Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (761)

Search Parameters:
Keywords = impact damping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 678 KiB  
Article
Serum Levels of HMGB1, hS100A8/A9, and sRAGE in Patients with Knee and Hip Osteoarthritis: Inflammatory Biomarkers of Disease Activity
by Sandra Rusac-Kukić, Alenka Višnić, Maja Rogić Vidaković and Dubravka Bobek
J. Clin. Med. 2025, 14(17), 5931; https://doi.org/10.3390/jcm14175931 - 22 Aug 2025
Abstract
Background/Objectives: Osteoarthritis (OA) is the most prevalent type of arthritis, primarily impacting synovial joints. While it has traditionally been viewed as resulting from mechanical wear and tear, OA is now increasingly understood as an inflammatory condition. By analysing serum concentrations of molecular patterns [...] Read more.
Background/Objectives: Osteoarthritis (OA) is the most prevalent type of arthritis, primarily impacting synovial joints. While it has traditionally been viewed as resulting from mechanical wear and tear, OA is now increasingly understood as an inflammatory condition. By analysing serum concentrations of molecular patterns related to inflammatory damage (DAMPs), including high-mobility group box 1 protein (HMGB1), hS100A8/A9 proteins, and their soluble receptor for advanced glycation end products (sRAGE), it is possible to investigate the inflammatory pathogenesis of the disease. Methods: The research was conducted at Dubrava University Hospital in Zagreb, Croatia, from March 2022 to July 2024. The study analyses venous blood from 94 subjects with different degrees of knee osteoarthritis (KOA) and hip osteoarthritis (hip OA) using ELISA. The aim is to measure serum levels of DAMP biomarkers, including HMGB1, hS100A8/A9, and sRAGE. Results: Subjects with KOA exhibited higher levels of HMGB1 (21.72 ± 3.50) than those with hip OA (7.11 ± 1.46) or controls (1.64 ± 0.80), indicating a potential role for HMGB1 as a proinflammatory mediator. Lower sRAGE levels in KOA (499.97 ± 18.71) compared to controls (1273.8 ± 58.92) may suggest impaired anti-inflammatory activity. Because of possible differences in biomechanical loads and metabolic pathways, hS100A8/A9 concentrations in KOA (1227.06 ± 175.34) were greater than in hip OA (664.88 ± 38.90). Conclusions: HMGB1 exhibits proinflammatory and sRAGE anti-inflammatory activity in knee osteoarthritis (KOA) and hip OA. Their levels support an inflammatory pathogenesis of these diseases. HMGB1 and sRAGE are promising biomarkers for monitoring disease progression and could represent potential therapeutic targets. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

25 pages, 8755 KiB  
Article
Acoustic Transmission Characteristics and Model Prediction of Upper and Lower Completion Pipe Strings for Test Production of Natural Gas Hydrate
by Benchong Xu, Haowen Chen, Guoyue Yin, Rulei Qin, Jieyun Gao and Xin He
Appl. Sci. 2025, 15(16), 9174; https://doi.org/10.3390/app15169174 - 20 Aug 2025
Viewed by 110
Abstract
This study adopts numerical simulation methods to explore the acoustic transmission characteristics of pipe strings in the upper and lower completions of a monitoring system for test production of natural gas hydrate. A finite-element simulation model for acoustic transmission in the pipe string [...] Read more.
This study adopts numerical simulation methods to explore the acoustic transmission characteristics of pipe strings in the upper and lower completions of a monitoring system for test production of natural gas hydrate. A finite-element simulation model for acoustic transmission in the pipe string system is established through COMSOL. The sound pressure level attenuation and the sound pressure amplitude ratio are chosen as evaluation indexes. Parametric numerical simulations are carried out to study the effects of the number of tubing cascades and the size of connection joints in the pipe string system on the acoustic transmission characteristics of the pipe string. The Light Gradient Boosting Machine (LightGBM) algorithm is adopted to predict the acoustic transmission characteristic curves of the pipe string. Based on this prediction model, with the maximum transmission distance, maximum sound pressure amplitude ratio, and minimum transmission attenuation as objective functions, the NSGA-II (Non-dominated Sorting Genetic Algorithm-II) optimization algorithm is adopted to obtain the optimal combinations of the pipe string system structure and the transmission frequency. The findings show that within the range of 20–2000 Hz, when the acoustic wave propagates in the column system, the amplitude attenuation caused by structural damping is positively correlated with the transmission distance, and the high-frequency acoustic wave attenuates faster. When the frequency exceeds 500 Hz, the sound pressure amplitude ratio is lower than 0.4, and the attenuation is stabilized at 90% above 1500 Hz. The thickness of the joints has a weak impact on the transmission, while an increase in length raises the characteristic frequency but exacerbates sound pressure attenuation. The LightGBM algorithm has a high prediction accuracy, reaching up to 88.54% and 84.82%, respectively. The optimal parameter combinations (n, hkg, lkg, freq) optimized by NSGA-II provide an optimization scheme for the structure and frequency of acoustic transmission in down-hole pipe strings. Full article
Show Figures

Figure 1

19 pages, 1067 KiB  
Review
The Role of Extracellular Vesicles in Mediating Signaling in Biliary Epithelial Cell Activation and Cholangiopathies
by Sharmila Fagoonee, Marcela Fabiana Bolontrade, Paola Defilippi and Ralf Weiskirchen
Cells 2025, 14(16), 1274; https://doi.org/10.3390/cells14161274 - 18 Aug 2025
Viewed by 254
Abstract
Cholangiopathies, a diverse group of diseases affecting the biliary tract, are characterized by the activation of cholangiocytes, fibrosis, and inflammation. Recent research has identified extracellular vesicles (EVs) as crucial mediators of communication within the hepatobiliary system. This review aims to explore the impact [...] Read more.
Cholangiopathies, a diverse group of diseases affecting the biliary tract, are characterized by the activation of cholangiocytes, fibrosis, and inflammation. Recent research has identified extracellular vesicles (EVs) as crucial mediators of communication within the hepatobiliary system. This review aims to explore the impact of EVs on cholangiocyte behavior and their role in disease development. EVs originating from cholangiocytes, hepatocytes, and immune cells carry a variety of molecules, including non-coding RNAs, proteins, and lipids, which influence immune responses, fibrosis, and epithelial repair. Specifically, EVs released by activated or senescent cholangiocytes can worsen inflammation and fibrosis by delivering molecules such as lncRNA H19, miR-21, and damage-associated molecular patterns (DAMPs) to hepatic stellate and immune cells. Additionally, the polarity and content of EVs are influenced by specific subcellular domains of cholangiocytes, indicating distinct signaling functions. In conditions such as primary sclerosing cholangitis (PSC), cholangiocarcinoma (CCA), and biliary atresia, EVs play a role in disease progression and offer potential as non-invasive biomarkers and therapeutic targets. This review underscores the importance of in-depth profiling and validation of EVs to fully utilize their diagnostic and therapeutic capabilities. Overall, EV-mediated signaling is a critical mechanism in cholangiopathies, providing a new avenue for understanding disease progression and developing precision medicine approaches. Full article
Show Figures

Figure 1

19 pages, 2768 KiB  
Article
Critical Damping Design and Vibration Suppression Research of Elastic Beam Coupled with Fractional-Order Inerter-Based Dampers
by Yandong Chen and Ning Chen
Buildings 2025, 15(16), 2911; https://doi.org/10.3390/buildings15162911 - 17 Aug 2025
Viewed by 273
Abstract
This article focuses on the study of elastic beams with fractional-order inertia damping structures at both ends, with the aim of exploring their dynamic characteristics, damping effects, and parameter selection rules in depth, providing theoretical and practical support for engineering applications. Firstly, using [...] Read more.
This article focuses on the study of elastic beams with fractional-order inertia damping structures at both ends, with the aim of exploring their dynamic characteristics, damping effects, and parameter selection rules in depth, providing theoretical and practical support for engineering applications. Firstly, using the generalized Hamilton principle, two dynamic models of an elastic beam are established for two different boundary conditions. Next, using the complex modal analysis method, a design method for the critical damping of the first and second modes of an elastic beam was proposed for the first time, and the accuracy of the critical damping calculation formula was verified. Simulation analysis shows that the higher the derivative order and inertance, the lower the main resonance frequency, and the greater the critical damping. Then, using the main resonance amplitude and frequency attenuation rate (RA and RΩ) as indicators, an analysis was conducted on the impact of damper parameters on vibration suppression effects. The results indicate that the introduction of fractional-order inertia can reduce the main resonance amplitude and frequency, and critical damping plays a significant role in the vibration suppression process. Based on the optimal average RA range (95–98%) and higher cost-effectiveness, selecting a damping value of 0.05~0.6 times the critical damping ensures better overall vibration suppression performance, providing an important reference for the vibration suppression design of elastic beams in practical engineering. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

33 pages, 3715 KiB  
Article
On the Effect of Intra- and Inter-Node Sampling Variability on Operational Modal Parameters in a Digital MEMS-Based Accelerometer Sensor Network for SHM: A Preliminary Numerical Investigation
by Matteo Brambilla, Paolo Chiariotti and Alfredo Cigada
Sensors 2025, 25(16), 5044; https://doi.org/10.3390/s25165044 - 14 Aug 2025
Viewed by 165
Abstract
Reliable estimation of operational modal parameters is essential in structural health monitoring (SHM), particularly when these parameters serve as damage-sensitive features. Modern distributed monitoring systems, often employing digital MEMS accelerometers, must account for timing uncertainties across sensor networks. Clock irregularities can lead to [...] Read more.
Reliable estimation of operational modal parameters is essential in structural health monitoring (SHM), particularly when these parameters serve as damage-sensitive features. Modern distributed monitoring systems, often employing digital MEMS accelerometers, must account for timing uncertainties across sensor networks. Clock irregularities can lead to non-deterministic sampling, introducing uncertainty in the identification of modal parameters. In this paper, the effects of timing variability throughout the network are propagated to the final modal quantities through a Monte-Carlo-based framework. The modal parameters are identified using the covariance-driven stochastic subspace identification (SSI-COV) algorithm. A finite element model of a steel cantilever beam serves as a test case, with timing irregularities modeled probabilistically to simulate variations in sensing node clock stability. The results demonstrate that clock variability at both intra-node and inter-node levels significantly influences mode shape estimation and introduces systematic biases in the identified natural frequencies and damping ratios. The confidence intervals are calculated, showing increased uncertainty with greater timing irregularity. Furthermore, the study examines how clock variability impacts damage detection, offering metrological insights into the limitations of distributed vibration-based SHM systems. Overall, the findings offer guidance for designing and deploying monitoring systems with independently timed nodes, aiming to enhance their reliability and robustness. Full article
Show Figures

Figure 1

23 pages, 7920 KiB  
Article
Dynamic Behavior of a Rotationally Restrained Pipe Conveying Gas-Liquid Two-Phase Flow
by Guangming Fu, Huilin Jiao, Aixia Zhang, Xiao Wang, Boying Wang, Baojiang Sun and Jian Su
J. Mar. Sci. Eng. 2025, 13(8), 1524; https://doi.org/10.3390/jmse13081524 - 8 Aug 2025
Viewed by 198
Abstract
This study explores the dynamic behavior of a vertical pipe conveying gas-liquid two-phase flow with rotationally restrained boundaries, employing the generalized integral transform technique (GITT). The rotationally restrained boundary conditions are more realistic for practical engineering applications in comparison to the classical simply-supported [...] Read more.
This study explores the dynamic behavior of a vertical pipe conveying gas-liquid two-phase flow with rotationally restrained boundaries, employing the generalized integral transform technique (GITT). The rotationally restrained boundary conditions are more realistic for practical engineering applications in comparison to the classical simply-supported and clamped boundary conditions, which can be viewed as limiting scenarios of the rotationally restrained boundary conditions when rotational stiffness approaches zero and infinity, respectively. Utilizing the small-deflection Euler-Bernoulli beam theory, the governing equation of motion for the deflection of the pipe is transformed into an infinite set of coupled ordinary differential equations, which is then numerically solved following truncation at a finite order NW. The proposed integral transform solution was initially validated against extant literature results. Numerical findings demonstrate that as the gas volume fraction increases, there is a reduction in both the first-order critical flow velocity and the vibration frequency of the pipe conveying two-phase flow. Conversely, as the rotational stiffness factor enhances, both the first-order critical velocity and vibration frequency increase, resulting in improved stability of the pipe. The impact of the bottom-end rotational stiffness factor r2 on the dynamic stability of the pipe is more pronounced compared to the top-end rotational factor r1. The variation in two-phase flow parameters is closely associated with the damping and stiffness matrices. Modifying the gas volume fraction in the two-phase flow alters the distribution of centrifugal and Coriolis forces within the pipeline system, thereby affecting the pipeline’s natural frequency. The results illustrate that an increase in the gas volume fraction leads to a decrease in both the pipeline’s critical velocity and vibration frequency, culminating in reduced stability. The findings suggest that both the gas volume fraction and boundary rotational stiffness exert a significant influence on the dynamic behavior and stability of the pipe conveying gas-liquid two-phase flow. Full article
Show Figures

Figure 1

14 pages, 2728 KiB  
Article
Performance Analysis of Vehicle EM–ISD Suspension Considering Parasitic Damping
by Zhihong Jia, Yanling Liu, Yujie Shen, Chen Luo and Xiaofeng Yang
Machines 2025, 13(8), 690; https://doi.org/10.3390/machines13080690 - 6 Aug 2025
Viewed by 304
Abstract
In the practical physical structure of the electromagnetic inerter–spring–damper (EM–ISD) suspension, parasitic damping inevitably coexists with the mechanical inerter effect. To investigate the intrinsic influence of this parasitic effect on the suspension system’s performance, this study first establishes a quarter-vehicle dynamic model that [...] Read more.
In the practical physical structure of the electromagnetic inerter–spring–damper (EM–ISD) suspension, parasitic damping inevitably coexists with the mechanical inerter effect. To investigate the intrinsic influence of this parasitic effect on the suspension system’s performance, this study first establishes a quarter-vehicle dynamic model that incorporates parasitic damping, based on the actual configuration of the EM–ISD suspension. Subsequently, the particle swarm optimization (PSO) algorithm is employed to optimize the key suspension parameters, with the objective of enhancing its comprehensive performance. The optimized parameters are then utilized to systematically analyze the dynamic characteristics of the suspension under the influence of parasitic damping. The results indicate that, compared to an ideal model that neglects parasitic damping, an increase in the parasitic damping coefficient leads to a deterioration in the root mean square (RMS) value of body acceleration, while concurrently reducing the RMS values of the suspension working space and dynamic tire load. However, by incorporating parasitic damping into the design considerations during the optimization phase, its adverse impact on ride comfort can be effectively mitigated. Compared with a traditional passive suspension, the optimized EM–ISD suspension, which accounts for parasitic damping, demonstrates superior performance. Specifically, the RMS values of body acceleration and suspension working space are significantly reduced by 11.1% and 17.6%, respectively, thereby effectively improving the vehicle’s ride comfort and handling stability. Full article
(This article belongs to the Special Issue New Journeys in Vehicle System Dynamics and Control)
Show Figures

Figure 1

23 pages, 5280 KiB  
Article
Seismic Damage Pattern Analysis of Long-Span CFST Arch Bridges Based on Damper Configuration Strategies
by Bin Zhao, Longhua Zeng, Qingyun Chen, Chao Gan, Lueqin Xu and Guosi Cheng
Buildings 2025, 15(15), 2728; https://doi.org/10.3390/buildings15152728 - 2 Aug 2025
Viewed by 319
Abstract
Variations in damper configuration strategies have a direct impact on the seismic damage patterns of long-span deck-type concrete-filled steel tube (CFST) arch bridges. This study developed an analysis and evaluation framework to identify the damage category, state, and progression sequence of structural components. [...] Read more.
Variations in damper configuration strategies have a direct impact on the seismic damage patterns of long-span deck-type concrete-filled steel tube (CFST) arch bridges. This study developed an analysis and evaluation framework to identify the damage category, state, and progression sequence of structural components. The framework aims to investigate the influence of viscous dampers on the seismic response and damage patterns of long-span deck-type CFST arch bridges under near-fault pulse-like ground motions. The effects of different viscous damper configuration strategies and design parameters on seismic responses of long-span deck-type CFST arch bridges were systematically investigated, and the preferred configuration and parameter set were identified. The influence of preferred viscous damper configurations on seismic damage patterns of long-span deck-type CFST arch bridges was systematically analyzed through the established analysis and evaluation frameworks. The results indicate that a relatively optimal reduction in bridge response can be achieved when viscous dampers are simultaneously installed at both the abutments and the approach piers. Minimum seismic responses were attained at a damping exponent α = 0.2 and damping coefficient C = 6000 kN/(m/s), demonstrating stability in mitigating vibration effects on arch rings and bearings. In the absence of damper implementation, the lower chord arch foot section is most likely to experience in-plane bending failure. The piers, influenced by the coupling effect between the spandrel construction and the main arch ring, are more susceptible to damage as their height decreases. Additionally, the end bearings are more prone to failure compared to the central-span bearings. Implementation of the preferred damper configuration strategy maintains essentially consistent sequences in seismic-induced damage patterns of the bridge, but the peak ground motion intensity causing damage to the main arch and spandrel structure is significantly increased. This strategy enhances the damage-initiation peak ground acceleration (PGA) for critical sections of the main arch, while concurrently reducing transverse and longitudinal bending moments in pier column sections. The proposed integrated analysis and evaluation framework has been validated for its applicability in capturing the seismic damage patterns of long-span deck-type CFST arch bridges. Full article
Show Figures

Figure 1

25 pages, 14992 KiB  
Article
Microclimate Monitoring Using Multivariate Analysis to Identify Surface Moisture in Historic Masonry in Northern Italy
by Elisabetta Rosina and Hoda Esmaeilian Toussi
Appl. Sci. 2025, 15(15), 8542; https://doi.org/10.3390/app15158542 - 31 Jul 2025
Viewed by 225
Abstract
Preserving historical porous materials requires careful monitoring of surface humidity to mitigate deterioration processes like salt crystallization, mold growth, and material decay. While microclimate monitoring is a recognized preventive conservation tool, its role in detecting surface-specific moisture risks remains underexplored. This study evaluates [...] Read more.
Preserving historical porous materials requires careful monitoring of surface humidity to mitigate deterioration processes like salt crystallization, mold growth, and material decay. While microclimate monitoring is a recognized preventive conservation tool, its role in detecting surface-specific moisture risks remains underexplored. This study evaluates the relationship between indoor microclimate fluctuations and surface moisture dynamics across 13 historical sites in Northern Italy (Lake Como, Valtellina, Valposchiavo), encompassing diverse masonry typologies and environmental conditions. High-resolution sensors recorded temperature and relative humidity for a minimum of 13 months, and eight indicators—including dew point depression, critical temperature–humidity zones, and damp effect indices—were analyzed to assess the moisture risks. The results demonstrate that multivariate microclimate data could effectively predict humidity accumulation. The key findings reveal the impact of seasonal ventilation, thermal inertia, and localized air stagnation on moisture distribution, with unheated alpine sites showing the highest condensation risk. The study highlights the need for integrated monitoring approaches, combining dew point analysis, mixing ratio stability, and buffering performance, to enable early risk detection and targeted conservation strategies. These insights bridge the gap between environmental monitoring and surface moisture diagnostics in porous heritage materials. Full article
(This article belongs to the Special Issue Advanced Study on Diagnostics for Surfaces of Historical Buildings)
Show Figures

Figure 1

24 pages, 5313 KiB  
Article
The Influence of Gravity Gradient on the Inertialess Stratified Flow and Vortex Structure over an Obstacle in a Narrow Channel
by Karanvir Singh Grewal, Roger E. Khayat and Kelly A. Ogden
Fluids 2025, 10(8), 195; https://doi.org/10.3390/fluids10080195 - 29 Jul 2025
Viewed by 290
Abstract
The current study examines the influence of a varying gravity field and its interaction with density stratification. This represents a novel area in baroclinic flow analysis. The classical vortex and internal wave structures in stratified flows are shown to be significantly modified when [...] Read more.
The current study examines the influence of a varying gravity field and its interaction with density stratification. This represents a novel area in baroclinic flow analysis. The classical vortex and internal wave structures in stratified flows are shown to be significantly modified when gravity varies with height. Vortices may shift, stretch, or weaken depending on the direction and strength of gravity variation, and internal waves develop asymmetries or damping that are not present under constant gravity. We examine the influence of gravity variation on the flow of both homogeneous and density-stratified fluids in a channel with topography consisting of a Gaussian obstacle lying at the bottom of the channel. The flow is without inertia, induced by the translation of the top plate. Both the density and gravity are assumed to vary linearly with height, with the minimum density at the moving top plate. The narrow-gap approach is used to generate the flow field in terms of the pressure gradient along the top plate, which, in turn, is obtained in terms of the bottom topography and the three parameters of the problem, namely, the Froude number and the density and gravity gradients. The resulting stream function is a fifth-order polynomial in the vertical coordinate. In the absence of stratification, the flow is smooth, affected rather slightly by the variable topography, with an essentially linear drop in the pressure induced by the contraction. For a weak stratified fluid, the streamlines become distorted in the form of standing gravity waves. For a stronger stratification, separation occurs, and a pair of vortices generally appears on the two sides of the obstacle, the size of which depends strongly on the flow parameters. The influence of gravity stratification is closely coupled to that of density. We examine conditions where the coupling impacts the pressure and the velocity fields, particularly the onset of gravity waves and vortex flow. Only a mild density gradient is needed for flow separation to occur. The influence of the amplitude and width of the obstacle is also investigated. Full article
(This article belongs to the Section Geophysical and Environmental Fluid Mechanics)
Show Figures

Figure 1

20 pages, 8458 KiB  
Article
Characterization of Defects by Non-Destructive Impulse Excitation Technique for 3D Printing FDM Polyamide Materials in Bending Mode
by Fatima-Ezzahrae Jabri, Imi Ochana, François Ducobu, Rachid El Alaiji and Anthonin Demarbaix
Appl. Sci. 2025, 15(15), 8266; https://doi.org/10.3390/app15158266 - 25 Jul 2025
Viewed by 353
Abstract
The presented article analyzes the impact of internal defects on the modal responses of polyamide parts subjected to bending. Samples with defects of various sizes (0, 3, 5, 7, and 10 mm) located at the neutral bending line were tested. Modal properties were [...] Read more.
The presented article analyzes the impact of internal defects on the modal responses of polyamide parts subjected to bending. Samples with defects of various sizes (0, 3, 5, 7, and 10 mm) located at the neutral bending line were tested. Modal properties were measured via an acoustic and a vibration sensor, using impulse excitation and fast Fourier transform (FFT) analysis. Modal properties include peak frequency, damping and amplitude. Non-defective samples show lower peak frequency and stronger amplitude for both detectors. Moreover, defects larger than 3 mm have minimal impact on peak frequency. The vibration detector is more sensitive to delamination presented at 7 and 10 mm defects. In addition, elevated peak frequency at 3 mm is the result of local hardening at the defect edge. Moreover, a neutral line position reduces damping when the defect size approaches 5 mm. Conversely, acoustic detectors ignore delamination and reveal lower damping and amplitude at 7 and 10 mm defects. Furthermore, internal sound diffusion from 3 and 5 mm defects enhances air losses and damping. Acoustic detectors only evaluate fault size and position, whereas vibrational detectors may detect local reinforcement and delamination more easily. These results highlight the importance of choosing the right detector according to the location, size, and specific modal characteristics of defects. Full article
Show Figures

Figure 1

21 pages, 2210 KiB  
Article
Iterative Learning Control for Virtual Inertia: Improving Frequency Stability in Renewable Energy Microgrids
by Van Tan Nguyen, Thi Bich Thanh Truong, Quang Vu Truong, Hong Viet Phuong Nguyen and Minh Quan Duong
Sustainability 2025, 17(15), 6727; https://doi.org/10.3390/su17156727 - 24 Jul 2025
Viewed by 548
Abstract
The integration of renewable energy sources (RESs) into power systems, particularly in microgrids, is becoming a prominent trend aimed at reducing dependence on traditional energy sources. Replacing conventional synchronous generators with grid-connected RESs through power electronic converters has significantly reduced the inertia of [...] Read more.
The integration of renewable energy sources (RESs) into power systems, particularly in microgrids, is becoming a prominent trend aimed at reducing dependence on traditional energy sources. Replacing conventional synchronous generators with grid-connected RESs through power electronic converters has significantly reduced the inertia of microgrids. This reduction negatively impacts the dynamics and operational performance of microgrids when confronted with uncertainties, posing challenges to frequency and voltage stability, especially in a standalone operating mode. To address this issue, this research proposes enhancing microgrid stability through frequency control based on virtual inertia (VI). Additionally, the Iterative Learning Control (ILC) method is employed, leveraging iterative learning strategies to improve the quality of output response control. Accordingly, the ILC-VI control method is introduced, integrating the iterative learning mechanism into the virtual inertia controller to simultaneously enhance the system’s inertia and damping coefficient, thereby improving frequency stability under varying operating conditions. The effectiveness of the ILC-VI method is evaluated in comparison with the conventional VI (C-VI) control method through simulations conducted on the MATLAB/Simulink platform. Simulation results demonstrate that the ILC-VI method significantly reduces the frequency nadir, the rate of change of frequency (RoCoF), and steady-state error across iterations, while also enhancing the system’s robustness against substantial variations from renewable energy sources. Furthermore, this study analyzes the effects of varying virtual inertia values, shedding light on their role in influencing response quality and convergence speed. This research underscores the potential of the ILC-VI control method in providing effective support for low-inertia microgrids. Full article
Show Figures

Figure 1

24 pages, 4323 KiB  
Article
Effective Bulk Modulus in Low-Pressure Pump-Controlled Hydraulic Cylinders
by Petter Gøytil, Michael Rygaard Hansen and Håkon Tvilde
Actuators 2025, 14(8), 366; https://doi.org/10.3390/act14080366 - 24 Jul 2025
Viewed by 295
Abstract
In this paper, the effective bulk modulus of pump-controlled hydraulic cylinders is studied in the context of linear time-invariant modeling and control. Using an experimental test-rig, the minimum expected value of the effective bulk modulus is identified, and its impact on stability and [...] Read more.
In this paper, the effective bulk modulus of pump-controlled hydraulic cylinders is studied in the context of linear time-invariant modeling and control. Using an experimental test-rig, the minimum expected value of the effective bulk modulus is identified, and its impact on stability and achievable performance under feedback control is analyzed. A method for control design and analysis based on a single operating point, analogous to that of what is traditionally utilized in valve-controlled systems, is proposed and validated. It is shown that despite the drastic reduction in the minimum effective bulk modulus occurring in these systems compared to that of valve-controlled cylinders, adequate performance may be achieved under feedback control due to the presence of adequate damping. Two critical modeling aspects commonly neglected in the research literature on these systems are highlighted, and their importance is demonstrated. These results demonstrate the efficacy of linear time-invariant methods in pump-controlled cylinders, as well as the importance of making appropriate modeling decisions, and should therefore be of high relevance to both researchers and engineers working with pump-controlled cylinders. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

26 pages, 1923 KiB  
Review
Review of Energy Dissipation Mechanisms in Concrete: Role of Advanced Materials, Mix Design, and Curing Conditions
by Hadi Bahmani, Hasan Mostafaei and Davood Mostofinejad
Sustainability 2025, 17(15), 6723; https://doi.org/10.3390/su17156723 - 24 Jul 2025
Viewed by 542
Abstract
Concrete structures increasingly face dynamic loading conditions, such as seismic events, vehicular traffic, and environmental vibrations, necessitating enhanced energy dissipation capabilities. The damping ratio, a critical parameter quantifying a material’s ability to dissipate vibrational energy, is typically low in conventional concrete, prompting extensive [...] Read more.
Concrete structures increasingly face dynamic loading conditions, such as seismic events, vehicular traffic, and environmental vibrations, necessitating enhanced energy dissipation capabilities. The damping ratio, a critical parameter quantifying a material’s ability to dissipate vibrational energy, is typically low in conventional concrete, prompting extensive research into strategies for improvement. This review comprehensively explores the impact of advanced concrete types—such as Engineered Cementitious Composites (ECCs), Ultra-High-Performance Concrete (UHPC), High-Performance Concrete (HPC), and polymer concrete—on enhancing the damping behavior. Additionally, key mix design innovations, including fiber reinforcement, rubber powder incorporation, and aggregate modification, are evaluated for their roles in increasing energy dissipation. External factors, particularly curing conditions, are also discussed for their influence on the damping performance. The findings consolidate experimental and theoretical insights into how material composition, mix design, and external treatments interact to optimize dynamic resilience. To guide future research, this paper identifies critical gaps including the need for multi-scale numerical simulation frameworks, standardized damping test protocols, and long-term performance evaluation under realistic service conditions. Advancing work in material innovation, optimized mix design, and controlled curing environments will be essential for developing next-generation concretes with superior vibration control, durability, and sustainability. These insights provide a strategic foundation for applications in seismic-prone and vibration-sensitive infrastructure. Full article
(This article belongs to the Special Issue Advanced Concrete- and Cement-Based Composite Materials)
Show Figures

Figure 1

21 pages, 4524 KiB  
Article
Rotational Influence on Wave Propagation in Semiconductor Nanostructure Thermoelastic Solid with Ramp-Type Heat Source and Two-Temperature Theory
by Sayed M. Abo-Dahab, Emad K. Jaradat, Hanan S. Gafel and Eslam S. Elidy
Axioms 2025, 14(8), 560; https://doi.org/10.3390/axioms14080560 - 24 Jul 2025
Viewed by 326
Abstract
This study investigates the influence of rotation on wave propagation in a semiconducting nanostructure thermoelastic solid subjected to a ramp-type heat source within a two-temperature model. The thermoelastic interactions are modeled using the two-temperature theory, which distinguishes between conductive and thermodynamic temperatures, providing [...] Read more.
This study investigates the influence of rotation on wave propagation in a semiconducting nanostructure thermoelastic solid subjected to a ramp-type heat source within a two-temperature model. The thermoelastic interactions are modeled using the two-temperature theory, which distinguishes between conductive and thermodynamic temperatures, providing a more accurate description of thermal and mechanical responses in semiconductor materials. The effects of rotation, ramp-type heating, and semiconductor properties on elastic wave propagation are analyzed theoretically. Governing equations are formulated and solved analytically, with numerical simulations illustrating the variations in thermal and elastic wave behavior. The key findings highlight the significant impact of rotation, nonlocal parameters e0a, and time derivative fractional order (FO) α on physical quantities, offering insights into the thermoelastic performance of semiconductor nanostructures under dynamic thermal loads. A comparison is made with the previous results to show the impact of the external parameters on the propagation phenomenon. The numerical results show that increasing the rotation rate Ω=5 causes a phase lag of approximately 22% in thermal and elastic wave peaks. When the thermoelectric coupling parameter ε3 is increased from 0.8×1042 to 1.2×1042. The temperature amplitude rises by 17%, while the carrier density peak increases by over 25%. For nonlocal parameter values ε=0.30.6, high-frequency stress oscillations are damped by more than 35%. The results contribute to the understanding of wave propagation in advanced semiconductor materials, with potential applications in microelectronics, optoelectronics, and nanoscale thermal management. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

Back to TopTop