Performance Analysis of Vehicle EM–ISD Suspension Considering Parasitic Damping
Abstract
1. Introduction
2. Dynamic Model of Vehicle EM–ISD Suspension
2.1. The Structure and Principle of the Electromagnetic Inerter
2.2. Vehicle EM–ISD Suspension Model
3. Parameter Optimization
4. Effect of Parasitic Damping on EM–ISD Suspension
5. Performance Analysis of EM–ISD Suspension Considering Parasitic Damping
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Daehn, G.S.; Daehn, K.E.; Kuttner, O. Environmentally Responsible Lightweight Passenger Vehicle Design and Manufacturing. Automot. Innov. 2023, 6, 300–310. [Google Scholar] [CrossRef]
- Dardaei, J.H.; Hölker, J.R.; Komodromos, A.; Tekkaya, A.E. Hybrid Additive Manufacturing of Forming Tools. Automot. Innov. 2023, 6, 311–323. [Google Scholar] [CrossRef]
- Hou, Y.; Min, J.Y.; Lee, M.G. Non-Associated and Non-Quadratic Characteristics in Plastic Anisotropy of Automotive Lightweight Sheet Metals. Automot. Innov. 2023, 6, 364–378. [Google Scholar] [CrossRef]
- Liu, J.; Xia, C.; Jiang, D. Development and Testing of the Power Transmission System of a Crawler Electric Tractor for Greenhouses. Appl. Eng. Agric. 2020, 36, 797–805. [Google Scholar] [CrossRef]
- Han, J.; Wang, F. Design and Testing of a Small Orchard Tractor Driven by a Power Battery. Eng. Agric. 2023, 43, e20220195. [Google Scholar]
- Tao, Y.; Ge, C.; Feng, H.; Xue, H.; Yao, M.; Tang, H.; Liao, Z.; Chen, P. A novel approach for adaptively separating and extracting compound fault features of the in-wheel motor bearing. ISA Trans. 2025, 159, 337–351. [Google Scholar] [CrossRef]
- Feng, H.; Tao, Y.; Feng, J.; Zhang, Y.; Xue, H.; Wang, T.; Xu, X.; Chen, P. Fault-tolerant collaborative control of four-wheel-drive electric vehicle for one or more in-wheel motors’ faults. Sensors 2025, 25, 1540. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, M.; Pan, C.; Wang, C.; Hao, L. Design of MDOF structure with damping enhanced inerter systems. Adv. Inerter-Based Seism. Prot. Struct. 2023, 21, 1685–1711. [Google Scholar] [CrossRef]
- Pan, C.; Zhang, R. Design of structure with inerter system based on stochastic response mitigation ratio. Struct. Control Health Monit. 2018, 25, 2169. [Google Scholar] [CrossRef]
- Zhu, Z.; Yang, Y.; Wang, D.; Cai, Y.; Lai, L. Energy saving performance of agricultural tractor equipped with mechanic-electronic-hydraulic powertrain system. Agriculture 2022, 12, 436. [Google Scholar] [CrossRef]
- Zhu, Z.; Zeng, L.; Chen, L.; Zou, R.; Cai, Y. Fuzzy adaptive energy management strategy for a hybrid agricultural tractor equipped with HMCVT. Agriculture 2022, 12, 1986. [Google Scholar] [CrossRef]
- Liu, H.; Yan, S.; Shen, Y.; Li, C.; Zhang, Y.; Hussain, F. Model predictive control system based on direct yaw moment control for 4WID self-steering agriculture vehicle. Int. J. Agric. Biol. Eng. 2021, 14, 175–181. [Google Scholar] [CrossRef]
- Liang, Z.; Li, Y.; Xu, L.; Zhao, Z.; Tang, Z. Optimum design of an array structure for the grain loss sensor to upgrade its resolution for harvesting rice in a combine harvester. Biosyst. Eng. Vol. 2017, 157, 24–34. [Google Scholar] [CrossRef]
- Xu, X.; Jiang, X.W.; Chen, L.; Wang, F.; Atindana, V.A. Semi-active control of a new quasi-zero stiffness air suspension for commercial vehicles based on event-triggered H∞ dynamic output feedback. Nonlinear Dyn. 2023, 111, 12161–12180. [Google Scholar] [CrossRef]
- Savaresi, S.M.; Silani, E.; Bittanti, S. Acceleration-driven-damper (ADD): An optimal control algorithm for comfort-oriented semiactive suspensions. Am. Soc. Mech. Eng. 2005, 127, 218–229. [Google Scholar] [CrossRef]
- Morselli, R.; Zanasi, R. Control of port Hamiltonian systems by dissipative devices and its application to improve the semi-active suspension behaviour. Mechatronics 2008, 18, 364–369. [Google Scholar] [CrossRef]
- Zhao, J.J.; Liu, P.F.; Leng, D.X.; Zhan, H.Y.; Luan, G.R.; Ning, D.H.; Yu, J.Q. Prescribed performance control-based semi-active vibration controller for seat suspension equipped with an electromagnetic damper. Vibration 2023, 6, 303–318. [Google Scholar] [CrossRef]
- Shen, Y.J.; Chen, A.; Du, F.; Yang, X.F.; Liu, Y.L.; Chen, L. Performance enhancements of semi-active vehicle air ISD suspension. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2024, 239, 2952–2963. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, L.; Wang, R.; Xu, X.; Shen, Y.; Liu, Y. Modeling and test on height adjustment system of electrically-controlled air suspension for agricultural vehicles. Int. J. Agric. Biol. Eng. 2016, 9, 40–47. [Google Scholar]
- Cui, L.F.; Mao, H.P.; Xue, X.Y.; Ding, S.M.; Qiao, B.Y. Optimized design and test for a pendulum suspension of the crop spray boom in dynamic conditions based on a six DOF motion simulator. Int. J. Agric. Biol. Eng. 2018, 11, 76–85. [Google Scholar]
- Cui, L.F.; Xue, X.Y.; Le, F.X.; Mao, H.P.; Ding, S.M. Design and experiment of electro hydraulic active suspension for controlling the rolling motion of spray boom. Int. J. Agric. Biol. Eng. 2019, 12, 72–81. [Google Scholar] [CrossRef]
- Shen, Y.J.; Li, Z.; Tian, X.; Ji, K.; Yang, X.F. Vibration Suppression of the Vehicle Mechatronic ISD Suspension Using the Fractional-Order Biquadratic Electrical Network. Fractal Fract. 2025, 9, 106. [Google Scholar] [CrossRef]
- Smith, M.C. Synthesis of mechanical networks: The inerter. IEEE Trans. Autom. Control 2020, 47, 1648–1662. [Google Scholar] [CrossRef]
- Liu, C.N.; Chen, L.; Lee, H.P.; Yang, Y.; Zhang, X.L. A review of the inerter and inerter-based vibration isolation: Theory, devices, and applications. J. Frankl. Inst. 2022, 359, 7677–7707. [Google Scholar] [CrossRef]
- Yang, X.F.; Zhang, T.Y.; Shen, Y.J.; Liu, Y.L.; Bui, V.C.; Qiu, D.D. Tradeoff analysis of the energy-harvesting vehicle suspension system employing inerter element. Energy 2024, 308, 132841. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, C.N.; Chen, L.; Zhang, X.L. Phase deviation of semi-active suspension control and its compensation with inertial suspension. Acta Mech. Sin. 2024, 40, 523367. [Google Scholar] [CrossRef]
- Liu, X.F.; Jiang, J.Z.; Harrison, A.; Na, X.X. Truck suspension incorporating inerters to minimise road damage. J. Automob. Eng. 2020, 234, 2693–2705. [Google Scholar] [CrossRef]
- Li, X.; Li, F.; Cao, Z.; Yang, L. Vibration Performance of Two-Stage Vehicle Suspension with Inerters. J. Northeast. Univ. (Nat. Sci.) 2019, 40, 1448. [Google Scholar]
- Shen, Y.; Li, J.; Huang, R.; Yang, X.; Chen, J.; Chen, L.; Li, M. Vibration control of vehicle ISD suspension based on the fractional-order SH-GH strategy. Mech. Syst. Signal Process. 2025, 234, 112880. [Google Scholar] [CrossRef]
- Wang, F.C.; Chan, H.A. Vehicle suspensions with a mechatronic network strut. Veh. Syst. Dyn. 2011, 49, 811–830. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, C.N.; Lai, S.-K. Frequency-dependent equivalent impedance analysis for optimizing vehicle inertial suspensions. Nonlinear Dyn. 2024, 113, 9373–9398. [Google Scholar] [CrossRef]
- Yang, X.F.; Zeng, S.C.; Liu, C.N.; Liu, X.F.; Wang, Z.P.; Yang, Y. Optimal Design and Performance Evaluation of HMDV Inertial Suspension Based on Generalized Skyhook Control. Int. J. Struct. Stab. Dyn. 2022, 25, 2550069. [Google Scholar] [CrossRef]
- Yang, X.F.; Yan, Y.; Shen, Y.J.; Liu, X.F.; Wang, Z.P. Optimal Design and Dynamic Performance Analysis of HMDV Suspension Based on Bridge Network. Acta Mech. Sin. 2025, 41, 524208. [Google Scholar] [CrossRef]
- Pantell, R.H. A New Method of Driving-Point Impedance Synthesis; The University of Arizona: Tucson, AZ, USA, 1954; p. 861. [Google Scholar]
- Wang, K.; Chen, M.Z.Q. Passive mechanical realizations of bicubic impedances with no more than five elements for inerter-based control design. J. Frankl. Inst. 2021, 358, 5353–5385. [Google Scholar] [CrossRef]
- Swift, S.J.; Smith, M.C.; Glover, A.R.; Papageorgiou, C.; Gartner, B.; Houghton, N.E. Design and modelling of a fluid inerter. Int. J. Control 2013, 86, 2035–2051. [Google Scholar] [CrossRef]
- Luo, C.; Yang, X.F.; Jia, Z.H.; Liu, C.N. Layout Optimization and Performance Analysis of Vehicle Suspension System Using an Electromagnetic Inerter. World Electr. Veh. J. 2023, 14, 318. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, H. Three-Vector Model Predictive Suspension Force Control for Bearingless Permanent Magnet Slice Motor. IEEE Trans. Power Electron. 2023, 38, 8282–8290. [Google Scholar] [CrossRef]
- Lu, C.; Yang, Z.; Sun, X.; Ding, Q. Modelling and optimization for a special pole bearingless induction motor. Eng. Optim. 2023, 55, 1704–1722. [Google Scholar] [CrossRef]
- Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43. [Google Scholar]
- Guo, J.; Wang, B. Particle Swarm Optimization with Gaussian Disturbance. In Proceedings of the 2017 International Conference on Industrial Informatics—Computing Technology, Intelligent Technology, Industrial Information Integration (ICIICII), Singapore, 27–29 December 2017; pp. 266–269. [Google Scholar]
- Luo, C.; Yang, X.F.; Jia, Z.H.; Liu, C.N.; Yang, Y. The Performance Enhancement of a Vehicle Suspension System Employing an Electromagnetic Inerter. World Electr. Veh. J. 2024, 15, 162. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Cut-off frequency f0/(Hz) | 0.01 |
Vehicle speed v/(m·s−1) | 20 |
Road roughness coefficient G0/(m3·cycle−1) | 256 × 10−6 |
Parameters | Values |
---|---|
Population size | 500 |
Maximum iterations | 400 |
Inertia weight | 0.8 |
Cognitive coefficient | 0.5 |
Social coefficient | 0.5 |
Parameters | Values |
---|---|
Spring stiffness k/(N·m−1) | 35,000 |
Tire stiffness kt/(N·m−1) | 190,000 |
Sprung mass ms/(kg) | 400 |
Unsprung mass mu/(kg) | 45 |
Damping coefficient c/(N·s·m−1) | 1850 |
Parameters | Values |
---|---|
Mechanical inertance coefficient b/(kg) | 54 |
Mechanical damping coefficient c/(N·s·m−1) | 1420 |
Equivalent damping coefficient ce/(N·s·m−1) | 3353 |
Equivalent inertance coefficient be/(kg) | 250 |
Equivalent spring stiffness ke/(N·m−1) | 23.2 |
RMS of Body Acceleration/(m/s2) | RMS of Suspension Working Space/(mm) | RMS of Dynamic Tire Load/(N) | |
---|---|---|---|
EM–ISD suspension | 1.63 | 14.98 | 1088.87 |
Traditional passive suspension | 1.98 | 15.86 | 1088.94 |
Parameters | Values |
---|---|
Coil number of helical tube n/- | 19 |
Rotation radius of the helical tube R/(mm) | 31.8 |
Pitch of the helical tube h/(mm) | 13.2 |
Mechanical inertance coefficient b/(kg) | 119 |
Mechanical damping coefficient c/(N·s·m−1) | 1924 |
Equivalent damping coefficient ce/N·s·m−1) | 2923 |
Equivalent inertance coefficient be/(kg) | 190 |
Equivalent spring stiffness ke/(N·m−1) | 19,611 |
RMS of Body Acceleration/(m/s2) | RMS of Suspension Working Space/(mm) | RMS of Dynamic Tire Load/(N) | |
---|---|---|---|
EM–ISD suspension | 1.76 | 13.07 | 1088.94 |
Traditional passive suspension | 1.98 | 15.86 | 1088.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Z.; Liu, Y.; Shen, Y.; Luo, C.; Yang, X. Performance Analysis of Vehicle EM–ISD Suspension Considering Parasitic Damping. Machines 2025, 13, 690. https://doi.org/10.3390/machines13080690
Jia Z, Liu Y, Shen Y, Luo C, Yang X. Performance Analysis of Vehicle EM–ISD Suspension Considering Parasitic Damping. Machines. 2025; 13(8):690. https://doi.org/10.3390/machines13080690
Chicago/Turabian StyleJia, Zhihong, Yanling Liu, Yujie Shen, Chen Luo, and Xiaofeng Yang. 2025. "Performance Analysis of Vehicle EM–ISD Suspension Considering Parasitic Damping" Machines 13, no. 8: 690. https://doi.org/10.3390/machines13080690
APA StyleJia, Z., Liu, Y., Shen, Y., Luo, C., & Yang, X. (2025). Performance Analysis of Vehicle EM–ISD Suspension Considering Parasitic Damping. Machines, 13(8), 690. https://doi.org/10.3390/machines13080690