Microplastics, Antibiotics, and Heavy Metals in Anaerobic Digestion Systems: A Critical Review of Sources, Impacts, and Mitigation Strategies
Abstract
:1. Introduction
digestion” AND “heavy metals”, “anaerobic digestion” AND “methane”, “anaerobic digestion” AND
“biochar”, “anaerobic digestion” AND “heavy metals” AND “antibiotics”, “anaerobic digestion” AND
“heavy metals” AND “microplastics”, “anaerobic digestion” AND “antibiotics” AND “microplastics”,
“removl” OR “microplastics” OR “antibiotics” OR “heavy metals”
2. Sources and Pathways of Contaminants Transport to AD System
2.1. Microplastics
2.2. Antibiotics
2.3. Heavy Metals
3. Conversion and Influence of Contaminants on AD System
3.1. Conversion and Influence of Microplastics on AD System
3.2. Conversion and Influence of Antibiotics on AD System
3.3. Conversion and Influence of Heavy Metals on AD System
4. Removal and Mitigation Strategies
4.1. Biological Pretreatment Technologies
4.2. Use of Bioreactors in AD
4.3. Physicochemical Treatment Technologies
5. Critical Analysis and Future Perspectives
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chan, P.C.; de Toledo, R.A.; Iu, H.I.; Shim, H. Effect of Zinc Supplementation on Biogas Production and Short/Long Chain Fatty Acids Accumulation During Anaerobic Co-digestion of Food Waste and Domestic Wastewater. Waste Biomass Valoriz. 2019, 10, 3885–3895. [Google Scholar] [CrossRef]
- Ghofrani-Isfahani, P.; Baniamerian, H.; Tsapekos, P.; Alvarado-Morales, M.; Kasama, T.; Shahrokhi, M.; Vossoughi, M.; Angelidaki, I. Effect of metal oxide based TiO2 nanoparticles on anaerobic digestion process of lignocellulosic substrate. Energy 2020, 191, 116580. [Google Scholar] [CrossRef]
- Zglobisz, N.; Castillo-Castillo, A.; Grimes, S.; Jones, P. Influence of UK energy policy on the deployment of anaerobic digestion. Energy Policy 2010, 38, 5988–5999. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, G.; Sweeney, S.; Feng, Y. Household biogas use in rural China: A study of opportunities and constraints. Renew. Sustain. Energy Rev. 2010, 14, 545–549. [Google Scholar] [CrossRef]
- Ferrer, I.; Garfí, M.; Uggetti, E.; Ferrer-Martí, L.; Calderon, A.; Velo, E. Biogas production in low-cost household digesters at the Peruvian Andes. Biomass Bioenergy 2011, 35, 1668–1674. [Google Scholar] [CrossRef]
- Dechrugsa, S.; Kantachote, D.; Chaiprapat, S. Effects of inoculum to substrate ratio, substrate mix ratio and inoculum source on batch co-digestion of grass and pig manure. Bioresour. Technol. 2013, 146, 101–108. [Google Scholar] [CrossRef]
- Appels, L.; Lauwers, J.; Degrève, J.; Helsen, L.; Lievens, B.; Willems, K.; Van Impe, J.; Dewil, R. Anaerobic digestion in global bio-energy production: Potential and research challenges. Renew. Sustain. Energy Rev. 2011, 15, 4295–4301. [Google Scholar] [CrossRef]
- Braguglia, C.M.; Gallipoli, A.; Gianico, A.; Pagliaccia, P. Anaerobic bioconversion of food waste into energy: A critical review. Bioresour. Technol. 2018, 248, 37–56. [Google Scholar] [CrossRef]
- Okoffo, E.D.; Donner, E.; McGrath, S.P.; Tscharke, B.J.; O’Brien, J.W.; O’Brien, S.; Ribeiro, F.; Burrows, S.D.; Toapanta, T.; Rauert, C.; et al. Plastics in biosolids from 1950 to 2016: A function of global plastic production and consumption. Water Res. 2021, 201, 117367. [Google Scholar] [CrossRef]
- Zhang, Y.-T.; Wei, W.; Huang, Q.-S.; Wang, C.; Wang, Y.; Ni, B.-J. Insights into the microbial response of anaerobic granular sludge during long-term exposure to polyethylene terephthalate microplastics. Water Res. 2020, 179, 115898. [Google Scholar] [CrossRef]
- Stapleton, M.J.; Ansari, A.J.; Hai, F.I. Antibiotic sorption onto microplastics in water: A critical review of the factors, mechanisms and implications. Water Res. 2023, 233, 119790. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Dou, Y.; Ji, B.; Miao, M.; Li, Y.; Hao, T. Chlorination-improved adsorption capacity of microplastics for antibiotics: A combined experimental and molecular mechanism investigation. J. Hazard. Mater. 2024, 467, 133734. [Google Scholar] [CrossRef] [PubMed]
- Tu, J.; Zhao, Q.; Wei, L.; Yang, Q. Heavy metal concentration and speciation of seven representative municipal sludges from wastewater treatment plants in Northeast China. Environ. Monit. Assess. 2012, 184, 1645–1655. [Google Scholar] [CrossRef]
- Yuan, X.; Huang, H.; Zeng, G.; Li, H.; Wang, J.; Zhou, C.; Zhu, H.; Pei, X.; Liu, Z.; Liu, Z. Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge. Bioresour. Technol. 2011, 102, 4104–4110. [Google Scholar] [CrossRef]
- Zhou, W.; Tuersun, N.; Zhang, Y.; Wang, Y.; Cheng, C.; Chen, X. Optimization and system energy balance analysis of anaerobic co-digestion process of pretreated textile dyeing sludge and food waste. J. Environ. Chem. Eng. 2021, 9, 106855. [Google Scholar] [CrossRef]
- Bartrons, M.; Peñuelas, J. Pharmaceuticals and Personal-Care Products in Plants. Trends Plant Sci. 2017, 22, 194–203. [Google Scholar] [CrossRef]
- Ahmed, A.S.S.; Billah, M.M.; Ali, M.M.; Bhuiyan, M.K.A.; Guo, L.; Mohinuzzaman, M.; Hossain, M.B.; Rahman, M.S.; Islam, M.S.; Yan, M.; et al. Microplastics in aquatic environments: A comprehensive review of toxicity, removal, and remediation strategies. Sci. Total Environ. 2023, 876, 162414. [Google Scholar] [CrossRef]
- Piyawardhana, N.; Weerathunga, V.; Chen, H.-S.; Guo, L.; Huang, P.-J.; Ranatunga, R.R.M.K.P.; Hung, C.-C. Occurrence of microplastics in commercial marine dried fish in Asian countries. J. Hazard. Mater. 2022, 423, 127093. [Google Scholar] [CrossRef]
- Chen, Y.; Yan, Z.; Zhang, Y.; Zhu, P.; Jiang, R.; Wang, M.; Wang, Y.; Lu, G. Co-exposure of microplastics and sulfamethoxazole propagated antibiotic resistance genes in sediments by regulating the microbial carbon metabolism. J. Hazard. Mater. 2024, 463, 132951. [Google Scholar] [CrossRef]
- Repinc, S.K.; Bizjan, B.; Budhiraja, V.; Dular, M.; Gostiša, J.; Brajer Humar, B.; Kaurin, A.; Kržan, A.; Levstek, M.; Arteaga, J.F.M.; et al. Integral analysis of hydrodynamic cavitation effects on waste activated sludge characteristics, potentially toxic metals, microorganisms and identification of microplastics. Sci. Total Environ. 2022, 806, 151414. [Google Scholar] [CrossRef]
- Dong, S.; Gao, P.; Li, B.; Feng, L.; Liu, Y.; Du, Z.; Zhang, L. Occurrence and migration of microplastics and plasticizers in different wastewater and sludge treatment units in municipal wastewater treatment plant. Front. Environ. Sci. Eng. 2022, 16, 142. [Google Scholar] [CrossRef]
- Xiao, Y.; Qin, Y.; Jiang, X.; Gao, P. Effects of polypropylene microplastics on digestion performance, microbial community, and antibiotic resistance during microbial anaerobic digestion. Bioresour. Technol. 2024, 411, 131358. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Dai, X.; Wang, Q.; van Loosdrecht, M.C.M.; Ni, B.-J. Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Res. 2019, 152, 21–37. [Google Scholar] [CrossRef]
- Lares, M.; Ncibi, M.C.; Sillanpää, M.; Sillanpää, M. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Res. 2018, 133, 236–246. [Google Scholar] [CrossRef]
- Mahon, A.M.; O’Connell, B.; Healy, M.G.; O’Connor, I.; Officer, R.; Nash, R.; Morrison, L. Microplastics in Sewage Sludge: Effects of Treatment. Environ. Sci. Technol. 2017, 51, 810–818. [Google Scholar] [CrossRef]
- Wei, W.; Huang, Q.-S.; Sun, J.; Dai, X.; Ni, B.-J. Revealing the Mechanisms of Polyethylene Microplastics Affecting Anaerobic Digestion of Waste Activated Sludge. Environ. Sci. Technol. 2019, 53, 9604–9613. [Google Scholar] [CrossRef]
- Castelvetro, V.; Corti, A.; Ceccarini, A.; Petri, A.; Vinciguerra, V. Nylon 6 and nylon 6,6 micro- and nanoplastics: A first example of their accurate quantification, along with polyester (PET), in wastewater treatment plant sludges. J. Hazard. Mater. 2021, 407, 124364. [Google Scholar] [CrossRef]
- Azizi, S.M.M.; Haffiez, N.; Zakaria, B.S.; Dhar, B.R. Thermal Hydrolysis of Sludge Counteracts Polystyrene Nanoplastics-Induced Stress during Anaerobic Digestion. ACS EST Eng. 2022, 2, 1306–1315. [Google Scholar] [CrossRef]
- Fu, S.-F.; Ding, J.-N.; Zhang, Y.; Li, Y.-F.; Zhu, R.; Yuan, X.-Z.; Zou, H. Exposure to polystyrene nanoplastic leads to inhibition of anaerobic digestion system. Sci. Total Environ. 2018, 625, 64–70. [Google Scholar] [CrossRef]
- Mohammad Mirsoleimani Azizi, S.; Hai, F.I.; Lu, W.; Al-Mamun, A.; Ranjan Dhar, B. A review of mechanisms underlying the impacts of (nano)microplastics on anaerobic digestion. Bioresour. Technol. 2021, 329, 124894. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Han, W.; Jiao, J.; Ren, W.; Jia, G.; Huang, C.; Yang, Q. Migration and transformation modes of microplastics in reclaimed wastewater treatment plant and sludge treatment center with thermal hydrolysis and anaerobic digestion. Bioresour. Technol. 2024, 400, 130649. [Google Scholar] [CrossRef]
- Aus der Beek, T.; Weber, F.A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the environment—Global occurrences and perspectives. Environ. Toxicol. Chem. 2016, 35, 823–835. [Google Scholar] [CrossRef] [PubMed]
- Klein, E.Y.; Milkowska-Shibata, M.; Tseng, K.K.; Sharland, M.; Gandra, S.; Pulcini, C.; Laxminarayan, R. Assessment of WHO antibiotic consumption and access targets in 76 countries, 2000–2015: An analysis of pharmaceutical sales data. Lancet Infect. Dis. 2021, 21, 107–115. [Google Scholar] [CrossRef]
- Bao, L.-J.; Mai, L.; Liu, L.-Y.; Sun, X.-F.; Zeng, E.Y. Microplastics on the Planet: Current Knowledge and Challenges. Environ. Sci. Technol. Lett. 2024, 11, 1262–1271. [Google Scholar] [CrossRef]
- Zhao, L.; Dong, Y.H.; Wang, H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Sci. Total Environ. 2010, 408, 1069–1075. [Google Scholar] [CrossRef]
- Riaz, L.; Mahmood, T.; Khalid, A.; Rashid, A.; Ahmed Siddique, M.B.; Kamal, A.; Coyne, M.S. Fluoroquinolones (FQs) in the environment: A review on their abundance, sorption and toxicity in soil. Chemosphere 2018, 191, 704–720. [Google Scholar] [CrossRef]
- Li, Y.-X.; Zhang, X.-L.; Li, W.; Lu, X.-F.; Liu, B.; Wang, J. The residues and environmental risks of multiple veterinary antibiotics in animal faeces. Environ. Monit. Assess. 2013, 185, 2211–2220. [Google Scholar] [CrossRef]
- Ji, X.; Shen, Q.; Liu, F.; Ma, J.; Xu, G.; Wang, Y.; Wu, M. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China. J. Hazard. Mater. 2012, 235–236, 178–185. [Google Scholar] [CrossRef]
- Zhou, L.-J.; Ying, G.-G.; Liu, S.; Zhang, R.-Q.; Lai, H.-J.; Chen, Z.-F.; Pan, C.-G. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China. Sci. Total Environ. 2013, 444, 183–195. [Google Scholar] [CrossRef]
- Berendsen, B.J.A.; Wegh, R.S.; Memelink, J.; Zuidema, T.; Stolker, L.A.M. The analysis of animal faeces as a tool to monitor antibiotic usage. Talanta 2015, 132, 258–268. [Google Scholar] [CrossRef]
- Van den Meersche, T.; Van Pamel, E.; Van Poucke, C.; Herman, L.; Heyndrickx, M.; Rasschaert, G.; Daeseleire, E. Development, validation and application of an ultra high performance liquid chromatographic-tandem mass spectrometric method for the simultaneous detection and quantification of five different classes of veterinary antibiotics in swine manure. J. Chromatogr. A 2016, 1429, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Carballo, E.; González-Barreiro, C.; Scharf, S.; Gans, O. Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ. Pollut. 2007, 148, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Widyasari-Mehta, A.; Hartung, S.; Kreuzig, R. From the application of antibiotics to antibiotic residues in liquid manures and digestates: A screening study in one European center of conventional pig husbandry. J. Environ. Manag. 2016, 177, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tao, J.; Bai, Y.; Wang, F.; Xie, B. Incomplete degradation of aromatic–aliphatic copolymer leads to proliferation of microplastics and antibiotic resistance genes. Environ. Int. 2023, 181, 108291. [Google Scholar] [CrossRef]
- Ezzariai, A.; Hafidi, M.; Khadra, A.; Aemig, Q.; El Fels, L.; Barret, M.; Merlina, G.; Patureau, D.; Pinelli, E. Human and veterinary antibiotics during composting of sludge or manure: Global perspectives on persistence, degradation, and resistance genes. J. Hazard. Mater. 2018, 359, 465–481. [Google Scholar] [CrossRef]
- Luo, J.; Huang, W.; Zhang, Q.; Wu, Y.; Fang, F.; Cao, J.; Su, Y. Distinct effects of hypochlorite types on the reduction of antibiotic resistance genes during waste activated sludge fermentation: Insights of bacterial community, cellular activity, and genetic expression. J. Hazard. Mater. 2021, 403, 124010. [Google Scholar] [CrossRef]
- Zubair, M.; Li, Z.; Zhu, R.; Wang, J.; Liu, X.; Liu, X. The Antibiotics Degradation and Its Mechanisms during the Livestock Manure Anaerobic Digestion. Molecules 2023, 28, 4090. [Google Scholar] [CrossRef]
- Haffiez, N.; Chung, T.H.; Zakaria, B.S.; Shahidi, M.; Mezbahuddin, S.; Hai, F.I.; Dhar, B.R. A critical review of process parameters influencing the fate of antibiotic resistance genes in the anaerobic digestion of organic waste. Bioresour. Technol. 2022, 354, 127189. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, L.; Fu, H.; Zhang, M.; Meng, J.; Althakafy, J.T.; Abo-Dief, H.M.; El-Bahy, S.M.; Zhang, Y.; Wei, H.; et al. Effect of sulfamethazine on anaerobic digestion of manure mediated by biochar. Chemosphere 2022, 306, 135567. [Google Scholar] [CrossRef]
- Matter, D.; Rossano, A.; Limat, S.; Vorlet-Fawer, L.; Brodard, I.; Perreten, V. Antimicrobial resistance profile of Actinobacillus pleuropneumoniae and Actinobacillus porcitonsillarum. Vet. Microbiol. 2007, 122, 146–156. [Google Scholar] [CrossRef]
- Gao, P.; Tang, X.; Tong, Y.; Chen, Y. Application of sewage sludge compost on highway embankments. Waste Manag. 2008, 28, 1630–1636. [Google Scholar] [CrossRef]
- Roca-Pérez, L.; Martínez, C.; Marcilla, P.; Boluda, R. Composting rice straw with sewage sludge and compost effects on the soil–plant system. Chemosphere 2009, 75, 781–787. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Du, Z.; Guo, T.; Wu, J.; Wang, B.; Wei, Z.; Jia, L.; Kang, K. Effects of heavy metals stress on chicken manures composting via the perspective of microbial community feedback. Environ. Pollut. 2022, 294, 118624. [Google Scholar] [CrossRef] [PubMed]
- Gupta, U.C.; Wu, K.; Liang, S. Micronutrients in Soils, Crops, and Livestock. Earth Sci. Front. 2008, 15, 110–125. [Google Scholar] [CrossRef]
- Hsu, J.-H.; Lo, S.-L. Effect of composting on characterization and leaching of copper, manganese, and zinc from swine manure. Environ. Pollut. 2001, 114, 119–127. [Google Scholar] [CrossRef]
- Amir, S.; Hafidi, M.; Merlina, G.; Revel, J.-C. Sequential extraction of heavy metals during composting of sewage sludge. Chemosphere 2005, 59, 801–810. [Google Scholar] [CrossRef]
- Jin, H.; Chang, Z. Distribution of Heavy Metal Contents and Chemical Fractions in Anaerobically Digested Manure Slurry. Appl. Biochem. Biotechnol. 2011, 164, 268–282. [Google Scholar] [CrossRef]
- Ni, P.; Lyu, T.; Sun, H.; Dong, R.; Wu, S. Liquid digestate recycled utilization in anaerobic digestion of pig manure: Effect on methane production, system stability and heavy metal mobilization. Energy 2017, 141, 1695–1704. [Google Scholar] [CrossRef]
- Luo, H.; Lv, T.; Shi, M.; Wu, S.; Carvalho, P.N.; Dong, R. Stabilization of Preliminary Anaerobically Digested Slurry in Post-Storage: Dynamics of Chemical Characteristics and Hygienic Quality. Water Air Soil Pollut. 2017, 228, 306. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Li, G.; Luo, W.; Sun, Y. Manure digestate storage under different conditions: Chemical characteristics and contaminant residuals. Sci. Total Environ. 2018, 639, 19–25. [Google Scholar] [CrossRef]
- Riaz, L.; Wang, Q.; Yang, Q.; Li, X.; Yuan, W. Potential of industrial composting and anaerobic digestion for the removal of antibiotics, antibiotic resistance genes and heavy metals from chicken manure. Sci. Total Environ. 2020, 718, 137414. [Google Scholar] [CrossRef] [PubMed]
- GB 5084-2021; Standard for Irrigation Water Quality. Ministry of Ecology and Environment of the Peoole’s Republic of China: Beijing, China, 2021.
- Pan, J.; Ma, J.; Liu, X.; Zhai, L.; Ouyang, X.; Liu, H. Effects of different types of biochar on the anaerobic digestion of chicken manure. Bioresour. Technol. 2019, 275, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhuang, J.; Xue, J.; Peng, M.; Zhang, W.; Mao, L. Passivation mechanism of Cu and Zn with the introduction of composite passivators during anaerobic digestion of pig manure. Bioresour. Technol. 2023, 369, 128360. [Google Scholar] [CrossRef] [PubMed]
- Gutnick, D.L.; Bach, H. Engineering bacterial biopolymers for the biosorption of heavy metals; new products and novel formulations. Appl. Microbiol. Biotechnol. 2000, 54, 451–460. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, Y.; Huang, J.; Du, Z.; Zhouyang, S.; Wang, Y.; Zheng, Y.; Li, Q.; Shen, X. The influence of variables on the bioavailability of heavy metals during the anaerobic digestion of swine manure. Ecotoxicol. Environ. Saf. 2020, 195, 110457. [Google Scholar] [CrossRef]
- Marcato, C.E.; Pinelli, E.; Pouech, P.; Winterton, P.; Guiresse, M. Particle size and metal distributions in anaerobically digested pig slurry. Bioresour. Technol. 2008, 99, 2340–2348. [Google Scholar] [CrossRef]
- Singh, R.; Agrawal, M. Use of sewage sludge as fertiliser supplement for Abelmoschus esculentus plants: Physiological, biochemical and growth responses. Int. J. Environ. Waste Manag. 2009, 3, 91. [Google Scholar] [CrossRef]
- Wang, C.; Wei, W.; Chen, Z.; Wang, Y.; Chen, X.; Ni, B.J. Polystyrene microplastics and nanoplastics distinctively affect anaerobic sludge treatment for hydrogen and methane production. Sci. Total Environ. 2022, 850, 158085. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, X.; Wei, W.; Chen, H.; Ni, B.-J. Removal of microplastics and nanoplastics from urban waters: Separation and degradation. Water Res. 2022, 221, 118820. [Google Scholar] [CrossRef]
- Sun, M.; Xiao, K.; Zhu, Y.; Ou, B.; Yu, W.; Liang, S.; Hou, H.; Yuan, S.; Gan, F.; Mi, R.; et al. Deciphering the role of microplastic size on anaerobic sludge digestion: Changes of dissolved organic matter, leaching compounds and microbial community. Environ. Res. 2022, 214, 114032. [Google Scholar] [CrossRef]
- Chen, H.; Zou, Z.; Tang, M.; Yang, X.; Tsang, Y.F. Polycarbonate microplastics induce oxidative stress in anaerobic digestion of waste activated sludge by leaching bisphenol A. J. Hazard. Mater. 2023, 443, 130158. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Zhang, B.; Fan, C.; Zeng, G.; Xiong, W.; Zhou, C.; Yang, Y.; Ren, X.; Li, X.; Luo, K. The presence of cationic polyacrylamide attenuated the toxicity of polyvinyl chloride microplastics to anaerobic digestion of waste activated sludge. Chem. Eng. J. 2022, 427, 131442. [Google Scholar] [CrossRef]
- Mortezaei, Y.; Gaballah, M.S.; Demirer, G.N.; Lammers, R.W.; Williams, M.R. From wastewater to sludge: The role of microplastics in shaping anaerobic digestion performance and antibiotic resistance gene dynamics. J. Hazard. Mater. 2025, 489, 137413. [Google Scholar] [CrossRef]
- Chen, H.; Tang, M.; Yang, X.; Tsang, Y.F.; Wu, Y.; Wang, D.; Zhou, Y. Polyamide 6 microplastics facilitate methane production during anaerobic digestion of waste activated sludge. Chem. Eng. J. 2021, 408, 127251. [Google Scholar] [CrossRef]
- Wang, J.; Ma, D.; Feng, K.; Lou, Y.; Zhou, H.; Liu, B.; Xie, G.; Ren, N.; Xing, D. Polystyrene nanoplastics shape microbiome and functional metabolism in anaerobic digestion. Water Res. 2022, 219, 118606. [Google Scholar] [CrossRef]
- Zhao, T.; Tan, L.; Zhu, X.; Huang, W.; Wang, J. Size-dependent oxidative stress effect of nano/micro-scaled polystyrene on Karenia mikimotoi. Mar. Pollut. Bull. 2020, 154, 111074. [Google Scholar] [CrossRef]
- Wei, W.; Huang, Q.-S.; Sun, J.; Wang, J.-Y.; Wu, S.-L.; Ni, B.-J. Polyvinyl Chloride Microplastics Affect Methane Production from the Anaerobic Digestion of Waste Activated Sludge through Leaching Toxic Bisphenol-A. Environ. Sci. Technol. 2019, 53, 2509–2517. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Wang, F.; Zhou, H.; Zhang, L.; Xie, B. Anaerobic Degradation of Aromatic and Aliphatic Biodegradable Plastics: Potential Mechanisms and Pathways. Environ. Sci. Technol. 2024, 58, 19462–19474. [Google Scholar] [CrossRef]
- Li, L.; Geng, S.; Li, Z.; Song, K. Effect of microplastic on anaerobic digestion of wasted activated sludge. Chemosphere 2020, 247, 125874. [Google Scholar] [CrossRef]
- Shi, J.; Dang, Q.; Zhang, C.; Zhao, X. Insight into effects of polyethylene microplastics in anaerobic digestion systems of waste activated sludge: Interactions of digestion performance, microbial communities and antibiotic resistance genes. Environ. Pollut. 2022, 310, 119859. [Google Scholar] [CrossRef]
- Wang, S.; Zeng, D.; Jin, B.; Su, Y.; Zhang, Y. Deciphering the role of polyethylene microplastics on antibiotic resistance genes and mobile genetic elements fate in sludge thermophilic anaerobic digestion process. Chem. Eng. J. 2023, 452, 139520. [Google Scholar] [CrossRef]
- Stone, J.J.; Clay, S.A.; Zhu, Z.; Wong, K.L.; Porath, L.R.; Spellman, G.M. Effect of antimicrobial compounds tylosin and chlortetracycline during batch anaerobic swine manure digestion. Water Res. 2009, 43, 4740–4750. [Google Scholar] [CrossRef] [PubMed]
- Mustapha, N.A.; Sakai, K.; Shirai, Y.; Maeda, T. Impact of different antibiotics on methane production using waste-activated sludge: Mechanisms and microbial community dynamics. Appl. Microbiol. Biotechnol. 2016, 100, 9355–9364. [Google Scholar] [CrossRef]
- Cetecioglu, Z.; Orhon, D. How do sulfamethoxazole and tetracycline affect the utilization of short chain fatty acids under anaerobic conditions? J. Environ. Chem. Eng. 2018, 6, 1305–1313. [Google Scholar] [CrossRef]
- Ni, B.-J.; Zeng, S.; Wei, W.; Dai, X.; Sun, J. Impact of roxithromycin on waste activated sludge anaerobic digestion: Methane production, carbon transformation and antibiotic resistance genes. Sci. Total Environ. 2020, 703, 134899. [Google Scholar] [CrossRef]
- Cetecioglu, Z.; Ince, B.; Orhon, D.; Ince, O. Anaerobic sulfamethoxazole degradation is driven by homoacetogenesis coupled with hydrogenotrophic methanogenesis. Water Res. 2016, 90, 79–89. [Google Scholar] [CrossRef]
- Gartiser, S.; Urich, E.; Alexy, R.; Kümmerer, K. Anaerobic inhibition and biodegradation of antibiotics in ISO test schemes. Chemosphere 2007, 66, 1839–1848. [Google Scholar] [CrossRef]
- Sponza, D.T.; Demirden, P. Treatability of sulfamerazine in sequential upflow anaerobic sludge blanket reactor (UASB)/completely stirred tank reactor (CSTR) processes. Sep. Purif. Technol. 2007, 56, 108–117. [Google Scholar] [CrossRef]
- Mitchell, S.M.; Ullman, J.L.; Teel, A.L.; Watts, R.J.; Frear, C. The effects of the antibiotics ampicillin, florfenicol, sulfamethazine, and tylosin on biogas production and their degradation efficiency during anaerobic digestion. Bioresour. Technol. 2013, 149, 244–252. [Google Scholar] [CrossRef]
- Cetecioglu, Z.; Ince, B.; Gros, M.; Rodriguez-Mozaz, S.; Barceló, D.; Orhon, D.; Ince, O. Chronic impact of tetracycline on the biodegradation of an organic substrate mixture under anaerobic conditions. Water Res. 2013, 47, 2959–2969. [Google Scholar] [CrossRef]
- Xiong, Y.; Harb, M.; Hong, P.-Y. Performance and microbial community variations of anaerobic digesters under increasing tetracycline concentrations. Appl. Microbiol. Biotechnol. 2017, 101, 5505–5517. [Google Scholar] [CrossRef] [PubMed]
- Massé, D.I.; Lu, D.; Masse, L.; Droste, R.L. Effect of antibiotics on psychrophilic anaerobic digestion of swine manure slurry in sequencing batch reactors. Bioresour. Technol. 2000, 75, 205–211. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, J.; Liu, J.; Yu, D.; Zhong, H.; Wang, Y.; Chen, M.; Tong, J.; Wei, Y. Effects of chlortetracycline, Cu and their combination on the performance and microbial community dynamics in swine manure anaerobic digestion. J. Environ. Sci. 2018, 67, 206–215. [Google Scholar] [CrossRef]
- Sanz, J.L.; Rodríguez, N.; Amils, R. The action of antibiotics on the anaerobic digestion process. Appl. Microbiol. Biotechnol. 1996, 46, 587–592. [Google Scholar] [CrossRef]
- Wang, X.; Pan, H.; Gu, J.; Qian, X.; Gao, H.; Qin, Q. Effects of oxytetracycline on archaeal community, and tetracycline resistance genes in the anaerobic co-digestion of pig manure and wheat straw. Environ. Technol. 2016, 37, 3177–3185. [Google Scholar] [CrossRef]
- Beneragama, N.; Lateef, S.A.; Iwasaki, M.; Yamashiro, T.; Umetsu, K. The combined effect of cefazolin and oxytetracycline on biogas production from thermophilic anaerobic digestion of dairy manure. Bioresour. Technol. 2013, 133, 23–30. [Google Scholar] [CrossRef]
- Lallai, A.; Mura, G.; Onnis, N. The effects of certain antibiotics on biogas production in the anaerobic digestion of pig waste slurry. Bioresour. Technol. 2002, 82, 205–208. [Google Scholar] [CrossRef]
- Arikan, O.A.; Sikora, L.J.; Mulbry, W.; Khan, S.U.; Rice, C.; Foster, G.D. The fate and effect of oxytetracycline during the anaerobic digestion of manure from therapeutically treated calves. Process Biochem. 2006, 41, 1637–1643. [Google Scholar] [CrossRef]
- Álvarez, J.A.; Otero, L.; Lema, J.M.; Omil, F. The effect and fate of antibiotics during the anaerobic digestion of pig manure. Bioresour. Technol. 2010, 101, 8581–8586. [Google Scholar] [CrossRef]
- Aydin, S.; Ince, B.; Ince, O. Application of real-time PCR to determination of combined effect of antibiotics on Bacteria, Methanogenic Archaea, Archaea in anaerobic sequencing batch reactors. Water Res. 2015, 76, 88–98. [Google Scholar] [CrossRef]
- Aydin, S.; Ince, B.; Cetecioglu, Z.; Arikan, O.; Ozbayram, E.G.; Shahi, A.; Ince, O. Combined effect of erythromycin, tetracycline and sulfamethoxazole on performance of anaerobic sequencing batch reactors. Bioresour. Technol. 2015, 186, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Mai, D.T.; Stuckey, D.C.; Oh, S. Effect of ciprofloxacin on methane production and anaerobic microbial community. Bioresour. Technol. 2018, 261, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Hou, G.; Hao, X.; Zhang, R.; Wang, J.; Liu, R.; Liu, C. Tetracycline removal and effect on the formation and degradation of extracellular polymeric substances and volatile fatty acids in the process of hydrogen fermentation. Bioresour. Technol. 2016, 212, 20–25. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S.M. Biogas production as affected by heavy metals in the anaerobic digestion of sludge. Egypt. J. Pet. 2014, 23, 409–417. [Google Scholar] [CrossRef]
- Andriamanohiarisoamanana, F.J.; Shirai, T.; Yamashiro, T.; Yasui, S.; Iwasaki, M.; Ihara, I.; Nishida, T.; Tangtaweewipat, S.; Umetsu, K. Valorizing waste iron powder in biogas production: Hydrogen sulfide control and process performances. J. Environ. Manag. 2018, 208, 134–141. [Google Scholar] [CrossRef]
- Hao, H.; Tian, Y.; Zhang, H.; Chai, Y. Copper stressed anaerobic fermentation: Biogas properties, process stability, biodegradation and enzyme responses. Biodegradation 2017, 28, 369–381. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, H.; Chai, Y.; Wang, L.; Mi, X.; Zhang, L.; Ware, M.A. Biogas properties and enzymatic analysis during anaerobic fermentation of Phragmites australis straw and cow dung: Influence of nickel chloride supplement. Biodegradation 2017, 28, 15–25. [Google Scholar] [CrossRef]
- Facchin, V.; Cavinato, C.; Fatone, F.; Pavan, P.; Cecchi, F.; Bolzonella, D. Effect of trace element supplementation on the mesophilic anaerobic digestion of foodwaste in batch trials: The influence of inoculum origin. Biochem. Eng. J. 2013, 70, 71–77. [Google Scholar] [CrossRef]
- Choong, Y.Y.; Norli, I.; Abdullah, A.Z.; Yhaya, M.F. Impacts of trace element supplementation on the performance of anaerobic digestion process: A critical review. Bioresour. Technol. 2016, 209, 369–379. [Google Scholar] [CrossRef]
- Khatri, S.; Wu, S.; Kizito, S.; Zhang, W.; Li, J.; Dong, R. Synergistic effect of alkaline pretreatment and Fe dosing on batch anaerobic digestion of maize straw. Appl. Energy 2015, 158, 55–64. [Google Scholar] [CrossRef]
- Guo, X.; Gu, J.; Gao, H.; Qin, Q.; Chen, Z.; Shao, L.; Chen, L.; Li, H.; Zhang, W.; Chen, S.; et al. Effects of Cu on metabolisms and enzyme activities of microbial communities in the process of composting. Bioresour. Technol. 2012, 108, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Yang, Z.; Tian, G. Inhibitory effects of Cu (II) on fermentative methane production using bamboo wastewater as substrate. J. Hazard. Mater. 2011, 195, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Han, X.; Tian, Y.; Li, Y.; Yang, K.; Hao, H.; Chai, Y.; Xu, X. Process analysis of anaerobic fermentation of Phragmites australis straw and cow dung exposing to elevated chromium (VI) concentrations. J. Environ. Manag. 2018, 224, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Miglani, P.; Gupta, R.K.; Bhattacharya, T.K. Impact of Ni(II), Zn(II) and Cd(II) on biogassification of potato waste. J. Environ. Biol. 2006, 27, 61–66. [Google Scholar]
- Mal, J.; Nancharaiah, Y.V.; van Hullebusch, E.D.; Lens, P.N.L. Effect of heavy metal co-contaminants on selenite bioreduction by anaerobic granular sludge. Bioresour. Technol. 2016, 206, 1–8. [Google Scholar] [CrossRef]
- Feng, Y.; Guo, Y.; Yang, G.; Qin, X.; Song, Z. Household biogas development in rural China: On policy support and other macro sustainable conditions. Renew. Sustain. Energy Rev. 2012, 16, 5617–5624. [Google Scholar] [CrossRef]
- Phan, H.V.; Wickham, R.; Xie, S.; McDonald, J.A.; Khan, S.J.; Ngo, H.H.; Guo, W.; Nghiem, L.D. The fate of trace organic contaminants during anaerobic digestion of primary sludge: A pilot scale study. Bioresour. Technol. 2018, 256, 384–390. [Google Scholar] [CrossRef]
- Paudel, S.R.; Banjara, S.P.; Choi, O.K.; Park, K.Y.; Kim, Y.M.; Lee, J.W. Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges. Bioresour. Technol. 2017, 245, 1194–1205. [Google Scholar] [CrossRef]
- Bhattacharjee, C.; Dutta, S.; Saxena, V.K. A review on biosorptive removal of dyes and heavy metals from wastewater using watermelon rind as biosorbent. Environ. Adv. 2020, 2, 100007. [Google Scholar] [CrossRef]
- Giese, E.C. Biosorption as green technology for the recovery and separation of rare earth elements. World J. Microbiol. Biotechnol. 2020, 36, 52. [Google Scholar] [CrossRef]
- Mustafa, A.M.; Poulsen, T.G.; Xia, Y.; Sheng, K. Combinations of fungal and milling pretreatments for enhancing rice straw biogas production during solid-state anaerobic digestion. Bioresour. Technol. 2017, 224, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xu, C.; Ai, S.; Wang, H.; Gao, Y.; Yan, L.; Mei, Z.; Wang, W. Biological pretreatment enhances the activity of functional microorganisms and the ability of methanogenesis during anaerobic digestion. Bioresour. Technol. 2019, 290, 121660. [Google Scholar] [CrossRef] [PubMed]
- Akgul, D.; Cella, M.A.; Eskicioglu, C. Influences of low-energy input microwave and ultrasonic pretreatments on single-stage and temperature-phased anaerobic digestion (TPAD) of municipal wastewater sludge. Energy 2017, 123, 271–282. [Google Scholar] [CrossRef]
- Kim, H.-W.; Nam, J.-Y.; Shin, H.-S. A comparison study on the high-rate co-digestion of sewage sludge and food waste using a temperature-phased anaerobic sequencing batch reactor system. Bioresour. Technol. 2011, 102, 7272–7279. [Google Scholar] [CrossRef]
- Banu, J.R.; Do, K.-U.; Yeom, I.-T. Effect of ferrous sulphate on nitrification during simultaneous phosphorus removal from domestic wastewater using a laboratory scale anoxic/oxic reactor. World J. Microbiol. Biotechnol. 2008, 24, 2981–2986. [Google Scholar] [CrossRef]
- Uthirakrishnan, U.; Sharmila, V.G.; Merrylin, J.; Adish Kumar, S.; Dharmadhas, J.S.; Varjani, S.; Banu, J.R. Current advances and future outlook on pretreatment techniques to enhance biosolids disintegration and anaerobic digestion: A critical review. Chemosphere 2022, 288, 132553. [Google Scholar] [CrossRef]
- Ye, J.; Mu, Y.; Cheng, X.; Sun, D. Treatment of fresh leachate with high-strength organics and calcium from municipal solid waste incineration plant using UASB reactor. Bioresour. Technol. 2011, 102, 5498–5503. [Google Scholar] [CrossRef]
- Wang, T.; Huang, Z.; Ruan, W.; Zhao, M.; Shao, Y.; Miao, H. Insights into sludge granulation during anaerobic treatment of high-strength leachate via a full-scale IC reactor with external circulation system. J. Environ. Sci. 2018, 64, 227–234. [Google Scholar] [CrossRef]
- Chen, S.; Sun, D.; Chung, J.-S. Simultaneous removal of COD and ammonium from landfill leachate using an anaerobic–aerobic moving-bed biofilm reactor system. Waste Manag. 2008, 28, 339–346. [Google Scholar] [CrossRef]
- Luo, J.; Lu, X.; Liu, J.; Qian, G.; Lu, Y. Biogas recirculation for simultaneous calcium removal and biogas purification within an expanded granular sludge bed system treating leachate. Bioresour. Technol. 2014, 173, 317–323. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Z.; Zou, X.; Feng, J.; Wu, Z. Microbial communities in an anaerobic dynamic membrane bioreactor (AnDMBR) for municipal wastewater treatment: Comparison of bulk sludge and cake layer. Process Biochem. 2013, 48, 510–516. [Google Scholar] [CrossRef]
- Wei, C.-H.; Harb, M.; Amy, G.; Hong, P.-Y.; Leiknes, T. Sustainable organic loading rate and energy recovery potential of mesophilic anaerobic membrane bioreactor for municipal wastewater treatment. Bioresour. Technol. 2014, 166, 326–334. [Google Scholar] [CrossRef]
- Greses, S.; Gaby, J.C.; Aguado, D.; Ferrer, J.; Seco, A.; Horn, S.J. Microbial community characterization during anaerobic digestion of Scenedesmus spp. under mesophilic and thermophilic conditions. Algal Res. 2017, 27, 121–130. [Google Scholar] [CrossRef]
- Aslam, A.; Khan, S.J.; Shahzad, H.M.A. Anaerobic membrane bioreactors (AnMBRs) for municipal wastewater treatment- potential benefits, constraints, and future perspectives: An updated review. Sci. Total Environ. 2022, 802, 149612. [Google Scholar] [CrossRef]
- Li, Y.; Wu, B.; Zhai, X.; Li, Q.; Fan, C.; Li, Y.-Y.; Sano, D.; Chen, R. Removal of RNA viruses from swine wastewater using anaerobic membrane bioreactor: Performance and mechanisms. J. Hazard. Mater. 2024, 471, 134296. [Google Scholar] [CrossRef]
- Lin, H.; Peng, W.; Zhang, M.; Chen, J.; Hong, H.; Zhang, Y. A review on anaerobic membrane bioreactors: Applications, membrane fouling and future perspectives. Desalination 2013, 314, 169–188. [Google Scholar] [CrossRef]
- Saleem, M.; Lavagnolo, M.C.; Campanaro, S.; Squartini, A. Dynamic membrane bioreactor (DMBR) for the treatment of landfill leachate; bioreactor’s performance and metagenomic insights into microbial community evolution. Environ. Pollut. 2018, 243, 326–335. [Google Scholar] [CrossRef]
- Asif, M.B.; Maqbool, T.; Zhang, Z. Electrochemical membrane bioreactors: State-of-the-art and future prospects. Sci. Total Environ. 2020, 741, 140233. [Google Scholar] [CrossRef]
- Chen, M.; Ren, L.; Qi, K.; Li, Q.; Lai, M.; Li, Y.; Li, X.; Wang, Z. Enhanced removal of pharmaceuticals and personal care products from real municipal wastewater using an electrochemical membrane bioreactor. Bioresour. Technol. 2020, 311, 123579. [Google Scholar] [CrossRef]
- Yin, D.-M.; Taherzadeh, M.J.; Lin, M.; Jiang, M.-M.; Qiao, W.; Dong, R.-J. Upgrading the anaerobic membrane bioreactor treatment of chicken manure by introducing in-situ ammonia stripping and hyper-thermophilic pretreatment. Bioresour. Technol. 2020, 310, 123470. [Google Scholar] [CrossRef]
- El Kik, O.; Lesage, G.; Zaviska, F.; Sauvêtre, A.; Heran, M.; Lestremau, F. Synergistic approach for enhanced wastewater treatment: Harnessing the potential of bioelectrochemical systems in integration with anaerobic membrane bioreactors. J. Environ. Chem. Eng. 2024, 12, 113162. [Google Scholar] [CrossRef]
- Ortiz, D.; Munoz, M.; Nieto-Sandoval, J.; Romera-Castillo, C.; de Pedro, Z.M.; Casas, J.A. Insights into the degradation of microplastics by Fenton oxidation: From surface modification to mineralization. Chemosphere 2022, 309, 136809. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Yang, L.; Zhou, Y.; Wang, X.; Xu, G.; Sun, K.; Yang, Y.; Wang, S.; Liu, T. Adsorptive photocatalytic removal of heavy metal Mn by organic photovoltaic materials. Sep. Purif. Technol. 2025, 368, 133066. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.; Chen, Y.; Zhuang, Z.; Chen, F.-F.; Zhu, Y.-J.; Yu, Y. Recycling heavy metals from wastewater for photocatalytic CO2 reduction. Chem. Eng. J. 2020, 402, 125922. [Google Scholar] [CrossRef]
- Luo, X.; Zhao, B.; Peng, M.; Shen, R.; Mao, L.; Zhang, W. Effects of Inorganic Passivators on Gas Production and Heavy Metal Passivation Performance during Anaerobic Digestion of Pig Manure and Corn Straw. Int. J. Environ. Res. Public Health 2022, 19, 14094. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, Y.; Zheng, L.; Wang, Z.; Dai, X. Perspective on enhancing the anaerobic digestion of waste activated sludge. J. Hazard. Mater. 2020, 389, 121847. [Google Scholar] [CrossRef]
- Ivanenko, A.A.; Laikova, A.A.; Zhuravleva, E.A.; Shekhurdina, S.V.; Loiko, N.G.; Kotova, I.B.; Kovalev, A.A.; Kovalev, D.A.; Panchenko, V.A.; Mamedov, S.E.; et al. Effect of indirect electrochemical pretreatment on the anaerobic digestion of swine manure. Int. J. Hydrog. Energy 2024, 95, 278–289. [Google Scholar] [CrossRef]
- Yuan, H.; Yu, B.; Cheng, P.; Zhu, N.; Yin, C.; Ying, L. Pilot-scale study of enhanced anaerobic digestion of waste activated sludge by electrochemical and sodium hypochlorite combination pretreatment. Int. Biodeterior. Biodegrad. 2016, 110, 227–234. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y. Effects of microplastics on wastewater and sewage sludge treatment and their removal: A review. Chem. Eng. J. 2020, 382, 122955. [Google Scholar] [CrossRef]
- Hou, L.; Kumar, D.; Yoo, C.G.; Gitsov, I.; Majumder, E.L.W. Conversion and removal strategies for microplastics in wastewater treatment plants and landfills. Chem. Eng. J. 2021, 406, 126715. [Google Scholar] [CrossRef]
- Rolsky, C.; Kelkar, V.; Driver, E.; Halden, R.U. Municipal sewage sludge as a source of microplastics in the environment. Curr. Opin. Environ. Sci. Health 2020, 14, 16–22. [Google Scholar] [CrossRef]
- Dong, H.; Chen, Y.; Wang, J.; Zhang, Y.; Zhang, P.; Li, X.; Zou, J.; Zhou, A. Interactions of microplastics and antibiotic resistance genes and their effects on the aquaculture environments. J. Hazard. Mater. 2021, 403, 123961. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, D.; Su, Y.; Xie, B. Occurrence, influence and removal strategies of mycotoxins, antibiotics and microplastics in anaerobic digestion treating food waste and co-digestive biosolids: A critical review. Bioresour. Technol. 2021, 330, 124987. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Meshref, M.N.A.; Dhar, B.R. Optimization of thermal hydrolysis process for enhancing anaerobic digestion in a wastewater treatment plant with existing primary sludge fermentation. Bioresour. Technol. 2021, 321, 124498. [Google Scholar] [CrossRef]
- Ma, Y.; Rajkumar, M.; Zhang, C.; Freitas, H. Beneficial role of bacterial endophytes in heavy metal phytoremediation. J. Environ. Manag. 2016, 174, 14–25. [Google Scholar] [CrossRef]
Country | Matrix | CTC | DC | OTC | TC | SDZ | SMZ | Ref. |
---|---|---|---|---|---|---|---|---|
China | Dairy cow feces | 1 | - | 5.1 | 1.1 | - | 0.46 | [37] |
China | Cattle manure | - | - | 21.4 | 12 | 4.6 | 9.4 | [38] |
China | Cow dung | 2.2 | 0.68 | 1.2 | - | - | - | [35] |
China | Cow feces | 1.5 | - | - | 0.02 | - | - | [39] |
The Netherlands | Swine feces | - | 1.9 | 0.16 | - | 0.13 | - | [40] |
Belgium | Swine manure | - | 22.8 | 2 | - | 3 | - | [41] |
Germany | Swine manure | 6.2 | - | 21.5 | 9.7 | 4.9 | - | [38] |
Austria | Pig manure | 46 | - | 29 | 23 | - | - | [42] |
Germany | Pig manure | 37.4 | 27.4 | 13.6 | 152 | 7.3 | - | [43] |
Animal Manure | Treatment Condition | Cu | Zn | Cd | As | Pb | Cr | Ni | Mn | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
PM | Mesophilic digestion | 16.34 | 20.66 | - | 0.26 | - | - | - | - | [57] |
PM | Mesophilic digestion | 4.17 | 8.92 | - | - | 0.02 | - | - | 0.26 | [58] |
PM | Mesophilic digestion | 1.32 | 3 | - | - | 0.04 | 0.05 | 3.62–22.1 | - | [59] |
PM | Mesophilic digestion Mixed with corn silage | 14.78 | 9.71 | 1.59 | - | 13.9 | - | - | 1.88 | [60] |
CHM | Mesophilic digestion | 1.79 | 12.67 | - | - | 0.05 | 0.11 | 6.91–31.4 | - | [59] |
CHM | Thermophilic digestion | 15.17 | 124.51 | 0.17 | 27.15 | 1.94 | 39.75 | - | - | [61] |
DCM | Mesophilic digestion | 3.29 | 17.45 | - | 0.06 | - | - | 1.51–4.96 | - | [57] |
China | 0.5 | 2 | 0.01 | 0.05 | 0.2 | 0.1 | 0.2 | - |
Micro(nano)plastics Type | Compound | Concentrations | Methane Production | Scale | Refs. |
---|---|---|---|---|---|
Polystyrene (PS) | WAS | 150 µg/L | −29.34% | Lab | [28] |
Polystyrene (PS) | WAS | 160 particles/g TS | −11.04% | Lab | [69] |
Polystyrene (PS) | WAS | 150 µg/L | −32.30% | Lab | [70] |
Polyvinyl chloride (PVC) | WAS | 2.4 g/g VS | +34.90% | Lab | [71] |
Polycarbonate (PC) | WAS | 30 particles/g TS | −24.70% | Lab | [72] |
Polyvinyl chloride (PVC) | WAS | 30 mg/g TS | −15.62% | Lab | [73] |
Polypropylene (PP) | WAS | Low concentration (1–100 particles/g TS) | −2.8% | Industrial | [74] |
Polyamide 6 (PA6) | WAS | 10 PA6 particles/g TS | +39.50% | Lab | [75] |
Polycarbonate (PC) | WAS | 30 particles/g TS | +24.70% | Lab | [72] |
Polystyrene (PS) | WAS | 50 mg/g TS | −15.50% | Lab | [76] |
Polyethylene (PS) | WAS | 200 particles/g TS | −27.50% | Lab | [76] |
Antibiotic | Compound | Concentrations (mg/L) | Biogas/Methane Production | Scale | Refs. |
---|---|---|---|---|---|
Sulfamethoxazole | - | 1–45 | Biogas: 1004 ± 129 mL/d–96 mL/d | Lab | [87] |
Sulfamethoxazole | Municipal sewage | 6–100 | No inhibition | Lab | [88] |
Sulfamerazine | Pharmaceutical wastewaters | 10–90 | Methane content: 76–60% | Pilot | [89] |
Sulfamerazine | manure | ≤280 | No impact on total biogas production | Lab | [90] |
Sulfamethazine | piggery wastewater | 5.0–160 | Inhibited | Lab | [90] |
Tetracycline | - | 1.65–5.7–8.5 | Biogas: 951–853–71 mL/day | Lab | [91] |
Tetracycline | wastewater | 0.15–20 | Methane: 160–110 mL | Lab | [92] |
Tetracycline | pig diet | 550 mg/kg | 25% reduction in methane | Lab | [93] |
Chlortetracycline | pig slurry | 500 mg/kg | Increased | Pilot | [94] |
Chlortetracycline | - | 28 | 27.8% reduction in methane | Lab | [83] |
Chlortetracycline | - | 40 | 50% reduction in methane | Lab | [95] |
Oxytetracycline | pig slurry | 60, 100, 140 mg/kg | Reduce biogas production by 9.9, 10.4, and 14.1% | Lab | [96] |
Oxytetracycline | dairy manure | 30, 60, 90 | 79.1, 70.3, 68.6% of the control values | Lab | [97] |
Oxytetracycline | animal manure | 125, 250 | No inhibition | Lab | [98] |
Oxytetracycline | animal manure | 3.1 | Reduce methane production by 27% | Pilot | [99] |
Oxytetracycline Chlortetracycline | pig manure | 10, 50 and 100 | Reduced methane production by 56, 60 and 62% | Lab | [100] |
Sulfamethoxazole Erythromycin | - | 2.5 + 2.5 + 25 | Decreased | Pilot | [101] |
Tetracycline | - | 18–46 | Biogas production: 1247 mL/day | Lab | [102] |
Sulfamethoxazole Tetracycline | - | 20 + 1.5 | Decreased | Lab | [101] |
Heavy Metal | Compound | Concentrations | Methane Production Performance | Influencing Factors | Scale | Refs. |
---|---|---|---|---|---|---|
Cd | Sewage sludge | 3.4–17.0 mg/kg | Inhibition | Methanogenic activity (55% biogas reduction) | Pilot | [105] |
Cd | Sludge | 0.1–0.3 mg/L (Promotion); 1.2 mg/L (Inhibition) | Dual-phase effect | Methanogenic activity | Pilot | [105] |
Fe | Cow dung | 50–4000 mg/L (Promotion); 20,000 mg/L (Inhibition) | Dual-phase effect | Cellulase activity | Lab | [106] |
Zn | Food waste and wastewater co-digestion | 5 mg/L (Promotion); 50 mg/L (Inhibition) | Dual-phase effect | Methanogenic activity | Lab | [1] |
Hg | Sewage sludge | 0.125 mg/kg | Inhibition | Methanogenic activity (60% biogas reduction) | Pilot | [105] |
Cr(III) | Sewage sludge | 1.55 and 3.10 mg/kg dry weight | Inhibition | Methanogenic activity (69% and 83% biogas reduction, respectively) | Pilot | [105] |
Cu | Reed straw and cow dung | 0–100 mg/L (Promotion); 500 mg/L (Inhibition) | Dual-phase effect | Methanogenic activity, cellulase activity, microbial community, VFA concentration | Lab | [107] |
Ni | Reed straw and cow dung | 0.8–50 mg/L (Promotion); 100 mg/L (Inhibition) | Dual-phase effect | Cellulase activity and methanogenic activity | Lab | [108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Yuan, X.; Yao, Y.; Yao, L.; Zhang, J.; Maurer, C. Microplastics, Antibiotics, and Heavy Metals in Anaerobic Digestion Systems: A Critical Review of Sources, Impacts, and Mitigation Strategies. Recycling 2025, 10, 116. https://doi.org/10.3390/recycling10030116
Liu H, Yuan X, Yao Y, Yao L, Zhang J, Maurer C. Microplastics, Antibiotics, and Heavy Metals in Anaerobic Digestion Systems: A Critical Review of Sources, Impacts, and Mitigation Strategies. Recycling. 2025; 10(3):116. https://doi.org/10.3390/recycling10030116
Chicago/Turabian StyleLiu, Hongbo, Xiang Yuan, Yuxuan Yao, Lijin Yao, Junbo Zhang, and Claudia Maurer. 2025. "Microplastics, Antibiotics, and Heavy Metals in Anaerobic Digestion Systems: A Critical Review of Sources, Impacts, and Mitigation Strategies" Recycling 10, no. 3: 116. https://doi.org/10.3390/recycling10030116
APA StyleLiu, H., Yuan, X., Yao, Y., Yao, L., Zhang, J., & Maurer, C. (2025). Microplastics, Antibiotics, and Heavy Metals in Anaerobic Digestion Systems: A Critical Review of Sources, Impacts, and Mitigation Strategies. Recycling, 10(3), 116. https://doi.org/10.3390/recycling10030116