Immunosuppressants/Immunomodulators and Malignancy
Abstract
1. Introduction
2. Immunosuppressive Agents and Organ Transplantation
2.1. Post-Solid Organ Transplantation Malignancy and Immunosuppressive Agents (Figure 1)
2.1.1. Azathioprine (AZ) Era
2.1.2. Calcineurin Inhibitor (CNI) Era
2.1.3. Mammalian Target of Rapamycin (mTOR) Inhibitor Era
2.1.4. Mycophenolic Acid (MPA)/Mycophenolate Mofetil (MMF)
2.1.5. Immunosuppressants for Transplant Induction Therapy
2.2. Post-Transplantation Lymphoproliferative Disorders (PT-LPD) and Immunosuppressive Agents (Figure 1)
2.3. Central Nervous System (CNS) Lymphoma
2.4. Time Trends According to Changes in Immunosuppressants
3. Anti-RA Agents and Malignancy
3.1. Malignancy in Patients with RA and Anti-RA Agents
3.1.1. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)
3.1.2. Conventional Synthetic DMARD (csDMARD)
Methotrexate (MTX)
Tacrolimus (TAC)
Other csDMARD
3.1.3. Biologic DMARDs (bDMARDs)
Tumor Necrosis Factor Inhibitors (TNFis)
Rituximab (RTX)
Abatacept (ABT)
Tocilizumab (TCZ)
3.1.4. Targeted Synthetic DMARDs (tsDAMRDs)
Janus Kinase Inhibitors (JAKis)
3.2. Time Trends of Malignancy in Patients with RA
4. Rheumatoid Arthritis Associated Lymphoproliferative Disorders (RA-LPDs) and Anti-RA Agents (Figure 2)
4.1. Pre-MTX Era Conventional Therapy and RA-LPD
4.1.1. Conventional Synthetic DMARD (csDMARD) and RA-LPD
4.1.2. Biologic DMARDs (bDMARDs) and RA-LPD
4.1.3. Targeted Synthetic DMARDs (tsDMARDs) and RA-LPD
4.2. EBV Status and RA-LPD
4.3. Time Trends of RA-LPD According to Changes in Anti-Rheumatic Agents
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Engels, E.A.; Pfeiffer, R.M.; Fraumeni, J.F., Jr.; Kasiske, B.L.; Israni, A.K.; Snyder, J.J.; Wolfe, R.A.; Goodrich, N.P.; Bayakly, A.R.; Clarke, C.A.; et al. Spectrum of cancer risk among US solid organ transplant recipients. JAMA 2011, 306, 1891–1901. [Google Scholar] [CrossRef] [PubMed]
- Bhat, M.; Mara, K.; Dierkhising, R.; Watt, K.D.S. Immunosuppression, race, and donor-related risk factors affect de novo cancer incidence across solid organ transplant recipients. Mayo Clin. Proc. 2018, 93, 1236–1246. [Google Scholar] [CrossRef] [PubMed]
- Grulich, A.E.; van Leeuwen, M.T.; Falster, M.O.; Vajdic, C.M. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: A meta-analysis. Lancet 2007, 370, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Swerdlow, S.H.; Campo, E.; Harris, N.L.; Jaffe, E.S.; Pileri, S.A.; Stein, H.; Thiele, J.; Arber, D.A.; Hasserjian, R.P.; Le Beau, M.M.; et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th ed.; IARC: Lyon, France, 2017; pp. 443–464. [Google Scholar]
- Doycheva, L.; Amer, S.; Watt, K.D. De novo malignancies after transplantation: Risk and surveillance strategies. Med. Clin. N. Am. 2016, 100, 551–567. [Google Scholar] [CrossRef] [PubMed]
- Starzl, T.E.; Nalesnik, M.A.; Porter, K.A.; Ho, M.; Iwatsuki, S.; Griffith, B.P.; Rosenthal, J.T.; Hakala, T.R.; Shaw, B.W., Jr.; Hardesty, R.L.; et al. Reversibility of lymphomas and lymphoproliferative lesions developing under cyclosporin-steroid therapy. Lancet 1984, 1, 583–587. [Google Scholar] [CrossRef] [PubMed]
- Otley, C.C.; Coldiron, B.M.; Stasko, T.; Goldman, G.D. Decreased skin cancer after cessation of therapy with transplant-associated immunosuppressants. Arch. Dermatol. 2001, 137, 459–463. [Google Scholar] [PubMed]
- Penn, I. Kaposi’s sarcoma in immunosuppressed patients. J. Clin. Lab. Immunol. 1983, 12, 1–10. [Google Scholar] [PubMed]
- Friedlaender, M.M.; Rubinger, D.; Rosenbaum, E.; Amir, G.; Siguencia, E. Temporary regression of Merkel cell carcinoma metastases after cessation of cyclosporine. Transplantation 2002, 73, 1849–1850. [Google Scholar] [CrossRef] [PubMed]
- Elder, G.J.; Hersey, P.; Branley, P. Remission of transplanted melanoma—Clinical course and tumour cell characterisation. Clin. Transplant. 1997, 11, 565–568. [Google Scholar] [CrossRef] [PubMed]
- Chuang, F.R.; Hsieh, H.; Hsu, K.T.; Huang, H.F. Increasing transplant cancer patient survival by conversion of immunosuppressive agents. Transplant. Proc. 1996, 28, 1346–1347. [Google Scholar] [PubMed]
- de Jong, D.; Chan, J.K.C.; Coupland, S.E.; Naresh, K.N.; Siebert, R. Lymphoid proliferations and lymphomatous associated with immune deficiency and dysregulation: Introduction. In WHO Classification of Tumours Editorial Board. Haematolymphoid Tumoures, 5th ed.; The WHO Classification of Tumours Editorial Board, Ed.; IARC: Lyon, France, 2024; pp. 549–554. [Google Scholar]
- Wang, J.H.; Pfeiffer, R.M.; Musgrove, D.; Castenson, D.; Fredrickson, M.; Miller, J.; Gonsalves, L.; Hsieh, M.C.; Lynch, C.F.; Zeng, Y.; et al. Cancer mortality among solid organ transplant recipients in the United States during 1987–2018. Transplantation 2023, 107, 2433–2442. [Google Scholar] [CrossRef] [PubMed]
- Cherikh, W.S.; Kauffman, H.M.; McBride, M.A.; Maghirang, J.; Swinnen, L.J.; Hanto, D.W. Association of the type of induction immunosuppression with posttransplant lymphoproliferative disorder, graft survival, and patient survival after primary kidney transplantation. Transplantation 2003, 76, 1289–1293. [Google Scholar] [CrossRef] [PubMed]
- Caillard, S.; Dharnidharka, V.; Agodoa, L.; Bohen, E.; Abbott, K. Posttransplant lymphoproliferative disorders after renal transplantation in the United States in era of modern immunosuppression. Transplantation 2005, 80, 1233–1243. [Google Scholar] [CrossRef] [PubMed]
- Howard, R.J.; Patton, P.R.; Reed, A.I.; Hemming, A.W.; Van der Werf, W.J.; Pfaff, W.W.; Srinivas, T.R.; Scornik, J.C. The changing causes of graft loss and death after kidney transplantation. Transplantation 2002, 73, 1923–1928. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.P.; Klein, C.L. Posttransplant malignancy. Surg. Clin. N. Am. 2019, 99, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Hoshida, Y.; Tsukuma, H.; Yasunaga, Y.; Xu, N.; Fujita, M.Q.; Satoh, T.; Ichikawa, Y.; Kurihara, K.; Imanishi, M.; Matsuno, T.; et al. Cancer risk after renal transplantation in Japan. Int. J. Cancer 1997, 71, 517–520. [Google Scholar] [CrossRef]
- Opelz, G.; Naujokat, C.; Daniel, V.; Terness, P.; Döhler, B. Disassociation between risk of graft loss and risk of non-Hodgkin lymphoma with induction agents in renal transplant recipients. Transplantation 2006, 81, 1227–1233. [Google Scholar] [CrossRef] [PubMed]
- Georgescu, L.; Quinn, G.C.; Schwartzman, S.; Paget, S.A. Lymphoma in patients with rheumatoid arthritis: Association with the disease state or methotrexate treatment. Semin. Arthritis Rheum. 1997, 26, 794–804. [Google Scholar] [CrossRef] [PubMed]
- Lea, A.J. An association between the rheumatic disease and the reticulosis. Ann. Rheum. Dis. 1964, 23, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.G. The association of immune disease and malignant lymphoma. Ann. Intern. Med. 1967, 66, 507–521. [Google Scholar] [CrossRef] [PubMed]
- Isomäki, H.A.; Hakulinen, T.; Joutsenlahti, U. Excess risk of lymphomas, leukemia and myeloma in patients with rheumatoid arthritis. J. Chronic Dis. 1978, 31, 691–696. [Google Scholar] [CrossRef] [PubMed]
- Thomas, E.; Brewster, D.H.; Black, R.J.; Macfarlane, G.J. Risk of malignancy among patients with rheumatic conditions. Int. J. Cancer 2000, 88, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Baecklund, E.; Iliadou, A.; Askling, J.; Ekbom, A.; Backlin, C.; Granath, F.; Catrina, A.I.; Rosenquist, R.; Feltelius, N.; Sundström, C. Association of chronic inflammation, not its treatment, with increased lymphoma risk in rheumatoid arthritis. Arthritis Rheum. 2006, 54, 692–701. [Google Scholar] [CrossRef] [PubMed]
- Baecklund, E.; Sundström, C.; Ekbom, A.; Catrina, A.I.; Biberfeld, P.; Feltelius, N.; Klareskog, L. Lymphoma subtypes in patients with rheumatoid arthritis. Increased proportion of diffuse large B cell lymphoma. Arthritis Rheum. 2003, 48, 1543–1550. [Google Scholar] [CrossRef] [PubMed]
- Ellman, M.H.; Hurwitz, H.; Thomas, C.; Kozloff, M. Lymphoma developing in a patient with rheumatoid arthritis taking low dose weekly methotrexate. J. Rheumatol. 1991, 18, 1741–1743. [Google Scholar] [PubMed]
- Harris, N.L.; Swerdlow, S.H. Methotrexate-associated lymphoproliferative disorders. In Pathology and Genetics. Tumors of Hematopoietic and Lymphoid Tissues. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 3rd ed.; Jaffe, E.S., Harris, N.L., Stein, H., Vardiman, J.W., Eds.; IARC: Lyon, France, 2001; pp. 270–271. [Google Scholar]
- Meier, F.M.P.; Frerix, M.; Hermann, W.; Müller-Ladner, U. Current immunotherapy in rheumatoid arthritis. Immunotherapy 2013, 5, 955–974. [Google Scholar] [CrossRef] [PubMed]
- Kerrigan, S.A.; McInnes, I.B. Reflections on ‘older’ drugs: Learning new lessons in rheumatology. Nat. Rev. Rheumatol. 2020, 16, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Burmester, G.R.; Pope, J.E. Novel treatment strategies in rheumatoid arthritis. Lancet 2017, 389, 2338–2348. [Google Scholar] [CrossRef] [PubMed]
- Shawky, A.M.; Almalki, F.A.; Abdalla, A.N.; Abdelazeem, A.H.; Gouda, A.M. A comprehensive overview of globally approved JAK inhibitors. Pharmaceutics 2022, 14, 1001. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, A.; Chiba, N.; Tsuno, H.; Komiya, A.; Furukawa, H.; Matsui, T.; Nishino, J.; Tohma, S. Incidence of malignancy and the risk of lymphoma in Japanese patients with rheumatoid arthritis compared to the general population. J. Rheumatol. 2015, 42, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Hoshida, Y.; Tsujii, A.; Ohshima, S.; Saeki, Y.; Yagita, M.; Miyamura, T.; Katayama, M.; Kawasaki, T.; Hiramatsu, Y.; Oshima, H.; et al. Effect of recent antirheumatic drug on features of rheumatoid arthritis-associated lymphoproliferative disorders. Arthritis Rheumatol. 2024, 76, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Hanna, A.; Sridhara, S.; Chaudhari, H.; Me, H.M.; Attieh, R.M.; Abu Jawdeh, B.G. Maintenance immunosuppression in kidney transplantation: A review of the current status and future directions. J. Clin. Med. 2025, 14, 1821. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, H.M.; Cherikh, W.S.; McBride, M.A.; Cheng, Y.; Hanto, D.W. Post-transplant de novo malignancies in renal transplant recipients: The past and present. Transpl. Int. 2006, 19, 607–620. [Google Scholar] [CrossRef] [PubMed]
- Perrett, C.M.; Walker, S.L.; O’Donovan, P.; Warwick, J.; Harwood, C.A.; Karran, P.; McGregor, J.M. Azathioprine treatment photosensitizes human skin to ultraviolet A radiation. Br. J. Dermatol. 2008, 159, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.E.; Shuster, S. Skin cancer after renal transplantation: The causal role of azathioprine. Acta Derm. Venereol. 1992, 7, 115–119. [Google Scholar] [CrossRef]
- Penn, I. Tumor incidence in human allograft recipients. Transplant. Proc. 1979, 11, 1047–1051. [Google Scholar] [PubMed]
- Jiyad, Z.; Olsen, C.M.; Burke, M.T.; Isbel, N.M.; Green, A.C. Azathioprine and risk of skin cancer in organ transplant recipients: Systematic review and meta-analysis. Am. J. Transplant. 2016, 16, 3490–3503. [Google Scholar] [CrossRef] [PubMed]
- Hojo, M.; Morimoto, T.; Maluccio, M.; Asano, T.; Morimoto, K.; Lagman, M.; Shimbo, T.; Suthanthiran, M. Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature 1999, 397, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Kehrl, J.H.; Wakefield, L.M.; Roberts, A.B.; Jakowlew, S.; Alvarez-Mon, M.; Derynck, R.; Sporn, M.B.; Fauci, A.S. Production of transforming growth factor beta by human T lymphocytes and its potential role in the regulation of T cell growth. J. Exp. Med. 1986, 163, 1037–1050. [Google Scholar] [CrossRef] [PubMed]
- Tanner, J.E.; Menezes, J. Interleukin-6 and Epstein-Barr virus induction by cyclosporine A: Potential role in lymphoproliferative disease. Blood 1994, 84, 3956–3964. [Google Scholar] [CrossRef] [PubMed]
- Walz, G.; Zanker, B.; Melton, L.B.; Suthanthiran, M.; Strom, T.B. Possible association of the immunosuppressive and B cell lymphoma-promoting properties of cyclosporine. Transplantation 1990, 49, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Penn, I. Cancers in cyclosporine-treated vs azathioprine-treated patients. Transplant. Proc. 1996, 28, 876–878. [Google Scholar] [PubMed]
- Penn, I. The changing pattern of posttransplant malignancies. Transplant. Proc. 1991, 23, 1101–1103. [Google Scholar] [PubMed]
- Opelz, G.; Döhler, B. Lymphomas after solid organ transplantation: A collaborative transplant study report. Am. J. Transplant. 2004, 4, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Aala, A.; Brennan, D.C. Transformation in Immunosuppression: Are We Ready for it? J. Am. Soc. Nephrol. 2018, 29, 1791–1792. [Google Scholar] [CrossRef] [PubMed]
- Luan, F.L.; Hojo, M.; Maluccio, M.; Yamaji, K.; Suthanthiran, M. Rapamycin blocks tumor progression: Unlinking immunosuppression from antitumor efficacy. Transplantation 2002, 73, 1565–1572. [Google Scholar] [CrossRef] [PubMed]
- Fattouh, K.; Ducroux, E.; Decullier, E.; Kanitakis, J.; Morelon, E.; Boissonnat, P.; Sebbag, L.; Jullien, D.; Euvrard, S. Increasing incidence of melanoma after solid organ transplantation: A retrospective epidemiological study. Transpl. Int. 2017, 30, 1172–1180. [Google Scholar] [CrossRef] [PubMed]
- Euvrard, S.; Morelon, E.; Rostaing, L.; Goffin, E.; Brocard, A.; Tromme, I.; Broeders, N.; del Marmol, V.; Chatelet, V.; Dompmartin, A.; et al. Sirolimus and secondary skin-cancer prevention in kidney transplantation. N. Engl. J. Med. 2012, 367, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Knoll, G.A.; Kokolo, M.B.; Mallick, R.; Beck, A.; Buenaventura, C.D.; Ducharme, R.; Barsoum, R.; Bernasconi, C.; Blydt-Hansen, T.D.; Ekberg, H.; et al. Effect of sirolimus on malignancy and survival after kidney transplantation: Systematic review and meta-analysis of individual patient data. BMJ 2014, 349, g6679. [Google Scholar] [CrossRef] [PubMed]
- Yanik, E.L.; Siddiqui, K.; Engels, E.A. Sirolimus effects on cancer incidence after kidney transplantation: A meta-analysis. Cancer Med. 2015, 4, 1448–1459. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, H.M.; Cherikh, W.S.; Cheng, Y.; Hanto, D.W.; Kahan, B.D. Maintenance immunosuppression with target-of-rapamycin inhibitors is associated with a reduced incidence of de novo malignancies. Transplantation 2005, 80, 883–889. [Google Scholar] [CrossRef] [PubMed]
- Robson, R.; Cecka, J.M.; Opelz, G.; Budde, M.; Sacks, S. Prospective registry-based observational cohort study of the long-term risk of malignancies in renal transplant patients treated with mycophenolate mofetil. Am. J. Transplant. 2005, 5, 2954–2960. [Google Scholar] [CrossRef] [PubMed]
- Evens, A.M.; Choquet, S.; Kroll-Desrosiers, A.R.; Jagadeesh, D.; Smith, S.M.; Morschhauser, F.; Leblond, V.; Roy, R.; Barton, B.; Gordon, L.I.; et al. Primary CNS posttransplant lymphoproliferative disease (PTLD): An international report of 84 cases in the modern era. Am. J. Transplant. 2013, 13, 1512–1522. [Google Scholar] [CrossRef] [PubMed]
- Crane, G.M.; Powell, H.; Kostadinov, R.; Rocafort, P.T.; Rifkin, D.E.; Burger, P.C.; Ambinder, R.F.; Swinnen, L.J.; Borowitz, M.J.; Duffield, A.S. Primary CNS lymphoproliferative disease, mycophenolate and calcineurin inhibitor usage. Oncotarget 2015, 6, 33849–33866. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.C.; Engels, E.A.; Pfeiffer, R.M.; Segev, D.L. Association of antibody induction immunosuppression with cancer after kidney transplantation. Transplantation 2015, 99, 1051–1057. [Google Scholar] [CrossRef] [PubMed]
- Hibberd, A.D.; Trevillian, P.R.; Wlodarzcyk, J.H.; Gillies, A.H.; Stein, A.M.; Sheil, A.G.; Disney, A.P. Cancer risk associated with ATG/OKT3 in renal transplantation. Transplant. Proc. 1999, 31, 1271–1272. [Google Scholar] [CrossRef] [PubMed]
- Swinnen, L.J.; Costanzo-Nordin, M.R.; Fisher, S.G.; O’Sullivan, E.J.; Johnson, M.R.; Heroux, A.L.; Dizikes, G.J.; Pifarre, R.; Fisher, R.I. Increased incidence of lymphoproliferative disorder after immunosuppression with the monoclonal antibody OKT3 in cardiac- transplant recipients. N. Engl. J. Med. 1990, 323, 1723–1728. [Google Scholar] [CrossRef] [PubMed]
- Malvezzi, P.; Jouve, T.; Rostaing, L. Induction by anti-thymocyte globulins in kidney transplantation: A review of the literature and current usage. J. Nephropathol. 2015, 4, 10–115. [Google Scholar]
- Wang, M.; Mittal, A.; Colegio, O.R. Belatacept reduces skin cancer risk in kidney transplant recipients. J. Am. Acad. Dermatol. 2020, 82, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Guba, M.; von Breitenbuch, P.; Steinbauer, M.; Koehl, G.; Flegel, S.; Hornung, M.; Bruns, C.J.; Zuelke, C.; Farkas, S.; Anthuber, M.; et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: Involvement of vascular endothelial growth factor. Nat. Med. 2002, 8, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Nourse, J.; Firpo, E.; Flanagan, W.M.; Coats, S.; Polyak, K.; Lee, M.H.; Massague, J.; Crabtree, G.R.; Roberts, J.M. Interleukin-2-mediated elimination of the p27Kip1 cyclin-dependent kinase inhibitor prevented by rapamycin. Nature 1994, 372, 570–573. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Lee, J.M.; Zong, Y.; Borowitz, M.; Ng, M.H.; Ambinder, R.F.; Hayward, S.D. Linkage between STAT regulation and Epstein-Barr virus gene expression in tumors. J. Virol. 2001, 75, 2929–2937. [Google Scholar] [CrossRef] [PubMed]
- Koehl, G.E.; Andrassy, J.; Guba, M.; Richter, S.; Kroemer, A.; Scherer, M.N.; Steinbauer, M.; Graeb, C.; Schlitt, H.J.; Jauch, K.W.; et al. Rapamycin protects allografts from rejection while simultaneously attacking tumors in immunosuppressed mice. Transplantation 2004, 77, 1319–1326. [Google Scholar] [CrossRef] [PubMed]
- Guba, M.; Graeb, C.; Jauch, K.W.; Geissler, E.K. Pro- and anti-cancer effects of immunosuppressive agents used in organ transplantation. Transplantation 2004, 77, 1777–1782. [Google Scholar] [CrossRef] [PubMed]
- Buell, J.F.; Gross, T.G.; Woodle, E.S. Malignancy after transplantation. Transplantation 2005, 80, S254–S264. [Google Scholar] [CrossRef] [PubMed]
- van der Zwan, M.; Baan, C.C.; van Gelder, T.; Hesselink, D.A. Review of the clinical pharmacokinetics and pharmacodynamics of Alemtuzumab and its use in kidney transplantation. Clin. Pharmacokinet. 2018, 57, 191–207. [Google Scholar] [CrossRef] [PubMed]
- Shemshadi, M.; Hoseini, R.; Zareh, R.; Otukesh, H. Use of Basiliximab with the standard immunosuppressive protocol in pediatric renal transplantation:a double-blind randomized clinical trial. Int. J. Organ. Transplant. Med. 2020, 11, 8–14. [Google Scholar] [PubMed]
- Iglesias, M.; Brennan, D.C.; Larsen, C.P.; Raimondi, G. Targeting inflammation and immune activation to improve CTLA4-Ig-based modulation of transplant rejection. Front. Immunol. 2022, 13, 926648. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.L. Ten years of Orthoclone OKT3 (muromonab-CD3): A review. J. Transpl. Coord. 1996, 6, 109–119. [Google Scholar] [PubMed]
- Alloway, R.R.; Woodle, E.S.; Abramowicz, D.; Segev, D.L.; Castan, R.; Ilsley, J.N.; Jeschke, K.; Somerville, K.T.; Brennan, D.C. Rabbit anti-thymocyte globulin for the prevention of acute rejection in kidney transplantation. Am. J. Transplant. 2019, 19, 2252–2261. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, N.; Klipa, D.; Ahsan, N. Antibody immunosuppressive therapy in solid-organ transplant: Part, I. MAbs 2010, 2, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Bustami, R.T.; Ojo, A.O.; Wolfe, R.A.; Merion, R.M.; Bennett, W.M.; McDiarmid, S.V.; Leichtman, A.B.; Held, P.J.; Port, F.K. Immunosuppression and the risk of post-transplant malignancy among cadaveric first kidney transplant recipients. Am. J. Transplant. 2004, 4, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.P.; Baker, D.E. Daclizumab. Hosp. Pharm. 2016, 51, 928–939. [Google Scholar] [CrossRef] [PubMed]
- Jew, O.S.; Liu, W.W.; Stamey, C.; Kheterpal, M.; Myers, S.A.; Ellis, M.J.; Byrns, J.; Wheless, L.; Whitley, M.J. De novo belatacept does not reduce the rate of skin cancer in renal transplant recipients compared to standard therapy. J. Am. Acad. Dermatol. 2024, 91, 720–722. [Google Scholar] [CrossRef] [PubMed]
- Nalesnik, M.A.; Jaffe, R.; Starzl, T.E.; Demetris, A.J.; Porter, K.; Burnham, J.A.; Makowka, L.; Ho, M.; Locker, J. The pathology of posttransplant lymphoproliferative disorders occurring in the setting of cyclosporine A-prednisone immunosuppression. Am. J. Pathol. 1988, 133, 173–192. [Google Scholar] [PubMed]
- Hoshida, Y.; Aozasa, K. Malignancies in organ transplant recipients. Pathol. Int. 2004, 54, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Hoshida, Y.; Li, T.; Dong, Z.; Tomita, Y.; Yamauchi, A.; Hanai, J.; Aozasa, K. Lymphoproliferative disorders in renal transplant patients in Japan. Int. J. Cancer 2001, 91, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Ghobrial, I.M.; Habermann, T.M.; Maurer, M.J.; Geyer, S.M.; Ristow, K.M.; Larson, T.S.; Walker, R.C.; Ansell, S.M.; Macon, W.R.; Gores, G.G.; et al. Prognostic analysis for survival in adult solid organ transplant recipients with post-transplantation lymphoproliferative disorders. J. Clin. Oncol. 2005, 23, 7574–7582. [Google Scholar] [CrossRef] [PubMed]
- Naresh, K.N.; Bhaget, G.; Bower, M.; Chadburn, A.; Chan, J.K.C.; Dierickx, D.; Gratzinger, D.; Michelow, P.; Natkunam, Y.; Sato, Y.; et al. Lymphomas arising in immune deficiency/dysregulation. In WHO Classification of Tumours Editorial Board. Haematolymphoid Tumoures, 5th ed.; The WHO Classification of Tumours Editorial Board, Ed.; IARC: Lyon, France, 2024; pp. 568–572. [Google Scholar]
- Hoover, R.; Fraumeni, J.F., Jr. Risk of cancer in renal-transplant recipients. Lancet 1973, 2, 55–57. [Google Scholar] [CrossRef] [PubMed]
- Grinyó, J.; Charpentier, B.; Pestana, J.M.; Vanrenterghem, Y.; Vincenti, F.; Reyes-Acevedo, R.; Apanovitch, A.M.; Gujrathi, S.; Agarwal, M.; Thomas, D.; et al. An integrated safety profile analysis of belatacept in kidney transplant recipients. Transplantation 2010, 90, 1521–1527. [Google Scholar] [CrossRef] [PubMed]
- Vincenti, F.; Charpentier, B.; Vanrenterghem, Y.; Rostaing, L.; Bresnahan, B.; Darji, P.; Massari, P.; Mondragon-Ramirez, G.A.; Agarwal, M.; Di Russo, G.; et al. A phase III study of belatacept-based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT study). Am. J. Transplant. 2010, 10, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Nalesnik, M.; Reyes, J.; Pokharna, R.; Mazariegos, G.; Green, M.; Eghtesad, B.; Marsh, W.; Cacciarelli, T.; Fontes, P.; et al. Posttransplant lymphoproliferative disorders in liver transplantation: A 20-year experience. Ann. Surg. 2002, 236, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Fernberg, P.; Edgren, G.; Adami, J.; Ingvar, A.; Bellocco, R.; Tufveson, G.; Höglund, P.; Kinch, A.; Simard, J.F.; Baecklund, E.; et al. Time trends in risk and risk determinants of non-Hodgkin lymphoma in solid organ transplant recipients. Am. J. Transplant. 2011, 11, 2472–2482. [Google Scholar] [CrossRef] [PubMed]
- Cox, K.L.; Lawrence-Miyasaki, L.S.; Garcia-Kennedy, R.; Lennette, E.T.; Martinez, O.M.; Krams, S.M.; Berquist, W.E.; So, S.K.; Esquivel, C.O. An increased incidence of Epstein-Barr virus infection and lymphoproliferative disorder in young children on FK506 after liver transplantation. Transplantation 1995, 59, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Narkewicz, M.R.; Green, M.; Dunn, S.; Millis, M.; McDiarmid, S.; Mazariegos, G.; Anand, R.; Yin, W. Studies of Pediatric Liver Transplantation Research Group. Decreasing incidence of symptomatic Epstein-Barr virus disease and posttransplant lymphoproliferative disorder in pediatric liver transplant recipients: Report of the studies of pediatric liver transplantation experience. Liver Transpl. 2013, 19, 730–740. [Google Scholar] [PubMed]
- Holmes, R.D.; Sokol, R.J. Epstein-Barr virus and post-transplant lymphoproliferative disease. Pediatr. Transplant. 2002, 6, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Reding, R.; Wallemacq, P.E.; Lamy, M.E.; Rahier, J.; Sempoux, C.; Debande, B.; Jamart, J.; Barker, A.; Sokal, E.; De Ville de Goyet, J.; et al. Conversion from cyclosporine to FK506 for salvage of immunocompromised pediatric liver allografts. Efficacy, toxicity, and dose regimen in 23 children. Transplantation 1994, 57, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Tsai, D.E.; Bagley, S.; Reshef, R.; Shaked, A.; Bloom, R.D.; Ahya, V.; Goldberg, L.; Chung, A.; Debonera, F.; Schuster, S.J.; et al. The changing face of adult posttrasplant lymphoproliferative disorders: Changes in history between 1999 and 2013. Am. J. Hematol. 2018, 93, 874–881. [Google Scholar] [CrossRef] [PubMed]
- Nelson, B.P.; Nalesnik, M.A.; Bahler, D.W.; Locker, J.; Fung, J.J.; Swerdlow, S.H. Epstein-Barr virus-negative post-transplant lymphoproliferative disorders: A distinct entity? Am. J. Surg. Pathol. 2000, 24, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Ferreiro, J.F.; Morscio, J.; Dierickx, D.; Vandenberghe, P.; Gheysens, O.; Verhoef, G.; Zamani, M.; Tousseyn, T.; Wlodarska, I. EBV-Positive and EBV-Negative Posttransplant Diffuse Large B Cell Lymphomas Have Distinct Genomic and Transcriptomic Features. Am. J. Transplant. 2016, 16, 414–425. [Google Scholar] [CrossRef] [PubMed]
- Luskin, M.R.; Heil, D.S.; Tan, K.S.; Choi, S.; Stadtmauer, E.A.; Schuster, S.J.; Porter, D.L.; Vonderheide, R.H.; Bagg, A.; Heitjan, D.F.; et al. The Impact of EBV Status on Characteristics and Outcomes of Posttransplantation Lymphoproliferative Disorder. Am. J. Transplant. 2015, 15, 2665–2673. [Google Scholar] [CrossRef] [PubMed]
- Leblond, V.; Davi, F.; Charlotte, F.; Dorent, R.; Bitker, M.O.; Sutton, L.; Gandjbakhch, I.; Binet, J.L.; Raphael, M. Posttransplant lymphoproliferative disorders not associated with Epstein-Barr virus: A distinct entity? J. Clin. Oncol. 1998, 16, 2052–2059. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.; Kwon, E.J.; Lee, J.J. Rheumatoid arthritis: Pathogenic roles of diverse immune cells. Int. J. Mol. Sci. 2022, 23, 905. [Google Scholar] [CrossRef] [PubMed]
- McInnes, I.B.; Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 2011, 365, 2205–2219. [Google Scholar] [CrossRef] [PubMed]
- Smitten, A.L.; Simon, T.A.; Hochberg, M.C.; Suissa, S. A meta-analysis of the incidence of malignancy in adult patients with rheumatoid arthritis. Arthritis Res. Ther. 2008, 10, R45. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.K.; Chiou, M.J.; Kuo, C.F.; Lin, Y.C.; Yu, K.H.; See, L.C. No overall increased risk of cancer in patients with rheumatoid arthritis: A nationwide dynamic cohort study in Taiwan. Rheumatol. Int. 2014, 34, 1379–1386. [Google Scholar] [CrossRef] [PubMed]
- Beydon, M.; Pinto, S.; De Rycke, Y.; Fautrel, B.; Mariette, X.; Seror, R.; Tubach, F. Risk of cancer for patients with rheumatoid arthritis versus general population: A national claims database cohort study. Lancet Reg. Health Eur. 2023, 35, 100768. [Google Scholar] [CrossRef] [PubMed]
- Simon, T.A.; Thompson, A.; Gandhi, K.K.; Hochberg, M.C.; Suissa, S. Incidence of malignancy in adult patients with rheumatoid arthritis: A meta-analysis. Arthritis Res. Ther. 2015, 17, 212. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, N.; Tanaka, E.; Inoue, E.; Abe, M.; Sugano, E.; Sugitani, N.; Saka, K.; Ochiai, M.; Higuchi, Y.; Yamaguchi, R.; et al. Trends in risks of malignancies in Japanese patients with rheumatoid arthritis: Analyses from a 14-year observation of the IORRA cohort. Mod. Rheumatol. 2023, 33, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Nakajima, A.; Inoue, E.; Tanaka, E.; Taniguchi, A.; Momohara, S.; Yamanaka, H. Incidence of malignancy in Japanese patients with rheumatoid arthritis. Rheumatol. Int. 2011, 31, 1487–1492. [Google Scholar] [CrossRef] [PubMed]
- Hemminki, K.; Li, X.; Sundquist, K.; Sundquist, J. Cancer risk in hospitalized rheumatoid arthritis patients. Rheumatology 2008, 47, 698–701. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, S.M.; Fouad, T.M.; Summa, V.; Hasan, S.K.h.; Lo-Coco, F. Acute myeloid leukemia developing in patients with autoimmune diseases. Haematologica 2012, 97, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Mercer, L.K.; Green, A.C.; Galloway, J.B.; Davies, R.; Lunt, M.; Dixon, W.G.; Watson, K.D.; British Society for Rheumatology Biologics Register Control Centre Consortium; Symmons, D.P.M.; Hyrich, K.L.; et al. The influence of anti-TNF therapy upon incidence of keratinocyte skin cancer in patients with rheumatoid arthritis: Longitudinal results from the British Society for Rheumatology Biologics Register. Ann. Rheum. Dis. 2012, 71, 869–874. [Google Scholar] [CrossRef] [PubMed]
- Chakravarty, E.F.; Michaud, K.; Wolfe, F. Skin cancer, rheumatoid arthritis, and tumor necrosis factor inhibitors. J. Rheumatol. 2005, 32, 2130–2135. [Google Scholar] [PubMed]
- Mercer, L.K.; Davies, R.; Galloway, J.B.; Low, A.; Lunt, M.; Dixon, W.G.; Watson, K.D.; Symmons, D.P.; Hyrich, K.L.; The British Society for Rheumatology Biologics Register (BSRBR) Control Centre Consortium. Risk of cancer in patients receiving non-biologic disease-modifying therapy for rheumatoid arthritis compared with the UK general population. Rheumatology 2013, 52, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Edmunds, J.J. Anti-Inflammatory and Immunomodulatory Drugs. In Drug Discovery, Practives, Processes, and Perspectives; Li, J.J., Corey, E.J., Eds.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2013; pp. 337–388. [Google Scholar]
- Wang, D.; Dubois, R.N. Eicosanoids and cancer. Nat. Rev. Cancer 2010, 10, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Rostom, A.; Dubé, C.; Lewin, G.; Tsertsvadze, A.; Barrowman, N.; Code, C.; Sampson, M.; Moher, D. US Preventive Services Task Force. Nonsteroidal anti-inflammatory drugs and cyclooxygenase-2 inhibitors for primary prevention of colorectal cancer: A systematic review prepared for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2007, 146, 376–389. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.E. Cyclooxygenase-2 (cox-2) blockade in the chemoprevention of cancers of the colon, breast, prostate, and lung. Inflammopharmacology 2009, 17, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Honda, S.; Sakai, R.; Inoue, E.; Majima, M.; Konda, N.; Takada, H.; Kihara, M.; Yajima, N.; Nanki, T.; Yamamoto, K.; et al. Association of methotrexate use and lymphoproliferative disorder in patients with rheumatoid arthritis: Results from a Japanese multi-institutional retrospective study. Mod. Rheumatol. 2022, 32, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Kauppi, M.; Pukkala, E.; Isomäki, H. Low incidence of colorectal cancer in patients with rheumatoid arthritis. Clin. Exp. Rheumatol. 1996, 14, 551–553. [Google Scholar] [PubMed]
- Wessels, J.A.; Huizinga, T.W.; Guchelaar, H.J. Recent insights in the pharmacologicalactions of methotrexate in the treatment of rheumatoid arthritis. Rheumatology 2008, 47, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.H.; Cohen, J.I.; Fischer, S.; Li, L.; Sneller, M.; Goldbach-Mansky RvRaab-Traub, N.; Delecluse, H.J.; Kenney, S.C. Reactivation of latent Epstein–Barr virus by methotrexate. A potential contributor to methotrexate-associated lymphomas. J. Natl. Cancer Inst. 2004, 96, 1691–1702. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, F.; Michaud, K. Lymphoma in rheumatoid arthritis: The effect of methotrexate and anti-tumor necrosis factor therapy in 18,572 patients. Arthritis Rheum. 2004, 50, 1740–1751. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, F.; Michaud, K. Biologic treatment of rheumatoid arthritis and the risk of malignancy: Analyses from a large US observational study. Arthritis Rheum. 2007, 56, 2886–2895. [Google Scholar] [CrossRef] [PubMed]
- Mariette, X.; Cazals-Hatem, D.; Warszawki, J.; Liote, F.; Balandraud, N.; Sibilia, J. Investigators of the Club Rhumatismes et Inflammation. Lymphomas in rheumatoid arthritis patients treated with methotrexate: A 3-year prospective study in France. Blood 2002, 99, 3909–3915. [Google Scholar] [CrossRef] [PubMed]
- Franklin, J.; Lunt, M.; Bunn, D.; Symmons, D.; Silman, A. Incidence of lymphoma in a large primary care derived cohort of cases of inflammatory polyarthritis. Ann. Rheum. Dis. 2006, 65, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Hoshida, Y.; Ohshima, S.; Saeki, Y.; Katayama, M.; Miyamura, T.; Hashimoto, A.; Higa, S.; Oshima, H.; Yagita, M.; Hiramatsu, Y.; et al. Multi-center analyses on 518 cases with rheumatoid arthritis developing lymphoproliferative disorders (RA-LPD): The prognostic factors and the influence of anti-rheumatic drugs on LPD development. Arthritis Rheumatol. 2019, 71 (Suppl. S10), 2364, (abstract). [Google Scholar]
- Balkwill, F. Tumour necrosis factor and cancer. Nat. Rev. Cancer 2009, 9, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Mercer, L.K.; Lunt, M.; Low, A.L.; Dixon, W.G.; Watson, K.D.; Symmons, D.P.; Hyrich, K.L. BSRBR Control Centre Consortium. Risk of solid cancer in patients exposed to anti-tumour necrosis factor therapy: Results from the British Society for Rheumatology Biologics Register for Rheumatoid Arthritis. Ann. Rheum. Dis. 2015, 74, 1087–1093. [Google Scholar] [CrossRef] [PubMed]
- Mercer, L.K.; Galloway, J.B.; Lunt, M.; Davies, R.; Low, A.L.; Dixon, W.G.; Watson, K.D.; Symmons, D.P.; Hyrich, K.L.; BSRBR Control Centre Consortium. Risk of lymphoma in patients exposed to antitumour necrosis factor therapy: Results from the British Society for Rheumatology Biologics Register for Rheumatoid Arthritis. Ann Rheum Dis. 2017, 76, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Askling, J.; van Vollenhoven, R.F.; Granath, F.; Raaschou, P.; Fored, C.M.; Baecklund, E.; Dackhammar, C.; Feltelius, N.; Cöster, L.; Geborek, P.; et al. Cancer risk in patients with rheumatoid arthritis treated with anti-tumor necrosis factor alpha therapies: Does the risk change with the time since start of treatment? Arthritis Rheum. 2009, 60, 3180–3189. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.E.; Rieder, S.W.; Pope, J.E. Tumor necrosis factor therapy and the risk of serious infection and malignancy in patients with early rheumatoid arthritis: A meta-analysis of randomized controlled trials. Arthritis Rheum. 2011, 63, 1479–1485. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Olivo, M.A.; Tayar, J.H.; Martinez-Lopez, J.A.; Pollono, E.N.; Cueto, J.P.; Gonzales-Crespo, M.R.; Fulton, S.; Suarez-Almazor, M.E. Risk of malignancies in patients with rheumatoid arthritis treated with biologic therapy: A meta-analysis. JAMA 2012, 308, 898–908. [Google Scholar] [CrossRef] [PubMed]
- Askling, J.; Fored, C.M.; Baecklund, E.; Brandt, L.; Backlin, C.; Ekbom, A.; Sundström, C.; Bertilsson, L.; Cöster, L.; Geborek, P.; et al. Haematopoietic malignancies in rheumatoid arthritis: Lymphoma risk and characteristics after exposure to tumour necrosis factor antagonists. Ann. Rheum. Dis. 2005, 64, 1414–1420. [Google Scholar] [CrossRef] [PubMed]
- Hellgren, K.; Di Giuseppe, D.; Smedby, K.E.; Sundström, C.; Askling, J.; Baecklund, E.; ARTIS study group. Lymphoma risks in patients with rheumatoid arthritis treated with biological drugs-a Swedish cohort study of risks by time, drug and lymphoma subtype. Rheumatology 2021, 60, 809–819. [Google Scholar] [CrossRef] [PubMed]
- Dreyer, L.; Mellemkjær, L.; Andersen, A.R.; Bennett, P.; Poulsen, U.E.; Ellingsen, T.J.; Hansen, T.H.; Jensen, D.V.; Linde, L.; Lindegaard, H.M.; et al. Incidences of overall and site specific cancers in TNFα inhibitor treated patients with rheumatoid arthritis and other arthritides—A follow-up study from the DANBIO Registry. Ann. Rheum. Dis. 2013, 72, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Mariette, X.; Tubach, F.; Bagheri, H.; Bardet, M.; Berthelot, J.M.; Gaudin, P.; Heresbach, D.; Martin, A.; Schaeverbeke, T.; Salmon, D.; et al. Lymphoma in patients treated with anti-TNF: Results of the 3-year prospective French RATIO registry. Ann. Rheum. Dis. 2010, 69, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Mariette, X.; Matucci-Cerinic, M.; Pavelka, K.; Taylor, P.; van Vollenhoven, R.; Heatley, R.; Walsh, C.; Lawson, R.; Reynolds, A.; Emery, P. Malignancies associated with tumour necrosis factor inhibitors in registries and prospective observational studies: A systematic review and meta-analysis. Ann. Rheum. Dis. 2011, 70, 1895–1904. [Google Scholar] [CrossRef] [PubMed]
- Dommasch, E.D.; Abuabara, K.; Shin, D.B.; Nguyen, J.; Troxel, A.B.; Gelfand, J.M. The risk of infection and malignancy with tumor necrosis factor antagonists in adults with psoriatic disease: A systematic review and meta-analysis of randomized controlled trials. J. Am. Acad. Dermatol. 2011, 64, 1035–1050. [Google Scholar] [CrossRef] [PubMed]
- Askling, J.; Baecklund, E.; Granath, F.; Geborek, P.; Fored, M.; Backlin, C.; Bertilsson, L.; Cöster, L.; Jacobsson, L.T.; Lindblad, S.; et al. Anti-tumour necrosis factor therapy in rheumatoid arthritis and risk of malignant lymphomas: Relative risks and time trends in the Swedish Biologics Register. Ann. Rheum. Dis. 2009, 68, 648–653. [Google Scholar] [CrossRef] [PubMed]
- Huss, V.; Bower, H.; Wadström, H.; Frisell, T.; Askling, J. ARTIS group. Short- and longer-term cancer risks with biologic and targeted synthetic disease-modifying antirheumatic drugs as used against rheumatoid arthritis in clinical practice. Rheumatology 2022, 61, 1810–1818. [Google Scholar] [CrossRef] [PubMed]
- Bongartz, T.; Sutton, A.J.; Sweeting, M.J.; Buchan, I.; Matteson, E.L.; Montori, V. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: Systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA 2006, 295, 2275–2285. [Google Scholar] [CrossRef] [PubMed]
- Solomon, D.H.; Kremer, J.M.; Fisher, M.; Curtis, J.R.; Furer, V.; Harrold, L.R.; Hochberg, M.C.; Reed, G.; Tsao, P.; Greenberg, J.D. Comparative cancer risk associated with methotrexate, other non-biologic and biologic disease-modifying anti-rheumatic drugs. Semin. Arthritis Rheum. 2014, 43, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Geborek, P.; Bladström, A.; Turesson, C.; Gulfe, A.; Petersson, I.F.; Saxne, T.; Olsson, H.; Jacobsson, L.T. Tumour necrosis factor blockers do not increase overall tumour risk in patients with rheumatoid arthritis, but may be associated with an increased risk of lymphomas. Ann. Rheum. Dis. 2005, 64, 699–703. [Google Scholar] [CrossRef] [PubMed]
- Askling, J.; Fahrbach, K.; Nordstrom, B.; Ross, S.; Schmid, C.H.; Symmons, D. Cancer risk with tumor necrosis factor alpha (TNF) inhibitors: Meta-analysis of randomized controlled trials of adalimumab, etanercept, and infliximab using patient level data. Pharmacoepidemiol. Drug Saf. 2011, 20, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Raaschou, P.; Simard, J.F.; Holmqvist, M.; Askling, J. ARTISStudy Group Rheumatoid arthritis anti-tumour necrosis factor therapy risk of malignant melanoma: Nationwide population based prospective cohort study from Sweden. BMJ 2013, 346, f1939. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, P.; Grillo-López, A.J.; Link, B.K.; Levy, R.; Czuczman, M.S.; Williams, M.E.; Heyman, M.R.; Bence-Bruckler, I.; White, C.A.; Cabanillas, F.; et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: Half of patients respond to a four-dose treatment program. J. Clin. Oncol. 1998, 16, 2825–2833. [Google Scholar] [CrossRef] [PubMed]
- Finn, O.J. Cancer immunology. N. Engl. J. Med. 2008, 358, 2704–2715. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Clarke, C.A.; Rosenberg, A.S.; Advani, R.H.; Jonas, B.A.; Flowers, C.R.; Keegan, T.H.M. Subsequent primary malignancies after diffuse large B-cell lymphoma in the modern treatment era. Br. J. Haematol. 2017, 178, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Fleury, I.; Chevret, S.; Pfreundschuh, M.; Salles, G.; Coiffier, B.; van Oers, M.H.; Gisselbrecht, C.; Zucca, E.; Herold, M.; Ghielmini, M.; et al. Rituximab and risk of second primary malignancies in patients with non-Hodgkin lymphoma: A systematic review and meta-analysis. Ann. Oncol. 2016, 27, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Montastruc, F.; Renoux, C.; Dell’Aniello, S.; Simon, T.A.; Azoulay, L.; Hudson, M.; Suissa, S. Abatacept initiation in rheumatoid arthritis and the risk of cancer: A population-based comparative cohort study. Rheumatology 2019, 58, 683–691. [Google Scholar] [CrossRef] [PubMed]
- de Germay, S.; Bagheri, H.; Despas, F.; Rousseau, V.; Montastruc, F. Abatacept in rheumatoid arthritis and the risk of cancer: A world observational post-marketing study. Rheumatology 2020, 59, 2360–2367. [Google Scholar] [CrossRef] [PubMed]
- Wadström, H.; Frisell, T.; Askling, J. Anti-Rheumatic Therapy in Sweden (ARTIS) Study Group. Malignant neoplasms in patients with rheumatoid arthritis treated with tumor necrosis factor inhibitors, tocilizumab, abatacept, or rituximab in clinical practice: A nationwide cohort study from Sweden. JAMA Intern. Med. 2017, 177, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.C.; Pawar, A.; Desai, R.J.; Solomon, D.H.; Gale, S.; Bao, M.; Sarsour, K.; Schneeweiss, S. Risk of malignancy associated with use of tocilizumab versus other biologics in patients with rheumatoid arthritis: A multi-database cohort study. Semin. Arthritis Rheum. 2019, 49, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Ozen, G.; Pedro, S.; Schumacher, R.; Simon, T.A.; Michaud, K. Safety of abatacept compared with other biologic and conventional synthetic disease-modifying antirheumatic drugs in patients with rheumatoid arthritis: Data from an observational study. Arthritis Res. Ther. 2019, 21, 141. [Google Scholar] [CrossRef] [PubMed]
- Tokunaga, K.; Matsui, K.; Oshikawa, H.; Matsui, T.; Tohma, S. Risk of serious infection, malignancy, or death in Japanese rheumatoid arthritis patients treated with a combination of abatacept and tacrolimus: A retrospective cohort study. Clin. Rheumatol. 2021, 40, 1811–1817. [Google Scholar] [CrossRef] [PubMed]
- Simon, T.A.; Smitten, A.L.; Franklin, J.; Askling, J.; Lacaille, D.; Wolfe, F.; Hochberg, M.C.; Qi, K.; Suissa, S. Malignancies in the rheumatoid arthritis abatacept clinical development programme: An epidemiological assessment. Ann. Rheum. Dis. 2009, 68, 1819–1826. [Google Scholar] [CrossRef] [PubMed]
- Wolchok, J.D.; Chiarion-Sileni, V.; Rutkowski, P.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Queirolo, P.; Dummer, R.; Butler, M.O.; Hill, A.G.; et al. Final, 10-year outcomes with Nivolumab plus Ipilimumab in advanced melanoma. N. Engl. J. Med. 2025, 392, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Tsuchiya, M.; Saldanha, J.; Koishihara, Y.; Ohsugi, Y.; Kishimoto, T.; Bendig, M.M. Reshaping a human antibody to inhibit the interleukin 6-dependent tumor cell growth. Cancer Res. 1993, 53, 51–56. [Google Scholar]
- Soler, M.F.; Abaurrea, A.; Azcoaga, P.; Araujo, A.M.; Caffarel, M.M. New perspectives in cancer immunotherapy: Targeting IL-6 cytokine family. J. Immunother. Cancer 2023, 11, e007530. [Google Scholar] [CrossRef] [PubMed]
- Morel, J.; Wetzman, A.; Wendling, D.; Soubrier, M.; Hoang, S.; Briançon, D.; Roth, O.; Goupille, P.; Gottenberg, J.E.; Mariette, X.; et al. Risk of cancer in patients with rheumatoid arthritis under tocilizumab: Data from the French national registry REGATE. Jt. Bone Spine 2025, 92, 105900. [Google Scholar] [CrossRef] [PubMed]
- Rubbert-Roth, A.; Sebba, A.; Brockwell, L.; Kelman, A.; Porter-Brown, B.; Pulley, J.; Napalkov, P.; van Vollenhoven, R.F. Malignancy rates in patients with rheumatoid arthritis treated with tocilizumab. RMD Open. 2016, 2, e000213. [Google Scholar] [CrossRef] [PubMed]
- Buchert, M.; Burns, C.J.; Ernst, M. Targeting JAK kinase in solid tumors: Emerging opportunities and challenges. Oncogene 2016, 35, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Sonbol, M.B.; Firwana, B.; Zarzour, A.; Morad, M.; Rana, V.; Tiu, R.V. Comprehensive review of JAK inhibitors in myeloproliferative neoplasms. Ther. Adv. Hematol. 2013, 4, 15–35. [Google Scholar] [CrossRef] [PubMed]
- Harrison, C.; Kiladjian, J.J.; Al-Ali, H.K.; Gisslinger, H.; Waltzman, R.; Stalbovskaya, V.; McQuitty, M.; Hunter, D.S.; Levy, R.; Knoops, L.; et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N. Engl. J. Med. 2012, 366, 787–798. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, J.J.; Schwartz, D.M.; Villarino, A.V.; Gadina, M.; McInnes, I.B.; Laurence, A. The JAK-STAT pathway: Impact on human disease and therapeutic intervention. Annu. Rev. Med. 2015, 66, 311–328. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S.; Miyata, M.; Suzuki, E.; Kanno, T.; Sumichika, Y.; Saito, K.; Matsumoto, H.; Temmoku, J.; Fujita, Y.; Matsuoka, N.; et al. Safety of JAK and IL-6 inhibitors in patients with rheumatoid arthritis: A multicenter cohort study. Front. Immunol. 2023, 14, 1267749. [Google Scholar] [CrossRef] [PubMed]
- Huss, V.; Bower, H.; Hellgren, K.; Frisell, T.; Askling, J.; Ahlenius, G.M.; Baecklund, E.; Chatzidionysiou, K.; Feltelius, N.; Forsblad-d’Elia, H.; et al. Cancer risks with JAKi and biological disease-modifying antirheumatic drugs in patients with rheumatoid arthritis or psoriatic arthritis: A national real-world cohort study. Ann. Rheum. Dis. 2023, 82, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Genovese, M.C.; Smolen, J.S.; Takeuchi, T.; Burmester, G.; Brinker, D.; Rooney, T.P.; Zhong, J.; Daojun, M.; Saifan, C.; Cardoso, A.; et al. Safety profile of baricitinib for the treatment of rheumatoid arthritis over a median of 3 years of treatment: An updated integrated safety analysis. Lancet Rheumatol. 2020, 2, e347–e357. [Google Scholar] [CrossRef] [PubMed]
- Mok, C.C.; So, H.; Yim, C.W.; To, C.H.; Lao, W.N.; Wong, S.P.Y.; Ng, H.Y.; Lee, J.M.Y.; Lee, P.M.L.; Ying, S.K.Y.; et al. Safety of the JAK and TNF inhibitors in rheumatoid arthritis: Real world data from the Hong Kong Biologics Registry. Rheumatology 2024, 63, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.B.; van Vollenhoven, R.F.; Winthrop, K.L.; Zerbini, C.A.F.; Tanaka, Y.; Bessette, L.; Zhang, Y.; Khan, N.; Hendrickson, B.; Enejosa, J.V.; et al. Safety profile of upadacitinib in rheumatoid arthritis: Integrated analysis from the SELECT phase III clinical programme. Ann. Rheum. Dis. 2021, 80, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.B.; Tanaka, Y.; Mariette, X.; Curtis, J.R.; Lee, E.B.; Nash, P.; Winthrop, K.L.; Charles-Schoeman, C.; Thirunavukkarasu, K.; DeMasi, R.; et al. Long-term safety of tofacitinib for the treatment of rheumatoid arthritis up to 8.5 years: Integrated analysis of data from the global clinical trials. Ann. Rheum. Dis. 2017, 76, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Kremer, J.M.; Bingham, C.O., III; Cappelli, L.C.; Greenberg, J.D.; Madsen, A.M.; Geier, J.; Rivas, J.L.; Onofrei, A.M.; Barr, C.J.; Pappas, D.A.; et al. Postapproval comparative safety study of Tofacitinib and biological disease-modifying antirheumatic drugs: 5-year results from a United States-based rheumatoid arthritis registry. ACR Open Rheumatol. 2021, 3, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Ytterberg, S.R.; Bhatt, D.L.; Mikuls, T.R.; Koch, G.G.; Fleischmann, R.; Rivas, J.L.; Germino, R.; Menon, S.; Sun, Y.; Wang, C.; et al. Cardiovascular and cancer risk with Tofacitinib in rheumatoid arthritis. N. Engl. J. Med. 2022, 386, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Bezzio, C.; Vernero, M.; Ribaldone, D.G.; Alimenti, E.; Manes, G.; Saibeni, S. Cancer Risk in Patients Treated with the JAK Inhibitor Tofacitinib: Systematic Review and Meta-Analysis. Cancers 2023, 15, 2197. [Google Scholar] [CrossRef] [PubMed]
- Khosrow-Khavar, F.; Desai, R.J.; Lee, H.; Lee, S.B.; Kim, S.C. Tofacitinib and risk of malignancy: Results from the safety of Tofacitinib in routine care patients with rheumatoid arthritis (STAR-RA) study. Arthritis Rheumatol. 2022, 74, 1648–1659. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.D.; Stovin, C.; Alveyn, E.; Adeyemi, O.; Chan, C.K.D.; Patel, V.; Adas, M.A.; Atzeni, F.; Ng, K.K.H.; Rutherford, A.I.; et al. JAK inhibitors and the risk of malignancy: A meta-analysis across disease indications. Ann. Rheum. Dis. 2023, 82, 1059–1067. [Google Scholar] [CrossRef] [PubMed]
- Kuwana, M.; Sugiyama, N.; Momohara, S.; Atsumi, T.; Takei, S.; Tamura, N.; Harigai, M.; Fujii, T.; Matsuno, H.; Takeuchi, T.; et al. Six-month safety and effectiveness of tofacitinib in patients with rheumatoid arthritis in Japan: Interim analysis of post-marketing surveillance. Mod. Rheumatol. 2024, 34, 272–286. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, M.; Purschke, A.; Zietemann, V.; Rudi, T.; Meissner, Y.; Richter, A.; Berger, S.; Rockwitz, K.; Krüger, K.; Schneider, K.M.; et al. Comparative risk of incident malignancies in rheumatoid arthritis patients treated with Janus kinase inhibitors or bDMARDs: Observational data from the German RABBIT register. Ann. Rheum. Dis. 2025, Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Curtis, J.R.; Yamaoka, K.; Chen, Y.H.; Bhatt, D.L.; Gunay, L.M.; Sugiyama, N.; Connell, C.A.; Wang, C.; Wu, J.; Menon, S.; et al. Malignancy risk with tofacitinib versus TNF inhibitors in rheumatoid arthritis: Results from the open-label, randomised controlled ORAL Surveillance trial. Ann. Rheum. Dis. 2023, 82, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Llorca, J.; Lopez-Diaz, M.J.; Gonzalez-Juanatey, C.; Ollier, W.E.; Martin, J.; Gonzalez-Gay, M.A. Persistent chronic inflammation contributes to the development of cancer in patients with rheumatoid arthritis from a defined population of northwestern Spain. Semin. Arthritis Rheum. 2007, 7, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Kamel, O.W.; van de Rijn, M.; Weiss, L.M.; Zoppo, G.J.D.; Hench, P.K.; Robbins, B.A.; Montgomery, P.G.; Warnke, R.A.; Dorfman, R.F. Brief report: Reversible lymphomas associated with Epstein-Barr virus occurring during therapy for rheumatoid arthritis and dermatomyositis. N. Engl. J. Med. 1993, 328, 1317–1321. [Google Scholar] [CrossRef] [PubMed]
- Harigai, M. Lymphoproliferative disorders in patients with rheumatoid arthritis in the era of widespread use of methotrexate: A review of the literature and current perspective. Mod. Rheumatol. 2018, 28, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hoshida, Y.; Xu, J.X.; Fujita, S.; Nakamichi, I.; Ikeda, J.; Tomita, Y.; Nakatsuka, S.; Tamaru, J.; Iizuka, A.; Takeuchi, T.; et al. Lymphoproliferative disorders in rheumatoid arthritis: Clinicopathological analysis of 76 cases in relation to methotrexate medication. J. Rheumatol. 2007, 34, 322–331. [Google Scholar] [PubMed]
- Salloum, E.; Cooper, D.L.; Howe, G.; Lacy, J.; Tallini, G.; Crouch, J.; Schultz, M.; Murren, J. Spontaneous regression of lymphoproliferative disorders in patients treated with methotrexate for rheumatoid arthritis and other rheumatic diseases. J. Clin. Oncol. 1996, 14, 1943–1949. [Google Scholar] [CrossRef] [PubMed]
- Banko, A.; Miljanovic, D.; Lazarevic, I.; Jeremic, I.; Despotovic, A.; Grk, M.; Cirkovic, A. New Evidence of Significant Association between EBV Presence and Lymphoproliferative Disorders Susceptibility in Patients with Rheumatoid Arthritis: A Systematic Review with Meta-Analysis. Viruses 2022, 14, 115. [Google Scholar] [CrossRef] [PubMed]
- Inui, Y.; Matsuoka, H.; Yakushijin, K.; Okamura, A.; Shimada, T.; Yano, S.; Takeuchi, M.; Ito, M.; Murayama, T.; Yamamoto, K.; et al. Methotrexate-associated lymphoproliferative disorders: Management by watchful waiting and observation of early lymphocyte recovery after methotrexate withdrawal. Leuk. Lymphoma 2015, 56, 3045–3051. [Google Scholar] [CrossRef] [PubMed]
- Tokuhira, M.; Saito, S.; Okuyama, A.; Suzuki, K.; Higashi, M.; Momose, S.; Shimizu, T.; Mori, T.; Anan-Nemoto, T.; Amano, K.; et al. Clinicopathologic investigation of ethotrexate-induced lymphoproliferative disorders, with a focus on regression. Leuk. Lymphoma 2018, 59, 1143–1152. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Oshiro, Y.; Okamura, S.; Fujisaki, T.; Kondo, S.; Nakayama, Y.; Suematsu, E.; Tamura, K.; Takeshita, M. Clinicopathological characteristics and rituximab addition to cytotoxic therapies in patients with rheumatoid arthritis and methotrexate-associated large B lymphoproliferative disorders. Histopathology 2015, 67, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Nakano, K.; Saito, K.; Nawata, A.; Hanami, K.; Kubo, S.; Miyagawa; Fujino, Y.; Nakayamada, S.; Tanaka, Y. Clinical aspects in patients with rheumatoid arthritis complicated with lymphoproliferative disorders without regression after methotrexate withdrawal and treatment for arthritis after regression of lymphoproliferative disorders. Mod. Rheumatol. 2021, 31, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, K.; Hatanaka, K.C.; Hatanaka, Y.; Kasahara, I.; Yamamoto, S.; Tsuji, T.; Nakata, M.; Takakuwa, Y.; Haseyama, Y.; Oyamada, Y.; et al. Association of Epstein-Barr virus with regression after withdrawal of immunosuppressive drugs and subsequent progression of iatrogenic immunodeficiency-associated lymphoproliferative disorders in patients with autoimmune diseases. Hematol. Oncol. 2020, 38, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Katsuyama, T.; Sada, K.E.; Yan, M.; Zeggar, S.; Hiramatsu, S.; Miyawaki, Y.; Ohashi, K.; Morishita, M.; Watanabe, H.; Katsuyama, E.; et al. Prognostic factors of methotrexate-associated lymphoproliferative disorders associated with rheumatoid arthritis and plausible application of biological agents. Mod. Rheumatol. 2017, 27, 773–777. [Google Scholar] [CrossRef] [PubMed]
- Harada, T.; Iwasaki, H.; Muta, T.; Urata, S.; Sakamoto, A.; Kohno, K.; Takase, K.; Miyamura, T.; Sawabe, T.; Asaoku, H.; et al. Outcomes of methotrexate-associated lymphoproliferative disorders in rheumatoid arthritis patients treated with disease-modifying anti-rheumatic drugs. Br. J. Haematol. 2021, 194, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.L.; Greeene, M.H.; Gershon, S.K.; Edward, E.T.; Braum, M.M. Tumor necrosis factor antagonist therapy and lymphoma development: Twenty-six cases reported to the Food and Drug Administration. Arthritis Rheum. 2002, 46, 3151–3158. [Google Scholar] [CrossRef] [PubMed]
- Hoshida, Y.; Yamamoto, S.; Wada, N.; Xu, J.X.; Sasaki, T.; Aozasa, K. Infliximab-associated lymphoproliferative disorders. Int. J. Hematol. 2005, 81, 356–357. [Google Scholar] [CrossRef] [PubMed]
- Hoshida, Y.; Tsujii, A.; Ohshima, S.; Saeki, Y.; Yagita, M.; Miyamura, T.; Katayama, M.; Hiramatsu, Y.; Oshima, H.; Murayama, T.; et al. Rheumatoid Arthritis Associated Lymphoproliferative Disorders: Current Features and It’s Changing Pattern Due to the Influence of Anti-rheumatic Drugs. Arthritis Rheumatol. 2022, 74 (Suppl. S9), 3953–3957, (abstract). [Google Scholar]
- Nocturne, G.; Seror, R.; Mariette, X. Does the risk of lymphoma in patients with RA treated with TNF inhibitors differ according to the histological subtype and the type of TNF inhibitor? Ann. Rheum. Dis. 2017, 76, e3. [Google Scholar] [CrossRef] [PubMed]
- Mercer, L.K.; Regierer, A.C.; Mariette, X.; Dixon, W.G.; Baecklund, E.; Hellgren, K.; Dreyer, L.; Hetland, M.L.; Cordtz, R.; Hyrich, K.; et al. Spectrum of lymphomas across different drug treatment groups in rheumatoid arthritis: A European registries collaborative project. Ann. Rheum. Dis. 2017, 76, 2025–2030. [Google Scholar] [CrossRef] [PubMed]
- Scallon, B.; Cai, A.; Solowski, N.; Rosenberg, A.; Song, X.Y.; Shealy, D.; Wagner, C. Binding and functional comparisons of two types of tumor necrosis factor antagonists. J. Pharmacol. Exp. Ther. 2002, 301, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Furst, D.E. The risk of infections with biologic therapies for rheumatoid arthritis. Semin. Arthritis Rheum. 2010, 39, 327–346. [Google Scholar] [CrossRef] [PubMed]
- Salmon-Ceron, D.; Tubach, F.; Lortholary, O.; Chosidow, O.; Bretagne, S.; Nicolas, N.; Cuillerier, E.; Fautrel, B.; Michelet, C.; Morel, J.; et al. Drug-specific risk of non-tuberculosis opportunistic infections in patients receiving anti-TNF therapy reported to the 3-year prospective French RATIO registry. Ann. Rheum. Dis. 2011, 70, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Sandborn, W.J.; Hanauer, S.B.; Kart, S.; Safdi, M.; Wolf, D.G.; Baerg, R.D.; Tremaine, W.J.; Johnson, T.; Diehl, N.N.; Zinsmeister, A.R. Etanercept for active Crohn’s disease: A randomized, double-blind, placebo-controlled trial. Gastroenterology 2001, 121, 1088–1094. [Google Scholar] [CrossRef] [PubMed]
- Guignard, S.; Grossec, L.; Salliot, C.; Ruyssen-Witrand, A.; Luc, M.; Duclos, M.; Dougados, M. Efficacy of tumor necrosis factor blockers in reducing uveitis flares in patients with spondylathropathy: A retrospective study. Ann. Rheum. Dis. 2006, 65, 1631–1634. [Google Scholar] [CrossRef] [PubMed]
- Saliu, O.Y.; Sofer, C.; Stein, D.S.; Schwander, S.K.; Wallis, R.S. Tumor-necrosis-factor blockers: Differential effects on mycobacterial immunity. J. Infect. Dis. 2006, 194, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Mariette, X.; Chen, C.; Biswas, P.; Kwok, K.; Boy, M.G. Lymphoma in the Tofacitinib rheumatoid arthritis clinical development program. Arthritis Care Res. 2018, 70, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Porpaczy, E.; Tripolt, S.; Hoelbl-Kovacic, A.; Gisslinger, B.; Bago-Horvath, Z.; Casanova-Hevia, E.; Clappier, E.; Decker, T.; Fajmann, S.; Fux, D.A.; et al. Aggressive B-cell lymphomas in patients with myelofibrosis receiving JAK1/2 inhibitor therapy. Blood 2018, 132, 694–706. [Google Scholar] [CrossRef] [PubMed]
- Alspaugh, M.A.; Henle, G.; Lennette, E.T.; Henle, W. Elevated levels of antibodies to Epstein-Barr virus antigens in sera and synovial fluids of patients with rheumatoid arthritis. J. Clin. Investig. 1981, 67, 1134–1140. [Google Scholar] [CrossRef] [PubMed]
- Balandraud, N.; Guis, S.; Meynard, J.B.; Auger, I.; Roudier, J.; Roudier, C. Long-term treatment with methotrexate or tumor necrosis factor alpha inhibitors does not increase Epstein-Barr virus load in patients with rheumatoid arthritis. Arthritis Rheum. 2007, 57, 762–767. [Google Scholar] [CrossRef] [PubMed]
- Mercer, L.K.; Galloway, J.B.; Lunt, M.; Davies, R.; Low, A.A.; Dixon, W.G.; Watson, K.D.; Symmons, D.P.; Hyrich, K.L. Response to: ‘Does the risk of lymphoma in patients with RA treated with TNF inhibitors differ according to the histological subtype and the type of TNF inhibitor?’ by Nocturne et al. Ann. Rheum. Dis. 2017, 76, e4. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iizuka, N.; Hoshida, Y.; Miyamoto, A.T.; Shigyo, H.; Nishigaichi, A.; Okamura, G.; Ohshima, S. Immunosuppressants/Immunomodulators and Malignancy. J. Clin. Med. 2025, 14, 5160. https://doi.org/10.3390/jcm14145160
Iizuka N, Hoshida Y, Miyamoto AT, Shigyo H, Nishigaichi A, Okamura G, Ohshima S. Immunosuppressants/Immunomodulators and Malignancy. Journal of Clinical Medicine. 2025; 14(14):5160. https://doi.org/10.3390/jcm14145160
Chicago/Turabian StyleIizuka, Norishige, Yoshihiko Hoshida, Atsuko Tsujii Miyamoto, Hotaka Shigyo, Akira Nishigaichi, Gensuke Okamura, and Shiro Ohshima. 2025. "Immunosuppressants/Immunomodulators and Malignancy" Journal of Clinical Medicine 14, no. 14: 5160. https://doi.org/10.3390/jcm14145160
APA StyleIizuka, N., Hoshida, Y., Miyamoto, A. T., Shigyo, H., Nishigaichi, A., Okamura, G., & Ohshima, S. (2025). Immunosuppressants/Immunomodulators and Malignancy. Journal of Clinical Medicine, 14(14), 5160. https://doi.org/10.3390/jcm14145160