Drug Repurposing for Kala-Azar
Abstract
1. Introduction
2. Materials and Methods
2.1. Repurposing Method I (EIIP and Molecular Docking)
2.2. Repurposing Method II Using the Online Platform Drugst.One
2.3. Molecular Dynamics Simulations and MM-GBSA Analysis of Protein–Ligand Complexes
2.4. In Silico ADMET Profiling of Repurposed Compounds
3. Results and Discussion
3.1. Repurposing Method I
3.2. Repurposing Method II
3.3. Binding Stability and Mechanistic Insights from Molecular Dynamics Simulations of Repurposed Guanine Analogs Targeting Rab5a and PTR1
3.4. Molecular Dynamics Characterization of Nifuroxazide as a JAK2/TYK2 Inhibitor for STAT3 Pathway Disruption in Visceral Leishmaniasis
3.5. Translational Relevance of ADMET Properties in Repurposed Drug Candidates Identified Through Molecular Dynamics and Network-Based Prioritization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Leishmaniasis. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 18 July 2024).
- Alvarez-Hernandez, D.A.; Rivero-Zambrano, L.; Martinez-Juarez, L.A.; Garcia-Rodriguez-Arana, R. Overcoming the global burden of neglected tropical diseases. Ther. Adv. Infect. Dis. 2020, 7, 2049936120966449. [Google Scholar] [CrossRef] [PubMed]
- Cecílio, P.; Cordeiro-da-Silva, A.; Oliveira, F. Sand flies: Basic information on the vectors of leishmaniasis and their interactions with Leishmania parasites. Commun. Biol. 2022, 5, 305. [Google Scholar] [CrossRef] [PubMed]
- CDC. Leishmanisasis. 2017. Available online: https://www.cdc.gov/leishmaniasis/about/?CDC_AAref_Val=https://www.cdc.gov/parasites/leishmaniasis/index.html (accessed on 18 July 2024).
- ECDC. Phlebotomine Sand Flies—Factsheet for Experts. 2014. Available online: https://www.ecdc.europa.eu/en/disease-vectors/facts/phlebotomine-sand-flies (accessed on 3 August 2025).
- Llanos-Cuentas, A.; Valencia, B.M.; Petersen, C.A. Chapter 13: Neurological manifestations of human leishmaniasis. In Handbook of Clinical Neurology (3rd Series) Neuroparasitology and Tropical Neurology; Garcia, H.H., Tanowitz, H.B., Del Brutto, O.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 193–198. [Google Scholar]
- Hashim, F.A.; Ahmed, A.E.; El Hassan, M.; El Mubarak, M.H.; Yagi, H.; Ibrahim, E.N.; Ali, M.S. Neurologic changes in visceral leishmaniasis. Am. J. Trop. Med. Hyg. 1995, 52, 149–154. [Google Scholar] [CrossRef]
- Krishnamurthy, N.; Grimshaw, A.A.; Axson, S.A.; Choe, S.H.; Miller, J.E. Drug repurposing: A systematic review on root causes, barriers and facilitators. BMC Health Serv. Res. 2022, 22, 970. [Google Scholar] [CrossRef]
- Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 2004, 3, 673–683. [Google Scholar] [CrossRef]
- Deotarse, P.P.; Jain, A.S.; Baile, M.B.; Kolhe, N.S.; Kulkarni, A.A. Drug repositioning: A review. Int. J. Pharm. Sci. Rev. 2015, 4, 51–58. [Google Scholar]
- Ponder, E.L.; Freundlich, J.S.; Sarker, M.; Ekins, S. Computational models for neglected diseases: Gaps and opportunities. Pharm. Res. 2014, 31, 271–277. [Google Scholar] [CrossRef]
- Sanderson, L.; Yardley, V.; Croft, S.L. Activity of anti-cancer protein kinase inhibitors against Leishmania spp. J. Antimicrob. Chemother. 2014, 69, 1888–1891. [Google Scholar] [CrossRef]
- Singh, S.; Sivakumar, R. Challenges and new discoveries in the treatment of leishmaniasis. J. Infect. Chemother. 2004, 10, 307–315. [Google Scholar] [CrossRef]
- Andrade-Neto, V.V.; Cunha-Junior, E.F.; dos Santos Faioes, V.; Martins, T.P.; Silva, R.L.; Leon, L.L.; Torres-Santos, E.C. Leishmaniasis treatment: Update of possibilities for drug repurposing. Front. Biosci Landmrk 2018, 23, 967–996. [Google Scholar]
- Veljkovic, V.; Glisic, S.; Perovic, V.; Veljkovic, M.; Paessler, S. Simple theoretical criterion for selection of natural compounds with anti-COVID-19 activity. Front. Biosci. 2022, 27, 152. [Google Scholar] [CrossRef]
- Arsic, B.; Barber, J.; Cikos, A.; Kadirvel, M.; Kostic, E.; McBain, A.J.; Milicevic, J.; Oates, A.; Regan, A. Computational studies on selected macrolides active against Escherichia coli combined with the NMR study of tylosin A in deuterated chloroform. Molecules 2022, 27, 7280. [Google Scholar] [CrossRef]
- Maier, A.; Hartung, M.; Abovsky, M.; Adamowicz, K.; Bader, G.D.; Baier, S.; Blumenthal, D.B.; Chen, J.; Elkjaer, M.L.; Garcia-Hernandez, C.; et al. Drugst.One-a plug-and-play solution for online systems medicine and network-based drug repurposing. Nucleic Acids Res. 2024, 52, W481–W488. [Google Scholar] [CrossRef]
- DiMasi, J.A.; Hansen, R.W.; Grabowski, H.G. The price of innovation: New estimates of drug development costs. J. Health Econ. 2003, 22, 151–185. [Google Scholar] [CrossRef]
- Veljkovic, V.; Slavic, I. Simple general-model pseudopotential. Phys. Rev. Lett. 1972, 29, 105–107. [Google Scholar] [CrossRef]
- Petrović, S.; Arsić, B.; Zlatanović, I.; Milićević, J.; Glišić, S.; Mitić, M.; Đurović-Pejčev, R.; Stojanović, G. In silico investigation of selected pesticides and their determination in agricultural products using QuEChERS methodology and HPLC-DAD. Int. J. Mol. Sci. 2023, 24, 8003. [Google Scholar] [CrossRef]
- Veljkovic, V.; Veljkovic, N.; Esté, J.A.; Hüther, A.; Dietrich, U. Application of the EIIP/ISM bioinformatics concept in development of new drugs. Curr. Med. Chem. 2007, 14, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Sterling, T.; Irwin, J.J. ZINC 15–Ligand discovery for everyone. J. Chem. Inf. Model. 2015, 55, 2324–2337. [Google Scholar] [CrossRef] [PubMed]
- Zohib, M.; Maheshwari, D.; Pal, R.K.; Freitag-Pohl, S.; Biswal, B.K.; Pohl, E.; Arora, A. Crystal structure of the GDP-bound GTPase domain of Rab5a from Leishmania donovani. Acta Cryst. 2020, F76, 544–556. [Google Scholar]
- Kumar, P.; Kothari, H.; Singh, N. Overexpression in Escherichia coli and purification of pteridine reductase (Ptr1) from a clinical isolate of Leishmania donovani. Protein Expr. Purif. 2004, 38, 228–236. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Y. I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Res. 2015, 43, W174–W181. [Google Scholar] [CrossRef]
- Kaur, J.; Sundar, S.; Singh, N. Molecular docking, structure–activity relationship and biological evaluation of the anticancer drug monastrol as a pteridine reductase inhibitor in a clinical isolate of Leishmania donovani. J. Antimicrob. Chemother. 2010, 65, 1742–1748. [Google Scholar] [CrossRef]
- Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2019, 48, D845–D855. [Google Scholar] [CrossRef]
- Levi, H.; Elkon, R.; Shamir, R. DOMINO: A network-based active module identification algorithm with reduced rate of false calls. Mol. Syst. Biol. 2021, 17, e9593. [Google Scholar] [CrossRef]
- Levi, H.; Rahamanian, N.; Elkon, R.; Shamir, R. The DOMINO web-server for active module identification analysis. Bioinformatics 2022, 38, 2364–2366. [Google Scholar] [CrossRef] [PubMed]
- Xenarios, I.; Salwínski, L.; Duan, X.J.; Higney, P.; Kim, S.-M.; Eisenberg, D. DIP, the Database of Interacting Proteins: A research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 2002, 30, 303–305. [Google Scholar] [CrossRef]
- Luck, K.; Kim, D.-K.; Lambourne, L.; Spirohn, K.; Begg, B.E.; Bian, W.; Brignall, R.; Cafarelli, T.; Campos-Laborie, F.J.; Charloteaux, B.; et al. A reference map of the human binary protein interactome. Nature 2020, 580, 402–420. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; et al. The STRING database in 2017: Quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 2017, 45, D362–D368. [Google Scholar] [CrossRef]
- Huang, J.K.; Carlin, D.E.; Ku Yu, M.; Zhang, W.; Kreisberg, J.F.; Tamayo, P.; Ideker, T. Systematic evaluation of molecular networks for discovery of disease genes. Cell Syst. 2018, 6, 484–495. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Sadegh, S.; Matschinske, J.; Blumenthal, D.B.; Galindez, G.; Kacprowski, T.; List, M.; Nasirigerdeh, R.; Oubounyt, M.; Pichlmair, A.; Rose, T.D.; et al. Exploring the SARS-CoV-2 virus-host-drug interactome for drug repurposing. Nat. Commun. 2020, 11, 3518. [Google Scholar] [CrossRef] [PubMed]
- List, M.; Alcaraz, N.; Dissing-Hansen, M.; Ditzel, H.J.; Mollenhauer, J.; Baumbach, J. KeyPathwayMinerWeb: Online multi-omics network enrichment. Nucleic Acids Res. 2016, 44, W98–W104. [Google Scholar] [CrossRef] [PubMed]
- Wellaway, C.R.; Baldwin, I.R.; Bamborough, P.; Barker, D.; Bartholomew, M.A.; Chung, C.W.; Dümpelfeld, B.; Evans, J.P.; Fazakerley, N.J.; Homes, P.; et al. Investigation of janus kinase (JAK) inhibitors for lung delivery and the importance of aldehyde oxidase metabolism. J. Med. Chem. 2022, 65, 633–664. [Google Scholar] [CrossRef]
- Breinlinger, E.; Van Epps, S.; Friedman, M.; Argiriadi, M.; Chien, E.; Chhor, G.; Cowart, M.; Dunstan, T.; Graff, C.; Hardee, D.; et al. Targeting the tyrosine kinase 2 (TYK2) pseudokinase domain: Discovery of the selective TYK2 inhibitor ABBV-712. J. Med. Chem. 2023, 66, 14335–14356. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Kokubo, H. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations: A cross-docking study. J. Chem. Inf. Model. 2017, 57, 2514–2522. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Markgraf, D.F.; Peplowska, K.; Ungermann, C. Rab cascades and tethering factors in the endomembrane system. FEBS Lett. 2007, 581, 2125–2130. [Google Scholar] [CrossRef]
- Rastogi, R.; Verma, J.K.; Kapoor, A.; Langsley, G.; Mukhopadhyay, A. Rab5 isoforms specifically regulate different modes of endocytosis in Leishmania. J. Biol. Chem. 2016, 291, 14732–14746. [Google Scholar] [CrossRef]
- Mayer, T.U.; Kapoor, T.M.; Haggarty, S.J.; King, R.W.; Schreiber, S.L.; Mitchison, T.J. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 1999, 286, 971–974. [Google Scholar] [CrossRef]
- Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 2004, 47, 1750–1759. [Google Scholar] [CrossRef] [PubMed]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision Glide: docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef]
- Repasky, M.P.; Murphy, R.B.; Banks, J.L.; Greenwood, J.R.; Tubert-Brohman, I.; Bhat, S.; Friesner, R.A. Docking performance of the glide program as evaluated on the Astex and DUD datasets: A complete set of glide SP results and selected results for a new scoring function integrating WaterMap and glide. J. Comput. Aided Mol. Des. 2012, 26, 787–799. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.W.; Choi, J.; Kim, S.U.; Lim, Y.-S. Entecavir versus tenofovir in patients with chronic hepatitis B: Enemies or partners in the prevention of hepatocellular carcinoma. Clin. Mol. Hepatol. 2021, 27, 402–412. [Google Scholar] [CrossRef]
- Barrack, K.L.; Tulloch, L.B.; Burke, L.-A.; Fyfe, P.K.; Hunter, W.N. Structure of recombinant Leishmania donovani pteridine reductase reveals a disordered active site. Acta Cryst. 2011, F67, 33–37. [Google Scholar]
- Yang, J.; Zhang, Y. Protein structure and function prediction using I-TASSER. Curr. Protoc. Bioinform. 2015, 52, 5.8.1–5.8.15. [Google Scholar] [CrossRef]
- Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007, 35, W407–W410. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–592. [Google Scholar] [CrossRef]
- Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021, 373, 871–876. [Google Scholar] [CrossRef]
- Poole, C.L.; James, S.H. Antiviral therapies for herpesviruses: Current agents and new directions. Clin. Ther. 2018, 40, 1282–1298. [Google Scholar] [CrossRef]
- Nico, D.; Conde, L.; Palatnik de Sousa, C.B. Classical and modern drug treatments for leishmaniasis, Topics in Medicinal Chemistry. In Antiprotozoal Drug Development and Delivery; Vermelho, A.B., Supuran, C.T., Eds.; Springer Nature: Cham, Switzerland, 2022; Volume 39, pp. 1–21. [Google Scholar]
- Biswas, A.; Bhattacharya, A.; Kar, S.; Das, P.K. Expression of IL-10-triggered STAT3-dependent IL-4Rα is required for induction of arginase 1 in visceral leishmaniasis. Eur. J. Immunol. 2011, 41, 992–1003. [Google Scholar] [CrossRef]
- Althagafy, H.S.; Abd El-Aziz, M.K.; Ibrahim, I.M.; Abd-alhameed, E.K.; Hassanein, E.H.M. Pharmacological updates of nifuroxazide: Promising preclinical effects and the underlying molecular mechanisms. Eur. J. Pharmacol. 2023, 951, 175776. [Google Scholar] [CrossRef]
- Rando, D.G.; Avery, M.A.; Tekwani, B.L.; Khan, S.I.; Ferriera, E.I. Antileishmanial activity screening of 5-nitro-2-heterocyclic benzylidene hydrazides. Bioorg. Med. Chem. 2008, 16, 6724–6731. [Google Scholar] [CrossRef]
- Nelson, E.A.; Walker, S.R.; Kepich, A.; Gashin, L.B.; Hideshima, T.; Ikeda, H.; Chauhan, D.; Anderson, K.C.; Frank, D.A. Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3. Blood 2008, 112, 5095–5102. [Google Scholar] [CrossRef]
- Yang, F.; Hu, M.; Lei, Q.; Xia, Y.; Zhu, Y.; Song, X.; Li, Y.; Jie, H.; Liu, C.; Xiong, Y.; et al. Nifuroxazide induces apoptosis and impairs pulmonary metastasis in breast cancer model. Cell Death Dis. 2015, 6, e1701. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Ye, T.; Yu, X.; Lei, Q.; Yang, F.; Xia, Y.; Song, X.; Liu, L.; Deng, H.; Gao, T.; et al. Nifuroxazide exerts potent anti-tumor and anti-metastasis activity in melanoma. Sci. Rep. 2016, 6, 20253. [Google Scholar] [CrossRef]
- Ye, T.H.; Yang, F.F.; Zhu, Y.X.; Li, Y.L.; Lei, Q.; Song, X.J.; Xia, Y.; Xiong, Y.; Zhang, L.D.; Wang, N.Y.; et al. Inhibition of Stat3 signaling pathway by nifuroxazide improves antitumor immunity and impairs colorectal carcinoma metastasis. Cell Death Dis. 2017, 8, e2534. [Google Scholar] [CrossRef]
- Samant, M.; Sahu, U.; Pandey, S.C.; Khare, P. Role of cytokines in experimental and human visceral leishmaniasis. Front. Cell. Infect. Microbiol. 2021, 11, 624009. [Google Scholar] [CrossRef] [PubMed]
- Heppler, L.N.; Attarha, S.; Persaud, R.; Brown, J.I.; Wang, P.; Petrova, B.; Tošić, I.; Burton, F.B.; Flamand, Y.; Walker, S.R.; et al. The antimicrobial drug pyrimethamine inhibits STAT3 transcriptional activity by targeting the enzyme dihydrofolate reductase. J. Biol Chem. 2022, 298, 101531. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Duan, L.; He, Q.; Zhang, Z.; Zhou, Y.; Wu, D.; Pan, J.; Pei, D.; Ding, K. Identification of niclosamide as a new small-molecule inhibitor of the STAT3 signaling pathway. ACS Med. Chem. Lett. 2010, 1, 454–459. [Google Scholar] [CrossRef]
- Edler, E.; Stein, M. Probing the druggability of membrane-bound Rab5 by molecular dynamics simulations. J. Enzyme Inhib. Med. Chem. 2017, 32, 434–443. [Google Scholar] [CrossRef]
- Verma, J.K.; Rastogi, R.; Mukhopadhyay, A. Leishmania donovani resides in modified early endosomes by upregulating Rab5a expression via the downregulation of miR-494. PLoS Pathog. 2017, 13, e1006459. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, Y.; Zhong, L.Y.; Yu, N.N.; Ouyang, L.; Fang, R.D.; Wang, Y.; He, Q.Y. Structure-based discovery of neoandrographolide as a novel inhibitor of Rab5 to suppress cancer growth. Comput. Struct. Biotechnol. J. 2020, 18, 3936–3946. [Google Scholar] [CrossRef]
- Takeda, M.; Koseki, J.; Takahashi, H.; Miyoshi, N.; Nishida, N.; Nishimura, J.; Hata, T.; Matsuda, C.; Mizushima, T.; Yamamoto, H.; et al. Disruption of endolysosomal RAB5/7 efficiently eliminates colorectal cancer stem cells. Cancer Res. 2019, 79, 1426–1437. [Google Scholar] [CrossRef] [PubMed]
- Dello Iacono, L.; Di Pisa, F.; Mangani, S. Crystal structure of the ternary complex of Leishmania major pteridine reductase 1 with the cofactor NADP+/NADPH and the substrate folic acid. Acta Crystallogr. F Struct. Biol. Commun. 2022, 78, 170–176. [Google Scholar] [CrossRef]
- Gourley, D.G.; Schüttelkopf, A.W.; Leonard, G.A.; Luba, J.; Hardy, L.W.; Beverley, S.M.; Hunter, W.N. Pteridine reductase mechanism correlates pterin metabolism with drug resistance in trypanosomatid parasites. Nat. Struct. Biol. 2001, 8, 521–525. [Google Scholar] [CrossRef]
- Arthur, M.N.; Hanson, G.; Broni, E.; Sakyi, P.O.; Mensah-Brown, H.; Miller, W.A.; Kwofie, S.K. Natural product identification and molecular docking studies of Leishmania major pteridine reductase inhibitors. Pharmaceuticals 2025, 18, 6. [Google Scholar] [CrossRef]
- Di Pisa, F.; Landi, G.; Dello Iacono, L.; Pozzi, C.; Borsari, C.; Ferrari, S.; Santucci, M.; Santarem, N.; Cordeiro-da-Silva, A.; Moraes, C.B.; et al. Chroman-4-one derivatives targeting pteridine reductase 1 and showing anti-parasitic activity. Molecules 2017, 22, 426. [Google Scholar] [CrossRef]
- Avila, J.L.; Rojas, T.; Avila, A.; Polegre, M.A.; Robins, R.K. Biological activity of analogs of guanine and guanosine against American Trypanosoma and Leishmania spp. Antimicrob. Agents Chemother. 1987, 31, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Rainey, P.; Santi, D.V. Metabolism and mechanism of action of formycin B in Leishmania. Proc. Natl. Acad. Sci. USA 1983, 80, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Intakhan, N.; Saeung, A.; Rodrigues Oliveira, S.M.; Pereira, M.L.; Chanmol, W. Synergistic effects of artesunate in combination with amphotericin B and miltefosine against Leishmania infantum: Potential for dose reduction and enhanced therapeutic strategies. Antibiotics 2024, 13, 806. [Google Scholar] [CrossRef]
- van Griensven, J.; Dorlo, T.P.; Diro, E.; Costa, C.; Burza, S. The status of combination therapy for visceral leishmaniasis: An updated review. Lancet Infect. Dis. 2024, 24, e36–e46. [Google Scholar] [CrossRef] [PubMed]
- Maya, J.D.; Cassels, B.K.; Iturriaga-Vásquez, P.; Ferreira, J.; Faúndez, M.; Galanti, N.; Ferreira, A.; Morello, A. Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host. Comp. Biochem. Physiol. A 2007, 146, 601–620. [Google Scholar] [CrossRef]
- Saayman, M.; Kannigadu, C.; Aucamp, J.; Janse van Rensburg, H.D.; Joseph, C.; Swarts, A.J.; N’Da, D.D. Design, synthesis, electrochemistry and anti-trypanosomatid hit/lead identification of nitrofuranylazines. RSC Med. Chem. 2023, 14, 2012–2029. [Google Scholar] [CrossRef] [PubMed]
- Ojha, A.A.; Srivastava, A.; Votapka, L.W.; Amaro, R.E. Selectivity and ranking of tight-binding JAK-STAT inhibitors using Markovian milestoning with Voronoi tessellations. J. Chem. Inf. Model. 2023, 63, 2469–2482. [Google Scholar] [CrossRef]
- Lucet, I.S.; Fantino, E.; Styles, M.; Bamert, R.; Patel, O.; Broughton, S.E.; Walter, M.; Burns, C.J.; Treutlein, H.; Wilks, A.F.; et al. The structural basis of janus kinase 2 inhibition by a potent and specific pan-janus kinase inhibitor. Blood 2006, 107, 176–183. [Google Scholar] [CrossRef]
- Zuma, N.H.; Aucamp, J.; N’Da, D.D. An update on derivatisation and repurposing of clinical nitrofuran drugs. Eur. J. Pharm. Sci. 2019, 140, 105092. [Google Scholar] [CrossRef]
- Wrobleski, S.T.; Moslin, R.; Lin, S.; Zhang, Y.; Spergel, S.; Kempson, J.; Tokarski, J.S.; Strnad, J.; Zupa-Fernandez, A.; Cheng, L.; et al. Highly selective inhibition of tyrosine kinase 2 (TYK2) for the treatment of autoimmune diseases: Discovery of the allosteric inhibitor BMS-986165. J. Med. Chem. 2019, 62, 8973–8995. [Google Scholar] [CrossRef]
- Meanwell, N.A. The pyridazine heterocycle in molecular recognition and drug discovery. Med. Chem Res. 2023, 32, 1853–1921. [Google Scholar] [CrossRef] [PubMed]
- Moslin, R.; Zhang, Y.; Wrobleski, S.T.; Lin, S.; Mertzman, M.; Spergel, S.; Tokarski, J.S.; Strnad, J.; Gillooly, K.; McIntyre, K.W.; et al. Identification of N-methyl nicotinamide and N-methyl pyridazine-3-carboxamide pseudokinase domain ligands as highly selective allosteric inhibitors of tyrosine kinase 2 (TYK2). J. Med. Chem. 2019, 62, 8953–8972. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, X.; Shen, R.; Wang, X.; Zhang, F.; Liu, S.; Li, D.; Liu, J.; Li, P.; Yan, Y.; et al. Novel small molecule tyrosine kinase 2 pseudokinase ligands block cytokine-induced TYK2-mediated signaling pathways. Front. Immunol. 2022, 13, 884399. [Google Scholar] [CrossRef]
- Hu, X.; Li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct. Target. Ther. 2021, 6, 402. [Google Scholar] [CrossRef]
- Zaro, J.L. Lipid-based drug carriers for prodrugs to enhance drug delivery. AAPS J. 2015, 17, 83–92. [Google Scholar] [CrossRef]
- Jung, H.J.; Ho, M.J.; Ahn, S.; Han, Y.T.; Kang, M.J. Synthesis and physicochemical evaluation of entecavir-fatty acid conjugates in reducing food effect on intestinal absorption. Molecules 2018, 23, 731. [Google Scholar] [CrossRef] [PubMed]
- Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 2010, 53, 2719–2740. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Li, W.; Liu, G.; Tang, Y. In silico ADMET prediction: Recent advances, current challenges and future trends. Curr. Top. Med. Chem. 2013, 13, 1273–1289. [Google Scholar] [CrossRef] [PubMed]
Drugs | EIIP (Ry) | Glide Score (kcal/mol) | ΔG_bind (kcal/mol) | Use |
---|---|---|---|---|
Entecavir | −0.0546 | −9.360 | −14.00 | Antiviral |
Acyclovir | −0.1054 | −8.513 | −9.32 | Antiviral |
Gancyclovir | −0.0988 | −8.132 | −10.42 | Antiviral |
Eltrombopag | −0.0508 | −7.830 | −12.48 | TPO receptor agonist |
Zileuton | −0.0439 | −7.808 | −10.90 | Anti-inflammatory |
GTP | −0.0461 | −9.094 | −13.04 | Reference ligand |
Drugs | EIIP (Ry) | Glide Score (kcal/mol) | ΔG_bind (kcal/mol) | Use |
---|---|---|---|---|
Valganciclovir | −0.0196 | −9.097 | −13.25 | Antiviral |
(S)-Rosiglitazone | −0.0266 | −8.327 | −11.14 | Antidiabetic |
Fosclevudine alafenamide | −0.0264 | −7.574 | −12.85 | Antiviral |
Apixaban | −0.0246 | −7.146 | −10.00 | Anticoagulant |
Zebinix | −0.0239 | −6.986 | −11.56 | Antiepileptic |
Interactome Used | Algorithm Used | Databases Used | Drugs (to Be Considered)-STAT3 |
---|---|---|---|
STRING | Network Proximity | NeDRex | nifuroxazide |
STRING | Network Proximity | STRING (P-P), NeDRex (D-P, D-D), DisGeNET (P-D) | nifuroxazide |
STRING | Harmonic Centrality | NeDRex | ouabain, digoxin, niclosamide, digitoxin, nifuroxazide |
STRING | TrustRank | NeDRex | ouabain, digoxin, niclosamide, digitoxin, nifuroxazide |
STRING | TrustRank | IntAct (P-P), ChEMBL (D-P), DisGeNET (P-D), DrugCentral (D-D) | diosmin, acetylcysteine, nifuroxazide, pyrimethamine |
STRING | Harmonic Centrality | IntAct (P-P), ChEMBL (D-P), DisGeNET (P-D), DrugCentral (D-D) | acetylcysteine, diosmin, nifuroxazide, pyrimethamine |
STRING | Degree Centrality | IntAct (P-P), ChEMBL (D-P), DisGeNET (P-D), DrugCentral (D-D) | nifuroxazide, pyrimethamine, acetylcysteine, diosmin |
STRING | Network Proximity | IntAct (P-P), ChEMBL (D-P), DisGeNET (P-D), DrugCentral (D-D) | ciglitazone, genistein, pyrimethamine, acetylcysteine, diosmin, nifuroxazide |
PCNet | Network Proximity | IntAct (P-P), ChEMBL (D-P), DisGeNET (P-D), DrugCentral (D-D) | diosmin, acetylcysteine, pyrimethamine, nifuroxazide |
STRING | TrustRank | NeDRex (unapproved as well) | ouabain, niclosamide, digoxin, nifuroxazide, digitoxin |
STRING | Harmonic Centrality | NeDRex (unapproved as well) | ouabain, digitoxin, niclosamide, digoxin, nifuroxazide |
STRING | Degree Centrality | NeDRex (unapproved as well) | niclosamide, digoxin, nifuroxazide, digitoxin, ouabain |
STRING | TrustRank | STRING (P-P), NeDRex (D-P, D-D), DisGenet (P-D) (unapproved as well) | digitoxin, niclosamide, ouabain, nifuroxazide, digoxin |
STRING | Harmonic Centrality | STRING (P-P), NeDRex (D-P, D-D), DisGenet (P-D) (unapproved as well) | niclosamide, ouabain, digitoxin, nifuroxazide, digoxin |
STRING | Degree Centrality | STRING (P-P), NeDRex (D-P, D-D), DisGenet (P-D) (unapproved as well) | niclosamide, ouabain, digitoxin, nifuroxazide, digoxin |
STRING | Network Proximity | NeDRex (unapproved as well) | nifuroxazide |
STRING | Network Proximity | STRING (P-P), NeDRex (D-P, D-D), DisGenet (P-D) (unapproved as well) | nifuroxazide |
PCNet | Network Proximity | STRING (P-P), NeDRex (D-P, D-D), DisGenet (P-D) (unapproved as well) | nifuroxazide |
STRING | TrustRank | IntAct (P-P), ChEMBL (D-P), DisGeNET (P-D), DrugCentral (D-D) (unapproved as well) | diosmin, umifenovir, ciglitazone, nifuroxazide, acetylcysteine, pyrimethamine, genistein, aniracetam, chlorogenic acid, salvianolic acid A |
STRING | Harmonic Centrality | IntAct (P-P), ChEMBL (D-P), DisGeNET (P-D), DrugCentral (D-D) (unapproved as well) | genistein, acetylcysteine, umifenovir, pyrimethamine, salvianolic acid A, nifuroxazide, ciglitazone, aniracetam, chlorogenic acid, diosmin |
STRING | Degree Centrality | IntAct (P-P), ChEMBL (D-P), DisGeNET (P-D), DrugCentral (D-D) (unapproved as well) | aniracetam, genistein, pyrimethamine, chlorogenic acid, acetylcysteine, nifuroxazide, umifenovir, salvianolic acid A, diosmin, ciglitazone |
STRING | Network Proximity | IntAct (P-P), ChEMBL (D-P), DisGeNET (P-D), DrugCentral (D-D) (unapproved as well) | aniracetam, nifuroxazide, umifenovir |
PCNet | Network Proximity | IntAct (P-P), ChEMBL (D-P), DisGeNET (P-D), DrugCentral (D-D) (unapproved as well) | umifenovir, aniracetam |
Parameters | Entecavir | Valganciclovir | Nifuroxazide |
---|---|---|---|
MW | 277.3 | 354.4 | 275.2 |
RB | 4 | 11 | 6 |
DM | 7.4 | 10.6 | 6.9 |
MV | 844.0 | 1097.6 | 862.2 |
DHB | 5 | 6 | 2 |
AHB | 8.9 | 11.9 | 4.8 |
PSA | 140.2 | 182.2 | 128.0 |
logP | −1.1 | −1.6 | 1.3 |
logS | −2.3 | −1.0 | −3.3 |
PCaco | 22.6 | 3.8 | 62.9 |
PM | 4 | 5 | 2 |
%HOA | 45 | 2 | 67 |
VRF | 0 | 2 | 0 |
VRT | 1 | 1 | 0 |
PAINS | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arsić, B.; Ilić, B.S.; Maier, A.; Hartung, M.; Janjić, J.; Milićević, J.; Baumbach, J. Drug Repurposing for Kala-Azar. Pharmaceutics 2025, 17, 1021. https://doi.org/10.3390/pharmaceutics17081021
Arsić B, Ilić BS, Maier A, Hartung M, Janjić J, Milićević J, Baumbach J. Drug Repurposing for Kala-Azar. Pharmaceutics. 2025; 17(8):1021. https://doi.org/10.3390/pharmaceutics17081021
Chicago/Turabian StyleArsić, Biljana, Budimir S. Ilić, Andreas Maier, Michael Hartung, Jovana Janjić, Jelena Milićević, and Jan Baumbach. 2025. "Drug Repurposing for Kala-Azar" Pharmaceutics 17, no. 8: 1021. https://doi.org/10.3390/pharmaceutics17081021
APA StyleArsić, B., Ilić, B. S., Maier, A., Hartung, M., Janjić, J., Milićević, J., & Baumbach, J. (2025). Drug Repurposing for Kala-Azar. Pharmaceutics, 17(8), 1021. https://doi.org/10.3390/pharmaceutics17081021