Ceftazidime–Avibactam in Critically Ill Patients: A Multicenter Observational Study
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burillo, A.; Munoz, P.; Buoza, E. Risk stratification for multidrug-resistant Gram-negative infections in ICU patients. Curr. Opin. Infect. Dis. 2019, 32, 626–637. [Google Scholar] [CrossRef] [PubMed]
- Marston, H.D.; Dixon, D.M.; Knisely, J.M.; Palmore, T.N.; Fauci, A.S. Antimicrobial Resistance. JAMA 2016, 316, 1193–1204. [Google Scholar] [CrossRef] [PubMed]
- Ambler, R.P. The structure of beta-lactamases. Philos. Trans. R. Soc. B 1980, 289, 321–331. [Google Scholar]
- Kanj, S.S.; Bassetti, M.; Pattarachai, K.; Kiratisin, P.; Rodrigues, C.; Villegas, M.V.; Yu, Y.; Van Duin, D. Clinical data from studies involving novel antibiotics to treat multidrug-resistant Gram-negative bacterial infections. Int. J. Antimicrob. Agents 2022, 60, 106633. [Google Scholar] [CrossRef]
- Volpicelli, L.; Venditti, M.; Ceccarelli, G.; Oliva, A. Place in therapy of the newly available armamentarium for Multi-Drug-Resistant Gram-Negative pathogens: Proposal of a prescription algorithm. Antibiotics 2021, 10, 1475. [Google Scholar] [CrossRef]
- Cassini, A.; Diaz Högberg, L.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Skov Simonsen, G.; Colomb-Cotinat, M.; Kretzschmar, M.; Devleesschauwer, B.; Cecchini, M.; et al. Attribuitable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet 2019, 19, 56–66. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Habarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Cameli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Vincent, J.L.; Sakr, Y.; Singer, M.; Martin-Loeches, I.; Machado, F.R.; Marshall, J.C.; Finfer, S.; Pelosi, P.; Brazzi, L.; Aditianingsih, D.; et al. Prevalence and outcomes of infection among patients in Intensive care Units in 2017. JAMA 2020, 323, 1478–1487. [Google Scholar] [CrossRef]
- Agodi, A.; Barchitta, M.; Auxilia, F.; Brusaferro, S.; D’Errico, M.M.; Montagna, M.T.; Pasquarella, C.; Tardivo, S.; Arrigoni, C.; Fabiani, L.; et al. Epidemiology of intensive care unit-acquired sepsis in Italy: Results of the SPIN-UTI network. Ann. Ig. 2018, 30 (Suppl. S2), 15–21. [Google Scholar]
- Shbaklo, N.; Corcione, S.; Vicentini, C.; Giordano, S.; Fiorentino, D.; Bianco, G.; Cattel, F.; Cavallo, R.; Zotti, C.M.; De Rosa, F.G. An observational study of MDR hospital-acquired infections and antibiotic use during COVID-19 pandemic: A call for antimicrobial stewardship programs. Antibiotics 2022, 11, 695. [Google Scholar] [CrossRef]
- Nieuwlaat, R.; Nieuwlaat, R.; Mbuagbaw, L.; Mertz, D.; Burrows, L.L.; Bowdish, D.M.E.; Moja, L.; Wright, G.D.; Schünemann, H.J. Coronavirus Disease 2019 and antimicrobial resistance: Parallel and interacting health emergencies. Clin. Infect. Dis. 2021, 72, 1657–1659. [Google Scholar] [CrossRef] [PubMed]
- Van Duin, D.; Barlow, G.; Nathwani, D. The impact of the COVID-19 pandemic on antimicrobial resistance: A debate. JAC-Antimicrob. Resist. 2020, 2, dlaa053. [Google Scholar] [CrossRef] [PubMed]
- Baladin, B.; Ballesteros, D.; Pintado, V.; Ballesteros, D.; Pintado, V.; Soriano-Cuesta, C.; Cid-Tovar, I.; Sancho-González, M.; Pérez-Pedrero, M.J.; Chicot, M.; et al. Multicentre study of ceftazidime/avibactam for Gram-negative bacteria infections in critically ill patients. Int. J. Antimicrob. Agents 2022, 59, 106536. [Google Scholar] [CrossRef] [PubMed]
- Tumbarello, M.; Trecarichi, E.M.; Corona, A.; De Rosa, F.G.; Bassetti, M.; Mussini, C.; Menichetti, F.; Viscoli, C.; Campoli, C.; Venditti, M.; et al. Efficacy of Ceftazidime-Avibactam Salvage Therapy in Patients With Infections Caused by Klebsiella pneumoniae Carbapenemase–producing. Clin. Infect. Dis. 2019, 68, 355–364. [Google Scholar] [CrossRef]
- Mazuski, J.E.; Wagenlehner, F.; Torres, A.; Carmeli, Y.; Chow, J.W.; Wajsbrot, D.; Stone, G.G.; Irani, S.; Bharucha, D.; Cheng, D.; et al. Clinical and Microbiological Outcomes of Ceftazidime-Avibactam Treatment in Adults with Gram-Negative Bacteremia. Infect. Dis. Ther. 2021, 10, 2399–2414. [Google Scholar] [CrossRef]
- Shield, R.K.; Nguyen, M.H.; Chen, L.; Press, E.G.; Potoski, B.A.; Marini, R.C.; Doi, Y.; Kreiswirth, B.; Clancy, C.J. Ceftazidime-Avibactam Is Superior to Other Treatment Regimens against Carbapenem-Resistant Klebsiella pneumoniae Bacteremia. Antimicrob. Agents Chemother. 2017, 61, e00883-17. [Google Scholar] [CrossRef]
- Di Pietrantonio, M.; Brescini, L.; Candi, J.; Morroni, G.; Pallotta, F.; Mazzanti, S.; Mantini, P.; Candelaresi, B.; Olivieri, S.; Ginevri, F.; et al. Ceftazidime–Avibactam for the Treatment of Multidrug-Resistant Pathogens: A Retrospective, single center study. Antibiotics 2022, 11, 321. [Google Scholar] [CrossRef]
- King, M.; Heil, E.; Kuriakose, S.; Bias, T.; Huang, V.; El-Beyrouty, C.; McCoy, D.; Hiles, J.; Richards, L.; Harrington, J.N.; et al. Multicenter study of outcomes with ceftazidime-avibactam in patients with carbapenem-resistant Enterobacteriaceae infections. Antimicrob. Agents Chemother. 2017, 61, e00449-17. [Google Scholar] [CrossRef]
- Shield, R.K.; Potoski, B.A.; Haidar, G.; Hao, B.; Doi, Y.; Chen, L.; Press, E.G.; Kreiswirth, B.N.; Clancy, C.J.; Nguyen, M.J. Clinical outcomes, drug toxicity, and emergence of ceftazidime-avibactam resistance among patients treated for carbapenem-R Enterobacteriaceae infections. Clin. Infect. Dis. 2016, 63, 1615–1618. [Google Scholar] [CrossRef]
- Krapp, F.; Grant, J.L.; Sutton, S.H.; Ozer, E.A.; Barr, V.O. Treating complicated carbapenem-resistant enterobacteriaceae infections with ceftazidime-avibactam: A retrospective study with molecular strain characterization. Int. J. Antimicrob. Agents 2017, 49, 770–773. [Google Scholar] [CrossRef]
- Karaiskos, I.; Daikos, G.L.; Gkoufa, A.; Adamis, G.; Stefos, A.; Symbardi, S.; Chrysos, G.; Filiou, E.; Basoulis, D.; Mouloudi, E.; et al. Ceftazidime/avibactam in the era of carbapenemase-producing Klebsiella pneumoniae: Experience from a national registry study. J. Antimicrob. Chemother. 2021, 76, 775–783. [Google Scholar] [CrossRef]
- Rebold, N.; Lagnf, A.M.; Alosaimy, S.; Holger, D.J.; Witucki, P.; Mannino, A.; Dierker, M.; Lucas, K.; Kunz Coyne, A.J.; El Ghali, A.; et al. Risk factors for carbapenem-resistant Enterobacterales clinical treatment failure. Microbiol. Spectr. 2023, 11, e0264722. [Google Scholar] [CrossRef]
- Humphries, R.M.; Yang, S.; Hemarajata, P.; Ward, K.W.; Hindler, J.A.; Miller, S.A.; Gregson, A. First report of ceftazidime-avibactam resistance in a KPC-3-expressing Klebsiella pneumoniae isolate. Antimicrob. Agents Chemother. 2015, 59, 6605–6607. [Google Scholar] [CrossRef] [PubMed]
- Gaibani, P.; Campoli, C.; Lewis, R.E.; Volpe, S.L.; Scaltriti, E.; Giannella, M.; Pongolini, S.; Berlingeri, A.; Cristini, F.; Bartoletti, M.; et al. In Vivo evolution of resistant subpopulations of KPC-producing Klebsiella pneumoniae during ceftazidime/avibactam treatment. J. Antimicrob. Chemother. 2018, 73, 1525–1529. [Google Scholar] [CrossRef] [PubMed]
- Shield, R.K.; Nguyen, M.H.; Chen, L.; Press, E.G.; Kreiswirth, B.N.; Clancy, C.J. Pneumonia and Renal replacement Therapy are risk factors for ceftazidime-avibactam treatment failures and resistance among patients with carbapenem-resistance Enterobacteriaceae infections. Antimicrob. Agents Chemother. 2018, 62, e02497-17. [Google Scholar] [CrossRef]
- Tandén, T.; Ramos Martín, V.; Felton, T.W.; Nielsen, E.I.; Marchand, S.; Brüggemann, R.J.; Bulitta, J.B.; Bassetti, M.; Theuretzbacher, U.; Tsuji, B.T.; et al. The role of infection models and PK/PD modelling for optimizing care of critically ill patients with severe infections. Intensive Care Med. 2017, 43, 1021–1032. [Google Scholar] [CrossRef]
- Gatti, M.; Rinaldi, R.; Gaibani, P.; Siniscalchi, A.; Tonetti, T.; Giannella, M.; Viale, P.; Pea, F. A descriptive pharmacokinetic/pharmacodynamic analysis of continuous infusion ceftazidime-avibactam for treating DTR gram-negative infections in a case series of critically ill patients undergoing continuous veno-venous heamodiafiltration (CVVHDF). J. Crit. Care 2023, 76, 154301. [Google Scholar] [CrossRef]
- Tsolaki, V.; Mantzarlis, K.; Mpakalis, A.; Malli, E.; Tsimpoukas, F.; Tsirogianni, A.; Papagiannitsis, C.; Zygoulis, P.; Papadonta, M.E.; Petinaki, E.; et al. Ceftazidime-avibactam to treat life-threatening infections by carbapenem-resistant pathogens in critically ill mechanically ventilated patients. Antimicrob. Agents Chemother. 2020, 64, e02320-19. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef]
- Rygard, S.L.; Butler, E.; Granholm, A.; Møller, M.H.; Cohen, J.; Finfer, S.; Perner, A.; Myburgh, J.; Venkatesh, B.; Delaney, A. Low-dose corticosteroids for adult patients with septic shock: A systematic review with meta-analysis and trial sequential analysis. Intensive Care Med. 2018, 44, 1003–1016. [Google Scholar] [CrossRef]
- Fiore, M.; Alfieri, A.; Di Franco, S.; Pace, M.C.; Simeon, V.; Ingoglia, G.; Cortegiani, A. Ceftazidime-avibactam combination therapy compared to ceftazidime-avibactam monotherapy for the treatment of severe infections due to carbapenem-resistant pathogens: A systematic review and network meta-analysis. Antibiotics 2020, 9, 388. [Google Scholar] [CrossRef] [PubMed]
- Onorato, L.; Di Caprio, G.; Signoriello, S.; Coppola, N. Efficacy of ceftazidime-avibactam in monotherapy or combination therapy against carbapenem-resistant Gram-negative bacteria: A meta-analysis. Antimicrob. Agents 2019, 54, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the treatment of ESBL-E, CRE, and Pseudomonas aeruginosa with DTR. Clin. Infect. Dis. 2021, 72, e169–e183. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. ESCMID guidelines for the treatment of infections caused by multi-drug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef]
- Nguyen, M.H.; Shields, R.K.; Chen, L.; Pasculle, W.A.; Hao, B.; Cheng, S.; Sun, J.; Kline, E.G.; Kreiswirth, B.N.; Clancy, C.J. Molecular epidemiology, natural history, and long-term outcomes of multidrug-resistant Enterobacterales colonization and infections among solid organ transplant recipients. Clin. Infect. Dis. 2022, 74, 395–406. [Google Scholar] [CrossRef]
- Qiao, B.; Wu, J.; Wan, Q.; Zhang, S.; Ye, Q. Factors influencing mortality in abdominal solid organ transplant recipients with multidrug-resistant gram-negative bacteremia. BMC Infect. Dis. 2017, 17, 171. [Google Scholar] [CrossRef]
- Chen, F.; Zhong, H.; Yang, T.; Shen, C.; Deng, Y.; Han, L.; Chen, X.; Zhang, H.; Qian, Y. Ceftazidime-avibactam as salvage treatment for infections due to Klebsiella pneumoniae in liver transplantation recipients. Infect. Drug Resist. 2021, 14, 5603–5612. [Google Scholar] [CrossRef]
- Pouch, S.M.; Patel, G.; AST Infectious Diseases Community of Practice. Multidrug-resistant Gram-negative bacterial infections in solid organ transplant recipients-Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Transpl. Infect. Dis. 2019, 33, e13594. [Google Scholar] [CrossRef]
- Charslon, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Burns, K.; Rodríguez, B.J.; Borg, M.; Daikos, G.; Dumpis, U.; Lucet, J.C.; Moro, M.L.; Tacconelli, E.; Simonsen, G.S.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Eur. Soc. Clin. Microbiol. Infect. Dis. 2011, 18, 268–281. [Google Scholar] [CrossRef]
- Karruli, A.; Catalini, C.; D’Amore, C.; Foglia, F.; Mari, F.; Harxhi, A.; Galdiero, M.; Durante-Mangoni, E. Evidence-based treatment of Pseudomonas aeruginosa infections: A critical reappraisal. Antibiotics 2023, 12, 399. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for sepsis and septic shock (Sepsis-3). JAMA 2015, 8, 801–810. [Google Scholar] [CrossRef]
- Godinjak, A.; Iglica, A.; Rama, A.; Tančica, I.; Jusufović, S.; Ajanović, A.; Kukuljac, A. Predictive value of SAPS II and APACHE II score scoring system for patients outcome in a medical intensive care unit. Acta Medica Acad. 2016, 45, 97–103. [Google Scholar]
- Fishman, J.A. Infection in solid-organ transplant recipients. N. Engl. J. Med. 2007, 357, 2601–2614. [Google Scholar] [CrossRef]
- The European Society of Clinical Microbiology and Infectious Diseases. EUCAST. Clinical Breakpoints. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 29 June 2023).
% | n | Variable |
---|---|---|
Microbiological data | ||
44% | 71 | Klebsiella pneumoniae |
34% | 54 | Pseudomonas aeruginosa |
1% | 1 | Enterobacter cloacae |
4% | 6 | Escherichia coli |
1% | 2 | Proteus mirabilis |
3% | 5 | Klebsiella aerogenes |
1% | 2 | Klebsiella oxytoca |
1% | 1 | Acinetobacter baumannii |
1% | 1 | Morganella morganii |
1% | 1 | Serratia marcescens |
27% | 44 | Polymicrobial infection |
58% | 94 | Monomicrobial infection |
Resistance pattern | ||
Enterobacterales | ||
6% | 9 | non-MDR |
44% | 71 | MDR |
37% | 59 | KPC carbapenemase |
1% | 1 | OXA-48 carbapenemase |
8% | 13 | ESBL |
2% | 5 | XDR |
P. aeruginosa | ||
1% | 2 | DTR |
7% | 11 | MDR |
1% | 2 | XDR |
24% | 39 | Non-MDR |
A. baumannii | ||
1% | 1 | XDR |
Clinical Failure (n = 68) | Successful Clinical Outcome (n = 93) | All (161) | ||
---|---|---|---|---|
p-Value | n (%) | n (%) | n (%) | Variable |
Patient-related variables | ||||
0.617 | 45 (66%) | 65 (70%) | 110 (68%) | Male |
23 (34%) | 28 (30%) | 51 (32%) | Female | |
0.968 | 65.5 (54.5–73) | 64 (55.5–74) | 64 (55.5–73) | Age (years), mean (IQR) |
0.407 | 46 (68%) | 57 (61%) | 103 (64%) | Charlson’s comorbidity index > 3 |
0.721 | 17 (25%) | 21 (23%) | 38 (24%) | Apache II score > 15 |
0.02 | 6 (4.25–7) | 5 (3–7) | 5 (4–7) | SOFA score, median (IQR) |
Comorbidities | ||||
0.143 | 11 (16%) | 24 (26%) | 35 (22%) | Diabetes mellitus |
0.699 | 11 (16%) | 13 (14%) | 24 (15%) | COPD |
0.516 | 4 (6%) | 8 (9%) | 12 (8%) | Hematological disorders |
0.683 | 4 (6%) | 7 (8%) | 11 (7%) | Solid tumors |
0.576 | 35 (52%) | 55 (56%) | 87 (54%) | Cardiovascular disorders |
0.863 | 11 (16%) | 16 (17%) | 27 (17%) | Neurological diseases |
0.799 | 12 (18%) | 15 (16%) | 27 (17%) | GI disorders |
0.008 | 10 (15%) | 3 (3%) | 13 (8%) | Liver transplant recipients |
0.004 | 59 (87%) | 62 (67%) | 121 (75%) | Acute diseases |
0.003 | 33 (49%) | 24 (26%) | 57 (35%) | Septic shock |
<0.0001 | 23 (34%) | 9 (10%) | 32 (20%) | Acute renal failure |
0.225 | 50 (74%) | 60 (65%) | 110 (68%) | Admission in ICU from other departments |
Pre-infection variables | ||||
0.211 | 58 (85%) | 72 (77%) | 130 (81%) | Central venous catheter |
0.800 | 21 (18%) | 27 (29%) | 48 (30%) | Surgical drainage a |
0.569 | 18 (27%) | 21 (23%) | 39 (24%) | Tracheostomy |
0.892 | 59 (87%) | 80 (86%) | 139 (86%) | Bladder catheter |
0.942 | 56 (82%) | 77 (83%) | 133 (83%) | Mechanical ventilation a |
0.001 | 19 (28%) | 8 (9%) | 27 (17%) | Renal replacement therapy |
0.003 | 33 (49%) | 24 (26%) | 57 (35%) | Vasopressors |
0.001 | 30 (44%) | 18 (19%) | 48 (30%) | Corticosteroid therapy b |
0.029 | 15 (22%) | 9 (10%) | 24 (15%) | Immunosuppressive therapy b,c |
0.286 | 25 (37%) | 42 (45%) | 67 (42%) | Previous surgery d |
0.592 | 38 (56%) | 48 (52%) | 86 (53%) | Hospitalization more than a month before the infection |
0.584 | 15 (22%) | 24 (26%) | 39 (24%) | Positive rectal swab for CRE at the admission or within 6 months before |
Reason for ICU admission | ||||
0.241 | 7 (10%) | 5 (5%) | 12 (8%) | Sepsis |
0.720 | 23 (33%) | 34 (37%) | 57 (35%) | Postoperative care |
0.896 | 22 (32%) | 31 (33%) | 53 (33%) | Acute respiratory failure |
0.032 | 5 (7%) | 18 (19%) | 23 (14%) | Polytrauma |
0.086 | 12 (17%) | 8 (9%) | 20 (12%) | Others ** |
0.034 | 34 (21–43.75) | 26 (14–42.5) | 29 (16–43) | Days in ICU before the onset of infection |
Infection variables | ||||
0.383 | 4 (6%) | 9 (10%) | 13 (8%) | Polymicrobial |
Site of isolation | ||||
0.074 | 7 (11%) | 17 (23%) | 24 (17%) | Urinary tract |
0.144 | 52 (82%) | 54 (72%) | 106 (77%) | Bronchial/pleural fluid |
0.688 | 2 (3%) | 4 (5%) | 6 (4%) | Abdominal fluid |
0.827 | 3 (5%) | 3 (4%) | 6 (4%) | Wounds |
0.683 | 12 (19%) | 12 (16%) | 24 (17%) | Blood |
Microbiological variables | ||||
0.354 | 35 (52%) | 41 (44%) | 76 (47%) | Klebsiella pneumoniae |
0.723 | 23 (34%) | 29 (31%) | 52 (32%) | Pseudomonas aeruginosa |
0.806 | 4 (6%) | 6 (7%) | 10 (6%) | Others *** |
0.092 | 30 (44%) | 29 (31%) | 59 (36%) | KPC |
0.567 | 5 (8%) | 8 (11%) | 13 (10%) | ESBL |
0.215 | 41 (65%) | 41 (55%) | 82 (60%) | MDR |
0.134 | 5 (7%) | 2 (2%) | 7 (4%) | XDR |
Relapse/Persistent Infection | First Infection | Pathogen | Year of Isolation | Case | ||
---|---|---|---|---|---|---|
MIC CAZ-AVI (mg/L) | MIC Meropenem (mg/L) | MIC CAZ-AVI (mg/L) | MIC Meropenem (mg/L) | |||
>16 | 8 | 6 | >16 | K. pneumoniae | 2020 | #1 |
>16 | 1.5 | >16 | >16 | K. pneumoniae | 2020 | #2 |
>16 | >16 | 8 | >16 | K. pneumoniae | 2020 | #3 |
>16 | >16 | 8 | >16 | K. pneumoniae | 2020 | #4 |
>16 | 1 | 4 | >16 | K. pneumoniae | 2020 | #5 |
>16 | >16 | >16 | >16 | K. pneumoniae | 2021 | #6 |
>16 | >16 | >16 | >16 | K. pneumoniae | 2021 | #7 |
>16 | >16 | 1 | >16 | K. pneumoniae | 2021 | #8 |
>16 | 1 | 2 | >16 | K. pneumoniae | 2021 | #9 |
>16 | >16 | 4 | >16 | K. pneumoniae | 2021 | #10 |
>16 | ≤0.25 | 8 | >16 | K. pneumoniae | 2021 | #11 |
>16 | >16 | 2 | >16 | P. aeruginosa | 2021 | #12 |
>16 | ≤0.25 | 8 | >16 | K. pneumoniae | 2021 | #13 |
>16 | 8 | 2 | 4 | P. aeruginosa | 2022 | #14 |
>16 | 1 | 4 | >16 | K. pneumoniae | 2023 | #15 |
>16 | 1 | 4 | >16 | K. pneumoniae | 2023 | #16 |
>16 | 0.5 | 2 | 1 | P. aeruginosa | 2023 | #17 |
>16 | >16 | 4 | >16 | K. pneumoniae | 2023 | #18 |
p-Value | OR (95% CI) | Variable |
---|---|---|
0.001 | 5.601 (1.949–16.001) | Corticosteroid therapy |
0.041 | 3.632 (1.051–12.546) | Acute renal failure |
0.032 | 2.654 (1.086–6.484) | Septic shock |
% | n | Variables |
---|---|---|
77% | 10 | Male sex |
53–62 | 59 | Age (years) median, IQR |
13–31 | 23 | MELD-Na pre-OLT: median (IQR) |
2–4 | 3 | Charlson’s comorbidity index: median (IQR) |
Immunosuppressive therapy | ||
69% | 9 | Tacrolimus |
8% | 1 | Tacrolimus + everolimus |
23% | 3 | Cyclosporin |
38% | 5 | Early post-transplantation infection |
46% | 6 | Intermediate post-transplantation infection |
15% | 2 | Late post-transplantation infection |
Type of infection | ||
31% | 4 | BSI |
8% | 1 | CLABSI |
8% | 1 | HAP |
46% | 6 | VAP |
15% | 2 | cUTI |
8% | 1 | cIAI |
8% | 1 | Suspected MDR GNB infection |
8% | 1 | Other (surgical site infection) |
Life-supporting therapies | ||
77% | 10 | Mechanical ventilation |
31% | 4 | CVVH |
38% | 5 | Vasopressors |
Severity scores: median (IQR) | ||
12–14 | 12 | Apache II score at admission |
7–10 | 7 | SOFA score at admission |
7–14 | 9 | Duration of therapy, median (IQR) |
38% | 5 | Empiric use of CAZ-AVI |
23% | 3 | Combination therapy |
31% | 4 | CAZ-AVI as first line therapy |
Other Patients (n = 148) | Liver Transplant Recipients (n = 13) | ||
---|---|---|---|
p-Value | n (%) | n (%) | Variable |
0.018 | 66.5 (56–74) | 59 (52.5–62) | Age, median (IQR) |
0.005 | 54 (37%) | 0 | COVID-19 disease |
0.007 | 57 (39%) | 10 (77%) | Previous surgery |
<0.001 | 73 (49%) | 13 (100%) | Hospitalization more than a month before the infection |
0.020 | 104 (70%) | 13 (100%) | Previous antibiotic therapy (within one month of infection) |
<0.001 | 17 (12%) | 9 (69%) | Admission in ICU from surgical departments |
<0.001 | 44 (30%) | 13 (100%) | ICU admission for postoperative care |
0.005 | 53 (36%) | 0 | ICU admission for acute respiratory failure |
0.001 | 64 (43%) | 12 (92%) | Klebsiella pneumoniae infection |
0.01 | 52 (35%) | 0 | Pseudomonas aeruginosa infection |
0.016 | 50 (34%) | 9 (69%) | KPC |
0.027 | 71 (56%) | 11 (92%) | MDR |
0.022 | 40 (27%) | 8 (62%) | Surgical drainage a |
<0.0001 | 35 (24%) | 13 (100%) | Steroid therapy b |
<0.0001 | 11 (7%) | 13 (100%) | Immunosuppressive therapy b,c |
0.005 | 25 (17%) | 7 (54%) | Acute renal failure |
0.006 | 26 (18%) | 7 (54%) | Relapse |
0.008 | 58 (39%) | 10 (77%) | Outcome negative |
0.07 | 28 (16–42) | 43 (24–85) | Days in ICU before the onset of infection, median (IQR) |
0.0002 | 5 (3–7) | 7 (7–10.5) | SOFA score, median (IQR) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silvia, O.; Sara, M.; Gabriele, G.S.; Francesco, P.; Andrea, F.; Benedetta, C.; Vanessa, D.M.; Michele, D.P.; Elisabetta, C.; Abele, D.; et al. Ceftazidime–Avibactam in Critically Ill Patients: A Multicenter Observational Study. Antibiotics 2025, 14, 797. https://doi.org/10.3390/antibiotics14080797
Silvia O, Sara M, Gabriele GS, Francesco P, Andrea F, Benedetta C, Vanessa DM, Michele DP, Elisabetta C, Abele D, et al. Ceftazidime–Avibactam in Critically Ill Patients: A Multicenter Observational Study. Antibiotics. 2025; 14(8):797. https://doi.org/10.3390/antibiotics14080797
Chicago/Turabian StyleSilvia, Olivieri, Mazzanti Sara, Gelo Signorino Gabriele, Pallotta Francesco, Ficola Andrea, Canovari Benedetta, Di Muzio Vanessa, Di Prinzio Michele, Cerutti Elisabetta, Donati Abele, and et al. 2025. "Ceftazidime–Avibactam in Critically Ill Patients: A Multicenter Observational Study" Antibiotics 14, no. 8: 797. https://doi.org/10.3390/antibiotics14080797
APA StyleSilvia, O., Sara, M., Gabriele, G. S., Francesco, P., Andrea, F., Benedetta, C., Vanessa, D. M., Michele, D. P., Elisabetta, C., Abele, D., Andrea, G., Francesco, B., & Lucia, B. (2025). Ceftazidime–Avibactam in Critically Ill Patients: A Multicenter Observational Study. Antibiotics, 14(8), 797. https://doi.org/10.3390/antibiotics14080797