Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,249)

Search Parameters:
Keywords = immunosuppressive drugs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3665 KiB  
Communication
Drug Repurposing for Kala-Azar
by Biljana Arsić, Budimir S. Ilić, Andreas Maier, Michael Hartung, Jovana Janjić, Jelena Milićević and Jan Baumbach
Pharmaceutics 2025, 17(8), 1021; https://doi.org/10.3390/pharmaceutics17081021 - 6 Aug 2025
Abstract
Objective: Visceral leishmaniasis (VL), a Neglected Tropical Disease caused by Leishmania donovani, remains insufficiently addressed by current therapies due to high toxicity, poor efficacy, and immunosuppressive complications. This study aimed to identify and characterize repurposed drugs that simultaneously target parasite-encoded and host-associated [...] Read more.
Objective: Visceral leishmaniasis (VL), a Neglected Tropical Disease caused by Leishmania donovani, remains insufficiently addressed by current therapies due to high toxicity, poor efficacy, and immunosuppressive complications. This study aimed to identify and characterize repurposed drugs that simultaneously target parasite-encoded and host-associated mechanisms essential for VL pathogenesis. Methods: Two complementary in silico drug repurposing strategies were employed. The first method utilized electron–ion interaction potential (EIIP) screening followed by molecular docking and molecular dynamics (MD) simulations targeting two L. donovani proteins: Rab5a and pteridine reductase 1 (PTR1). The second approach employed network-based drug repurposing using the Drugst.One platform, prioritizing candidates via STAT3-associated gene networks. Predicted drug–target complexes were validated by 100 ns MD simulations, and pharmacokinetic parameters were assessed via ADMET profiling using QikProp v7.0 and SwissADME web server. Results: Entecavir and valganciclovir showed strong binding to Rab5a and PTR1, respectively, with Glide Scores of −9.36 and −9.10 kcal/mol, and corresponding MM-GBSA ΔG_bind values of −14.00 and −13.25 kcal/mol, confirming their stable interactions and repurposing potential. Network-based analysis identified nifuroxazide as the top candidate targeting the host JAK2/TYK2–STAT3 axis, with high stability confirmed in MD simulations. Nifuroxazide also displayed the most favorable ADMET profile, including oral bioavailability, membrane permeability, and absence of PAINS alerts. Conclusions: This study highlights the potential of guanine analogs such as entecavir and valganciclovir, and the nitrofuran derivative nifuroxazide, as promising multi-target drug repurposing candidates for VL. Their mechanisms support a dual strategy targeting both parasite biology and host immunoregulation, warranting further preclinical investigation. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

42 pages, 939 KiB  
Review
B7-H3 in Cancer Immunotherapy—Prospects and Challenges: A Review of the Literature
by Sylwia Mielcarska, Anna Kot, Miriam Dawidowicz, Agnieszka Kula, Piotr Sobków, Daria Kłaczka, Dariusz Waniczek and Elżbieta Świętochowska
Cells 2025, 14(15), 1209; https://doi.org/10.3390/cells14151209 - 6 Aug 2025
Abstract
In today’s oncology, immunotherapy arises as a potent complement for conventional cancer treatment, allowing for obtaining better patient outcomes. B7-H3 (CD276) is a member of the B7 protein family, which emerged as an attractive target for the treatment of various tumors. The molecule [...] Read more.
In today’s oncology, immunotherapy arises as a potent complement for conventional cancer treatment, allowing for obtaining better patient outcomes. B7-H3 (CD276) is a member of the B7 protein family, which emerged as an attractive target for the treatment of various tumors. The molecule modulates anti-cancer immune responses, acting through diverse signaling pathways and cell populations. It has been implicated in the pathogenesis of numerous malignancies, including melanoma, gliomas, lung cancer, gynecological cancers, renal cancer, gastrointestinal tumors, and others, fostering the immunosuppressive environment and marking worse prognosis for the patients. B7-H3 targeting therapies, such as monoclonal antibodies, antibody–drug conjugates, and CAR T-cells, present promising results in preclinical studies and are the subject of ongoing clinical trials. CAR-T therapies against B7-H3 have demonstrated utility in malignancies such as melanoma, glioblastoma, prostate cancer, and RCC. Moreover, ADCs targeting B7-H3 exerted cytotoxic effects on glioblastoma, neuroblastoma cells, prostate cancer, and craniopharyngioma models. B7-H3-targeting also delivers promising results in combined therapies, enhancing the response to other immune checkpoint inhibitors and giving hope for the development of approaches with minimized adverse effects. However, the strategies of B7-H3 blocking deliver substantial challenges, such as poorly understood molecular mechanisms behind B7-H3 protumor properties or therapy toxicity. In this review, we discuss B7-H3’s role in modulating immune responses, its significance for various malignancies, and clinical trials evaluating anti-B7-H3 immunotherapeutic strategies, focusing on the clinical potential of the molecule. Full article
Show Figures

Figure 1

16 pages, 459 KiB  
Article
Ceftazidime–Avibactam in Critically Ill Patients: A Multicenter Observational Study
by Olivieri Silvia, Sara Mazzanti, Gabriele Gelo Signorino, Francesco Pallotta, Andrea Ficola, Benedetta Canovari, Vanessa Di Muzio, Michele Di Prinzio, Elisabetta Cerutti, Abele Donati, Andrea Giacometti, Francesco Barchiesi and Lucia Brescini
Antibiotics 2025, 14(8), 797; https://doi.org/10.3390/antibiotics14080797 - 5 Aug 2025
Viewed by 40
Abstract
Ceftazidime–avibactam (CAZ-AVI) is a second-generation intravenous β-lactam/β-lactamase inhibitor combination. In recent years, substantial evidence has emerged regarding the efficacy and safety of CAZ-AVI. However, data on its use in critically ill patients remain limited. Background/Objectives: This multicenter, retrospective, observational cohort study was conducted [...] Read more.
Ceftazidime–avibactam (CAZ-AVI) is a second-generation intravenous β-lactam/β-lactamase inhibitor combination. In recent years, substantial evidence has emerged regarding the efficacy and safety of CAZ-AVI. However, data on its use in critically ill patients remain limited. Background/Objectives: This multicenter, retrospective, observational cohort study was conducted across four Intensive Care Units (ICUs) in three hospitals in the Marche region of Italy. The primary objective was to evaluate the 30-day clinical outcomes and identify risk factors associated with 30-day clinical failure—defined as death, microbiological recurrence, or persistence within 30 days after discontinuation of therapy—in critically ill patients treated with CAZ-AVI. Methods: The study included all adult critically ill patients admitted to the participating ICUs between January 2020 and September 2023 who received CAZ-AVI for at least 72 h for the treatment of a confirmed or suspected Gram-negative bacterial (GNB) infection. Results: Among the 161 patients included in the study, CAZ-AVI treatment resulted in a positive clinical outcome (i.e., clinical improvement and 30-day survival) in 58% of cases (n = 93/161), while the overall mortality rate was 24% (n = 38/161). Relapse or persistent infection occurred in a substantial proportion of patients (25%, n = 41/161). Notably, acquired resistance to CAZ-AVI was observed in 26% of these cases, likely due to suboptimal use of the drug in relation to its pharmacokinetic/pharmacodynamic (PK/PD) properties in critically ill patients. Furthermore, treatment failure was more frequent among immunosuppressed individuals, particularly liver transplant recipients. Conclusions: This study demonstrates that the mortality rate among ICU patients treated with this novel antimicrobial combination is consistent with findings from other studies involving heterogeneous populations. However, the rapid emergence of resistance underscores the need for vigilant surveillance and the implementation of robust antimicrobial stewardship strategies. Full article
Show Figures

Figure 1

12 pages, 579 KiB  
Article
In Vivo Safety and Efficacy of Thiosemicarbazones in Experimental Mice Infected with Toxoplasma gondii Oocysts
by Manuela Semeraro, Ghalia Boubaker, Mirco Scaccaglia, Dennis Imhof, Maria Cristina Ferreira de Sousa, Kai Pascal Alexander Hänggeli, Anitha Löwe, Marco Genchi, Laura Helen Kramer, Alice Vismarra, Giorgio Pelosi, Franco Bisceglie, Luis Miguel Ortega-Mora, Joachim Müller and Andrew Hemphill
Biomedicines 2025, 13(8), 1879; https://doi.org/10.3390/biomedicines13081879 - 1 Aug 2025
Viewed by 178
Abstract
Background: Toxoplasma gondii is a globally widespread parasite responsible for toxoplasmosis, a zoonotic disease with significant impact on both human and animal health. The current lack of safe and effective treatments underscores the need for new drugs. Earlier, thiosemicarbazones (TSCs) and their [...] Read more.
Background: Toxoplasma gondii is a globally widespread parasite responsible for toxoplasmosis, a zoonotic disease with significant impact on both human and animal health. The current lack of safe and effective treatments underscores the need for new drugs. Earlier, thiosemicarbazones (TSCs) and their metal complexes have shown promising activities against T. gondii. This study evaluated a gold (III) complex C3 and its TSC ligand C4 for safety in host immune cells and zebrafish embryos, followed by efficacy assessment in a murine model for chronic toxoplasmosis. Methods: The effects on viability and proliferation of murine splenocytes were determined using Alamar Blue assay and BrdU ELISA, and potential effects of the drugs on zebrafish (Danio rerio) embryos were detected through daily light microscopical inspection within the first 96 h of embryo development. The parasite burden in treated versus non-treated mice was measured by quantitative real-time PCR in the brain, eyes and the heart. Results: Neither compound showed immunosuppressive effects on the host immune cells but displayed dose-dependent toxicity on early zebrafish embryo development, suggesting that these compounds should not be applied in pregnant animals. In the murine model of chronic toxoplasmosis, C4 treatment significantly reduced the parasite load in the heart but not in the brain or eyes, while C3 did not have any impact on the parasite load. Conclusions: These results highlight the potential of C4 for further exploration but also the limitations of current approaches in effectively reducing parasite burden in vivo. Full article
(This article belongs to the Section Microbiology in Human Health and Disease)
Show Figures

Figure 1

24 pages, 2217 KiB  
Review
The Clinical Spectrum of Acquired Hypomagnesemia: From Etiology to Therapeutic Approaches
by Matteo Floris, Andrea Angioi, Nicola Lepori, Doloretta Piras, Gianfranca Cabiddu, Antonello Pani and Mitchell H. Rosner
Biomedicines 2025, 13(8), 1862; https://doi.org/10.3390/biomedicines13081862 - 31 Jul 2025
Viewed by 226
Abstract
Hypomagnesemia is a frequent and often underrecognized electrolyte disturbance with important clinical consequences, especially in hospitalized and critically ill patients. This multifactorial condition arises from impaired intestinal absorption, renal magnesium wasting, and the effects of various medications. Magnesium, the second most abundant intracellular [...] Read more.
Hypomagnesemia is a frequent and often underrecognized electrolyte disturbance with important clinical consequences, especially in hospitalized and critically ill patients. This multifactorial condition arises from impaired intestinal absorption, renal magnesium wasting, and the effects of various medications. Magnesium, the second most abundant intracellular cation, is crucial in enzymatic and physiological processes; its deficiency is associated with neuromuscular, cardiovascular, and metabolic complications. This narrative review focuses on the mechanisms and clinical consequences of drug-induced hypomagnesemia, highlighting the major drug classes involved such as diuretics, antibiotics, antineoplastic agents, and immunosuppressants. Management strategies include magnesium supplementation and adjunctive therapies like amiloride and SGLT2 inhibitors to reduce renal magnesium losses. Recognizing and addressing drug-induced hypomagnesemia is essential to improve patient outcomes and prevent long-term complications. Full article
(This article belongs to the Special Issue Advances in Magnesium and Zinc’s Effects on Health and Disease)
Show Figures

Figure 1

11 pages, 448 KiB  
Review
Platelet-Rich Concentrates in the Management of Lichen Planus—A Comprehensive Review
by Zuzanna Ślebioda, Hélène Rangé, Agnieszka Mania-Końsko and Marzena Liliana Wyganowska
J. Clin. Med. 2025, 14(15), 5368; https://doi.org/10.3390/jcm14155368 - 29 Jul 2025
Viewed by 324
Abstract
Background: Oral lichen planus is a chronic, potentially malignant disorder affecting the mucous membrane. As the etiology remains not fully understood, the treatment of this condition is mainly symptomatic, involving corticosteroids and other immunosuppressive agents, e.g., calcineurin inhibitors. One of the alternative therapeutic [...] Read more.
Background: Oral lichen planus is a chronic, potentially malignant disorder affecting the mucous membrane. As the etiology remains not fully understood, the treatment of this condition is mainly symptomatic, involving corticosteroids and other immunosuppressive agents, e.g., calcineurin inhibitors. One of the alternative therapeutic approaches includes platelet concentrates, which are autologous bioactive materials. The aim of this review was to evaluate the effects of platelet concentrates in the treatment of oral lichen planus and to compare them to other therapeutic strategies. Methods: The electronic databases PubMed/Medline, Web of Science, and Cochrane Library were searched for articles published up to 30 March 2025, describing clinical studies focused on oral lichen planus and treatment with platelet concentrates. Results: Fourteen studies describing the effects of oral lichen planus therapy with three types of platelet concentrates (injectable platelet-rich plasma, injectable platelet-rich fibrin, and platelet-rich plasma gel) were included in this review. Comparative strategies included steroids and immunosuppressive agents. The treatment duration ranged from 3 weeks to 2 months. The follow-up period varied from 4 weeks to 6 months. In most of the studies, comparable efficacy was achieved for platelet derivatives and alternative treatments. Two of the studies demonstrated more beneficial effects for platelet concentrates compared to controls, while in one of the studies, more severe adverse reactions were revealed in the platelet group compared to the controls. Conclusions: Autologous platelet concentrates showed comparable efficacy in achieving clinical improvement in patients with oral lichen planus to steroids and immunosuppressive drugs. Platelet derivatives could be considered as an alternative treatment to topical immunosuppressives, especially in steroid-refractory cases. Full article
Show Figures

Figure 1

22 pages, 1892 KiB  
Article
Therapeutic Drug Monitoring of Everolimus Using Volumetric Absorptive Microsampling and Quantitative Dried Blood Spot Methods with LC-MS/MS in Adult Solid Organ Transplant Recipients: An Analytical and Clinical Comparative Study
by Arkadiusz Kocur, Bartosz Olkowski, Mateusz Moczulski, Dorota Miszewska-Szyszkowska, Olga Maria Rostkowska, Katarzyna Polak, Katarzyna Korniluk, Teresa Bączkowska, Magdalena Durlik and Tomasz Pawiński
Molecules 2025, 30(15), 3139; https://doi.org/10.3390/molecules30153139 - 26 Jul 2025
Viewed by 390
Abstract
Everolimus (EVE), an mTOR inhibitor, is widely used in solid organ transplantation (SOT) because of its immunosuppressive properties. Due to its narrow therapeutic window and significant pharmacokinetic variability, therapeutic drug monitoring (TDM) is essential for achieving optimal outcomes. We developed and thoroughly validated [...] Read more.
Everolimus (EVE), an mTOR inhibitor, is widely used in solid organ transplantation (SOT) because of its immunosuppressive properties. Due to its narrow therapeutic window and significant pharmacokinetic variability, therapeutic drug monitoring (TDM) is essential for achieving optimal outcomes. We developed and thoroughly validated a robust LC-MS/MS method to measure EVE levels in venous whole blood (WB) and capillary blood collected using two microsampling devices: Mitra™ (volumetric absorptive microsampling, VAMS) and Capitainer® (quantitative dried blood spot, qDBS). The validation followed EMA and IATDMCT guidelines, assessing linearity (1.27–64.80 ng/mL for WB and 0.50–60 ng/mL for VAMS/qDBS), as well as selectivity, accuracy, precision, matrix effects, recovery, stability, and incurred sample reanalysis. Clinical validation involved 66 matched samples from 33 adult SOT recipients. The method demonstrated high accuracy and precision across all matrices, with no significant carryover or matrix interference. Statistical analysis using Passing–Bablok regression and Bland–Altman plots showed excellent agreement between the microsampling methods and the venous reference. Hematocrit effects were tested both in laboratory conditions and on clinical samples and were found to be negligible. This study provides the first comprehensive analytical and clinical validation of the Mitra and Capitainer devices for EVE monitoring. The validated LC-MS/MS microsampling method supports decentralized, patient-centred TDM, offering a reliable alternative to conventional blood sampling in transplant care. Full article
(This article belongs to the Special Issue Recent Advances in Chromatography for Pharmaceutical Analysis)
Show Figures

Graphical abstract

29 pages, 7357 KiB  
Article
Pan-Cancer Computational Analysis of RKIP (PEBP1) and LKB1 (STK11) Co-Expression Highlights Distinct Immunometabolic Dynamics and Therapeutic Responses Within the Tumor Microenvironment
by Evangelia Skouradaki, Apostolos Zaravinos, Maria Panagopoulou, Ekaterini Chatzaki, Nikolas Dovrolis and Stavroula Baritaki
Int. J. Mol. Sci. 2025, 26(15), 7145; https://doi.org/10.3390/ijms26157145 - 24 Jul 2025
Viewed by 255
Abstract
RKIP and LKB1, encoded by PEBP1 and STK11, respectively, have emerged as key regulators of cancer pathophysiology. However, their role in shaping tumor progression through modulation of the tumor microenvironment (TME) is not yet fully understood. To address this, we performed a [...] Read more.
RKIP and LKB1, encoded by PEBP1 and STK11, respectively, have emerged as key regulators of cancer pathophysiology. However, their role in shaping tumor progression through modulation of the tumor microenvironment (TME) is not yet fully understood. To address this, we performed a comprehensive pan-cancer analysis using TCGA transcriptomic data across 33 cancer types, grouped by their tissue of origin. We investigated PEBP1/STK11 co-expression and its association with transcriptomic reprogramming in major TME components, including immune, mechanical, metabolic, and hypoxic subtypes. Our results revealed both positive and inverse correlations between PEBP1/STK11 co-expression and TME-related molecular signatures, which did not align with classical cancer categorizations. In a subset of tumors, PEBP1/STK11 co-expression was significantly associated with improved overall survival and reduced mortality (HR < 1). Notably, we predominantly observed inverse correlations with pro-inflammatory and immunosuppressive chemokines, immune checkpoints, extracellular matrix components, and key regulators of epithelial-to-mesenchymal transition. In contrast, we found positive associations with anti-inflammatory chemokines and their receptors. Importantly, PEBP1/STK11 co-expression was consistently linked to reduced expression of drug resistance genes and greater chemosensitivity across multiple tumor types. Our findings underscore the co-expression of PEBP1 and STK11 as a promising target for future studies aimed at elucidating its potential as a biomarker for prognosis and therapeutic response in precision oncology. Full article
(This article belongs to the Special Issue Cancer Immunotherapy Biomarkers)
Show Figures

Figure 1

15 pages, 1064 KiB  
Article
Targeting RARγ Decreases Immunosuppressive Macrophage Polarization and Reduces Tumor Growth
by Jihyeon Park, Jisun Oh, Sang-Hyun Min, Ji Hoon Yu, Jong-Sup Bae and Hui-Jeon Jeon
Molecules 2025, 30(15), 3099; https://doi.org/10.3390/molecules30153099 - 24 Jul 2025
Viewed by 281
Abstract
Tumor-associated macrophages (TAMs) play a critical role in the tumor microenvironment (TME), interacting with cancer cells and other components to promote tumor growth. Given the influence of TAMs on tumor progression and resistance to therapy, regulating the activity of these macrophages is crucial [...] Read more.
Tumor-associated macrophages (TAMs) play a critical role in the tumor microenvironment (TME), interacting with cancer cells and other components to promote tumor growth. Given the influence of TAMs on tumor progression and resistance to therapy, regulating the activity of these macrophages is crucial for improving cancer treatment outcomes. TAMs often exhibit immunosuppressive phenotypes (commonly referred to as M2-like macrophages), which suppress immune responses and contribute to drug resistance. Therefore, inhibiting immunosuppressive polarization offers a promising strategy to impede tumor growth. This study revealed retinoic acid receptor gamma (RARγ), a nuclear receptor, as a key regulator of immunosuppressive polarization in THP-1 macrophages. Indeed, the inhibition of RARγ, either by a small molecule or gene silencing, significantly reduced the expression of immunosuppressive macrophage markers. In a three-dimensional tumor spheroid model, immunosuppressive macrophages enhanced the proliferation of HCT116 colorectal cancer cells, which was significantly hindered by RARγ inhibition. These findings suggest that targeting RARγ reprograms immunosuppressive macrophages and mitigates the tumor-promoting effects of TAMs, highlighting RARγ as a promising therapeutic target for developing novel anti-cancer strategies. Full article
Show Figures

Figure 1

34 pages, 2332 KiB  
Review
Treatment of KRAS-Mutated Pancreatic Cancer: New Hope for the Patients?
by Kamila Krupa, Marta Fudalej, Emilia Włoszek, Hanna Miski, Anna M. Badowska-Kozakiewicz, Dominika Mękal, Michał P. Budzik, Aleksandra Czerw and Andrzej Deptała
Cancers 2025, 17(15), 2453; https://doi.org/10.3390/cancers17152453 - 24 Jul 2025
Viewed by 877
Abstract
Pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC), ranks among the most lethal malignancies, with a 5-year survival rate of under 10%. The most prevalent KRAS mutations occur in three hotspot residues: glycine-12 (G12), glycine-13 (G13), and glutamine-61 (Q61), leading to the constant activation [...] Read more.
Pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC), ranks among the most lethal malignancies, with a 5-year survival rate of under 10%. The most prevalent KRAS mutations occur in three hotspot residues: glycine-12 (G12), glycine-13 (G13), and glutamine-61 (Q61), leading to the constant activation of the Ras pathway, making them the primary focus in oncologic drug development. Selective KRAS G12C inhibitors (e.g., sotorasib, adagrasib) have demonstrated moderate efficacy in clinical trials; however, this mutation is infrequent in PDAC. Emerging therapies targeting KRAS G12D and G12V mutations, such as MRTX1133, PROTACs, and active-state inhibitors, show promise in preclinical studies. Pan-RAS inhibitors like ADT-007, RMC-9805, and RMC-6236 compounds provide broader coverage of mutations. Their efficacy and safety are currently being investigated in several clinical trials. A major challenge is the development of resistance mechanisms, including secondary mutations and pathway reactivation. Combination therapies targeting the RAS/MAPK axis, SHP2, mTOR, or SOS1 are under clinical investigation. Immunotherapy alone has demonstrated limited effectiveness, attributed to an immunosuppressive tumor microenvironment, although synergistic effects are noted when paired with KRAS-targeted agents. Furthermore, KRAS mutations reprogram cancer metabolism, enhancing glycolysis, macropinocytosis, and autophagy, which are being explored therapeutically. RNA interference technologies have also shown potential in silencing mutant KRAS and reducing tumorigenicity. Future strategies should emphasize the combination of targeted therapies with metabolic or immunomodulatory agents to overcome resistance and enhance survival in KRAS-mutated PDAC. Full article
Show Figures

Figure 1

18 pages, 968 KiB  
Review
IL-4 and Brentuximab Vedotin in Mycosis Fungoides: A Perspective on Potential Therapeutic Interactions and Future Research Directions
by Mihaela Andreescu, Sorin Ioan Tudorache, Cosmin Alec Moldovan and Bogdan Andreescu
Curr. Issues Mol. Biol. 2025, 47(8), 586; https://doi.org/10.3390/cimb47080586 - 24 Jul 2025
Viewed by 295
Abstract
Background: Mycosis fungoides (MF), the most prevalent cutaneous T cell lymphoma, features clonal CD4⁺ T cell proliferation within a Th2-dominant microenvironment. Interleukin-4 (IL-4) promotes disease progression while Brentuximab Vedotin (BV), an anti-CD30 antibody–drug conjugate, shows efficacy but faces resistance challenges. Methods: We conducted [...] Read more.
Background: Mycosis fungoides (MF), the most prevalent cutaneous T cell lymphoma, features clonal CD4⁺ T cell proliferation within a Th2-dominant microenvironment. Interleukin-4 (IL-4) promotes disease progression while Brentuximab Vedotin (BV), an anti-CD30 antibody–drug conjugate, shows efficacy but faces resistance challenges. Methods: We conducted a narrative literature review (2010–2024) synthesizing evidence on IL-4 signaling and BV’s efficacy in MF to develop a theoretical framework for combination therapy. Results: IL-4 may modulate CD30 expression and compromise BV’s effectiveness through immunosuppressive microenvironment remodeling. Theoretical mechanisms suggest that IL-4 pathway inhibition could reprogram the microenvironment toward Th1 dominance and restore BV sensitivity. However, no direct experimental evidence validates this combination, and safety concerns including potential disease acceleration require careful evaluation. Conclusions: The proposed IL-4/BV combination represents a biologically compelling but unproven hypothesis requiring systematic preclinical validation and biomarker-driven clinical trials. This framework could guide future research toward transforming treatment approaches for CD30-positive MF by targeting both malignant cells and their immunologically permissive microenvironment. Full article
(This article belongs to the Special Issue Future Challenges of Targeted Therapy of Cancers: 2nd Edition)
Show Figures

Figure 1

26 pages, 2610 KiB  
Review
Immunosuppressants/Immunomodulators and Malignancy
by Norishige Iizuka, Yoshihiko Hoshida, Atsuko Tsujii Miyamoto, Hotaka Shigyo, Akira Nishigaichi, Gensuke Okamura and Shiro Ohshima
J. Clin. Med. 2025, 14(14), 5160; https://doi.org/10.3390/jcm14145160 - 21 Jul 2025
Viewed by 616
Abstract
Individuals with immunosuppressive conditions are at a higher risk of developing malignancies than those in the general population. Immunosuppression weakens tumor immunity, hinders the detection of pro-oncogenic cells, and activates oncogenic viruses. Malignancies arising in immunosuppressed patients tend to be aggressive, have a [...] Read more.
Individuals with immunosuppressive conditions are at a higher risk of developing malignancies than those in the general population. Immunosuppression weakens tumor immunity, hinders the detection of pro-oncogenic cells, and activates oncogenic viruses. Malignancies arising in immunosuppressed patients tend to be aggressive, have a high incidence of virus-associated cancers, and are reversible in some cases. Notably, immunosuppressive agents influence the frequency and type of malignancies, as well as their clinicopathological features. Organ transplant recipients receive long-term immunosuppressants to prevent acute rejection. Post-transplant malignancies vary depending on the type of drug administered before the onset of these diseases. Patients with rheumatoid arthritis (RA) are treated with long-term immunosuppressive medications, such as methotrexate (MTX). MTX is widely recognized as being associated with a specific type of lymphoproliferative disorder (LPD), known as MTX-associated LPD. Our recent report indicated that the clinicopathological features of rheumatoid arthritis-associated lymphoproliferative disorder (RA-LPD) also vary based on the other anti-RA agents used, such as tacrolimus and tumor necrosis factor inhibitors. Therefore, the clinicopathological characteristics of post-transplant LPD and RA-LPD evolve alongside the changes in the immunosuppressants/immunomodulators administered. Understanding the various characteristics and time trends of immunosuppressive neoplasms, particularly LPDs, in relation to different immunosuppressant/immunomodulator medications is highly valuable in clinical practice. Full article
(This article belongs to the Special Issue Rheumatoid Arthritis: Clinical Updates on Diagnosis and Treatment)
Show Figures

Figure 1

21 pages, 13833 KiB  
Article
Machine Learning-Based Prognostic Signature in Breast Cancer: Regulatory T Cells, Stemness, and Deep Learning for Synergistic Drug Discovery
by Samina Gul, Jianyu Pang, Yongzhi Chen, Qi Qi, Yuheng Tang, Yingjie Sun, Hui Wang, Wenru Tang and Xuhong Zhou
Int. J. Mol. Sci. 2025, 26(14), 6995; https://doi.org/10.3390/ijms26146995 - 21 Jul 2025
Viewed by 342
Abstract
Regulatory T cells (Tregs) have multiple roles in the tumor microenvironment (TME), which maintain a balance between autoimmunity and immunosuppression. This research aimed to investigate the interaction between cancer stemness and Regulatory T cells (Tregs) in the breast cancer tumor immune microenvironment. Breast [...] Read more.
Regulatory T cells (Tregs) have multiple roles in the tumor microenvironment (TME), which maintain a balance between autoimmunity and immunosuppression. This research aimed to investigate the interaction between cancer stemness and Regulatory T cells (Tregs) in the breast cancer tumor immune microenvironment. Breast cancer stemness was calculated using one-class logistic regression. Twelve main cell clusters were identified, and the subsequent three subsets of Regulatory T cells with different differentiation states were identified as being closely related to immune regulation and metabolic pathways. A prognostic risk model including MEA1, MTFP1, PASK, PSENEN, PSME2, RCC2, and SH2D2A was generated through the intersection between Regulatory T cell differentiation-related genes and stemness-related genes using LASSO and univariate Cox regression. The patient’s total survival times were predicted and validated with AUC of 0.96 and 0.831 in both training and validation sets, respectively; the immunotherapeutic predication efficacy of prognostic signature was confirmed in four ICI RNA-Seq cohorts. Seven drugs, including Ethinyl Estradiol, Epigallocatechin gallate, Cyclosporine, Gentamicin, Doxorubicin, Ivermectin, and Dronabinol for prognostic signature, were screened through molecular docking and found a synergistic effect among drugs with deep learning. Our prognostic signature potentially paves the way for overcoming immune resistance, and blocking the interaction between cancer stemness and Tregs may be a new approach in the treatment of breast cancer. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

28 pages, 8123 KiB  
Article
Human Metabolism of Sirolimus Revisited
by Baharak Davari, Touraj Shokati, Alexandra M. Ward, Vu Nguyen, Jost Klawitter, Jelena Klawitter and Uwe Christians
Metabolites 2025, 15(7), 489; https://doi.org/10.3390/metabo15070489 - 20 Jul 2025
Viewed by 550
Abstract
Background: Sirolimus (SRL, rapamycin) is a clinically important mTOR inhibitor used in immunosuppression, oncology, and cardiovascular drug-eluting devices. Despite its long-standing FDA approval, the human metabolic profile of SRL remains incompletely characterized. SRL is primarily metabolized by CYP3A enzymes in the liver and [...] Read more.
Background: Sirolimus (SRL, rapamycin) is a clinically important mTOR inhibitor used in immunosuppression, oncology, and cardiovascular drug-eluting devices. Despite its long-standing FDA approval, the human metabolic profile of SRL remains incompletely characterized. SRL is primarily metabolized by CYP3A enzymes in the liver and intestine, but the diversity, pharmacokinetics, and biological activity of its metabolites have been poorly explored due to the lack of structurally identified standards. Methods: To investigate SRL metabolism, we incubated SRL with pooled human liver microsomes (HLM) and isolated the resulting metabolites. Structural characterization was performed using high-resolution mass spectrometry (HRMS) and ion trap MSn. We also applied Density Functional Theory (DFT) calculations to assess the energetic favorability of metabolic transformations and conducted molecular dynamics (MD) simulations to model metabolite interactions within the CYP3A4 active site. Results: We identified 21 unique SRL metabolites, classified into five major structural groups: O-demethylated, hydroxylated, didemethylated, di-hydroxylated, and mixed hydroxylated/demethylated derivatives. DFT analyses indicated that certain demethylation and hydroxylation reactions were energetically preferred, correlating with metabolite abundance. MD simulations further validated these findings by demonstrating the favorable orientation and accessibility of key sites within the CYP3A4 binding pocket. Conclusions: This study provides a comprehensive structural map of SRL metabolism, offering mechanistic insights into the formation of its metabolites. Our integrated approach of experimental and computational analyses lays the groundwork for future investigations into the pharmacodynamic and toxicodynamic effects of SRL metabolites on the mTOR pathway. Full article
(This article belongs to the Section Pharmacology and Drug Metabolism)
Show Figures

Figure 1

36 pages, 1483 KiB  
Review
Microbial Crosstalk with Therapy: Pharmacomicrobiomics in AML—One Step Closer to Personalized Medicine
by Aneta Nowicka, Hanna Tomczak, Edyta Szałek, Agnieszka Karbownik and Lidia Gil
Biomedicines 2025, 13(7), 1761; https://doi.org/10.3390/biomedicines13071761 - 18 Jul 2025
Viewed by 613
Abstract
Increasing evidence demonstrates the mutualistic connection between the microbiome and acute myeloid leukemia (AML) treatment. Drugs disrupt the microbial balance and, conversely, changes in the microbiome influence therapy. A new field, pharmacomicrobiomics, examines the role of the microbiome in pharmacokinetics, pharmacodynamics, and drug [...] Read more.
Increasing evidence demonstrates the mutualistic connection between the microbiome and acute myeloid leukemia (AML) treatment. Drugs disrupt the microbial balance and, conversely, changes in the microbiome influence therapy. A new field, pharmacomicrobiomics, examines the role of the microbiome in pharmacokinetics, pharmacodynamics, and drug toxicity. The multimodal therapeutic management of AML, along with disease-related immunosuppression, infection, and malnutrition, creates the unique microbial profile of AML patients, in which every delicate modification plays a crucial role in pharmacotherapy. While both preclinical and real-world data have confirmed a bilateral connection between standard chemotherapy and the microbiome, the impact of novel targeted therapies and immunotherapy remains unknown. Multi-omics technologies have provided qualitative and mechanistic insights into specific compositional and functional microbial signatures associated with the outcomes of AML therapy, but require a large-scale investigation to draw reliable conclusions. In this review, we outline the role of the microbiome within the therapeutic landscape of AML, focusing on the determinants of post-treatment dysbiosis and its effects on the therapeutic response and toxicity. We explore emerging strategies for microbiota modulation, highlighting their safety and efficacy. Advances in microbiome-based approaches are an inevitable step toward precision medicine in AML. However, clinical research in a well-defined group of immunocompromised patients is needed to study their variable effects on human health and determine safety issues. Full article
(This article belongs to the Collection Feature Papers in Microbiology in Human Health and Disease)
Show Figures

Figure 1

Back to TopTop