PP, Sarmah P. Emerging Catalysts and Techniques in Microalgae-Based Biodiesel Production. Chemistry Proceedings. 2025; 17(1):9. https://doi.org/10.3390/chemproc2025017009
Chicago/Turabian StyleBorthakur, Partha Protim, and Pranjal Sarmah. 2025. "Emerging Catalysts and Techniques in Microalgae-Based Biodiesel Production" Chemistry Proceedings 17, no. 1: 9. https://doi.org/10.3390/chemproc2025017009
APA StyleBorthakur, P. P., & Sarmah, P. (2025). Emerging Catalysts and Techniques in Microalgae-Based Biodiesel Production. Chemistry Proceedings, 17(1), 9. https://doi.org/10.3390/chemproc2025017009