Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,264)

Search Parameters:
Keywords = immune cell composition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1973 KiB  
Communication
Pro-Angiogenic Effects of Canine Platelet-Rich Plasma: In Vitro and In Vivo Evidence
by Seong-Won An and Young-Sam Kwon
Animals 2025, 15(15), 2260; https://doi.org/10.3390/ani15152260 (registering DOI) - 1 Aug 2025
Abstract
Platelet-rich plasma (PRP) is widely applied in veterinary regenerative medicine due to its rich composition of growth factors that promote tissue repair. However, the direct pro-angiogenic function of canine PRP (cPRP) has not been thoroughly validated through controlled in vitro and in vivo [...] Read more.
Platelet-rich plasma (PRP) is widely applied in veterinary regenerative medicine due to its rich composition of growth factors that promote tissue repair. However, the direct pro-angiogenic function of canine PRP (cPRP) has not been thoroughly validated through controlled in vitro and in vivo experimentation. Human umbilical vein endothelial cells (HUVECs) were used to assess cell proliferation, migration, and tube formation after exposure to cPRP. In addition, a rabbit corneal micropocket assay was employed to evaluate in vivo angiogenic responses. Treatment with 20% cPRP significantly enhanced HUVEC proliferation and migration and induced robust tube formation. In the in vivo model, we observed dose-dependent neovascularization, with the earliest vascular sprouting seen on day 1 in the 40% group. Both models consistently demonstrated that cPRP stimulates vascular development in a concentration-dependent manner. This study provides novel evidence of cPRP’s capacity to induce neovascularization, supporting its therapeutic value for treating nonhealing wounds in dogs, especially in cases involving chronic inflammation, aging, or immune dysregulation. These findings offer a scientific foundation for the broader clinical application of cPRP in veterinary regenerative practice. Full article
Show Figures

Figure 1

19 pages, 946 KiB  
Review
The Promotion of Cell Proliferation by Food-Derived Bioactive Peptides: Sources and Mechanisms
by Yuhao Yan, Yinuo Liu, Xinwei Zhang, Liting Zan and Xibi Fang
Metabolites 2025, 15(8), 505; https://doi.org/10.3390/metabo15080505 - 29 Jul 2025
Viewed by 260
Abstract
Cell proliferation plays a pivotal role in multiple physiological processes, including osteoporosis alleviation, wound healing, and immune enhancement. Numerous novel peptides with cell proliferation-promoting activity have been identified. These peptides exert their functions by modulating key cellular signaling pathways, thereby regulating diverse biological [...] Read more.
Cell proliferation plays a pivotal role in multiple physiological processes, including osteoporosis alleviation, wound healing, and immune enhancement. Numerous novel peptides with cell proliferation-promoting activity have been identified. These peptides exert their functions by modulating key cellular signaling pathways, thereby regulating diverse biological processes related to cell proliferation. This work summarizes peptides derived from animals and plants that stimulate cell proliferation, focusing on their amino acid composition, physicochemical properties, and preparation techniques. Furthermore, we highlight the major signaling pathways—such as the PI3K/Akt, MAPK/ERK, and Wnt/β-catenin pathways—that have been implicated in the mechanistic studies of food-derived peptides. Through the analysis and summary of previous studies, we observe a notable lack of in vivo animal models and clinical trials, indicating that these may represent promising directions for future research on food-derived bioactive peptides. Meanwhile, the potential safety concerns of proliferation-enhancing peptides—such as immunogenicity, appropriate dosage, and gastrointestinal stability—warrant greater attention. In summary, this review provides a comprehensive overview of the sources and mechanisms of cell proliferation-promoting peptides and addresses the challenges in industrializing bioactive peptide-based functional foods; therefore, further research in this area is encouraged. Full article
Show Figures

Graphical abstract

20 pages, 770 KiB  
Review
Histamine Metabolism in IBD: Towards Precision Nutrition
by Dimitra Kanta, Eleftherios Katsamakas, Anna Maia Berg Gudiksen and Mahsa Jalili
Nutrients 2025, 17(15), 2473; https://doi.org/10.3390/nu17152473 - 29 Jul 2025
Viewed by 225
Abstract
Patients with Inflammatory Bowel Disease (IBD) exhibit a dysregulated immune response that may be further exacerbated by bioactive compounds, such as histamine. Current dietary guidelines for IBD primarily focus on symptom management and flare-up prevention, yet targeted nutritional strategies addressing histamine metabolism remain [...] Read more.
Patients with Inflammatory Bowel Disease (IBD) exhibit a dysregulated immune response that may be further exacerbated by bioactive compounds, such as histamine. Current dietary guidelines for IBD primarily focus on symptom management and flare-up prevention, yet targeted nutritional strategies addressing histamine metabolism remain largely unexplored. This narrative review aims to summarize the existing literature on the complex interplay between IBD and histamine metabolism and propose a novel dietary framework for managing IBD progression in patients with histamine intolerance (HIT). Relevant studies were identified through a comprehensive literature search of PubMed/MEDLINE, Google Scholar, ScienceDirect, Scopus, and Web of Science. The proposed low-histamine diet (LHD) aims to reduce the overall histamine burden in the body through two primary strategies: (1) minimizing exogenous intake by limiting high-histamine and histamine-releasing foods and (2) reducing endogenous histamine production by modulating gut microbiota composition, specifically targeting histamine-producing bacteria. In parallel, identifying individuals who are histamine-intolerant and understanding the role of histamine-degrading enzymes, such as diamine oxidase (DAO) and histamine-N-methyltransferase (HNMT), are emerging as important areas of focus. Despite growing interest in the role of histamine and mast cell activation in gut inflammation, no clinical trials have investigated the effects of a low-histamine diet in IBD populations. Therefore, future research should prioritize the implementation of LHD interventions in IBD patients to evaluate their generalizability and clinical applicability. Full article
(This article belongs to the Special Issue Precise Nutrition Therapy to Inflammatory Bowel Diseases)
Show Figures

Graphical abstract

26 pages, 1300 KiB  
Review
The Human Mycobiome: Composition, Immune Interactions, and Impact on Disease
by Laura Carrillo-Serradell, Jade Liu-Tindall, Violeta Planells-Romeo, Lucía Aragón-Serrano, Marcos Isamat, Toni Gabaldón, Francisco Lozano and María Velasco-de Andrés
Int. J. Mol. Sci. 2025, 26(15), 7281; https://doi.org/10.3390/ijms26157281 - 28 Jul 2025
Viewed by 522
Abstract
The fungal component of microbiota, known as the mycobiome, inhabits different body niches such as the skin and the gastrointestinal, respiratory, and genitourinary tracts. Much information has been gained on the bacterial component of the human microbiota, but the mycobiome has remained somewhat [...] Read more.
The fungal component of microbiota, known as the mycobiome, inhabits different body niches such as the skin and the gastrointestinal, respiratory, and genitourinary tracts. Much information has been gained on the bacterial component of the human microbiota, but the mycobiome has remained somewhat elusive due to its sparsity, variability, susceptibility to environmental factors (e.g., early life colonization, diet, or pharmacological treatments), and the specific in vitro culture challenges. Functionally, the mycobiome is known to play a role in modulating innate and adaptive immune responses by interacting with microorganisms and immune cells. The latter elicits anti-fungal responses via the recognition of specific fungal cell-wall components (e.g., β-1,3-glucan, mannan, and chitin) by immune system receptors. These receptors then regulate the activation and differentiation of many innate and adaptive immune cells including mucocutaneous cell barriers, macrophages, neutrophils, dendritic cells, natural killer cells, innate-like lymphoid cells, and T and B lymphocytes. Mycobiome disruptions have been correlated with various diseases affecting mostly the brain, lungs, liver and pancreas. This work reviews our current knowledge on the mycobiome, focusing on its composition, research challenges, conditioning factors, interactions with the bacteriome and the immune system, and the known mycobiome alterations associated with disease. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

20 pages, 25333 KiB  
Article
Regulatory Effects of Codonopsis pilosula Alkali-Extracted Polysaccharide Induced Intestinal Lactobacillus Enrichment on Peripheral Blood Proteomics in Tumor-Bearing Mice
by Yuting Fan, Chenqi Yang, Yiran Zhao, Xiao Han, Hongfei Ji, Zhuohao Ren, Wenjie Ding and Haiyu Ji
Microorganisms 2025, 13(8), 1750; https://doi.org/10.3390/microorganisms13081750 - 26 Jul 2025
Viewed by 248
Abstract
Codonopsis pilosula polysaccharides have demonstrated multiple biological activities including immune regulation, antitumor, and antioxidant properties. The rapid development and integrated application of multi-omics can facilitate the unraveling of the complex network of immune system regulation. In this study, C. pilosula alkali-extracted polysaccharide (CPAP) [...] Read more.
Codonopsis pilosula polysaccharides have demonstrated multiple biological activities including immune regulation, antitumor, and antioxidant properties. The rapid development and integrated application of multi-omics can facilitate the unraveling of the complex network of immune system regulation. In this study, C. pilosula alkali-extracted polysaccharide (CPAP) were prepared, and their effects on gut microbiota compositions, metabolic pathways, and protein expressions in peripheral blood and solid tumors in mice were further evaluated. The 16S rDNA sequencing results showed that CPAP could effectively promote the enrichment of intestinal Lactobacillus in tumor-bearing mice. In addition, it could be inferred from peripheral blood and solid tumor proteomics results that CPAP might activate T cell-mediated antitumor immune functions by regulating purine metabolism and alleviate tumor-caused inflammation by promoting neutrophil degranulation, finally inducing apoptosis in tumor cells by increasing oxidative stress. These results will provide a theoretical foundation and data support for the further development of CPAP as dietary adjuvants targeting immune deficiency-related diseases. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

19 pages, 6650 KiB  
Article
Multi-Strain Probiotic Regulates the Intestinal Mucosal Immunity and Enhances the Protection of Piglets Against Porcine Epidemic Diarrhea Virus Challenge
by Xueying Wang, Qi Zhang, Weijian Wang, Xiaona Wang, Baifen Song, Jiaxuan Li, Wen Cui, Yanping Jiang, Weichun Xie and Lijie Tang
Microorganisms 2025, 13(8), 1738; https://doi.org/10.3390/microorganisms13081738 - 25 Jul 2025
Viewed by 297
Abstract
Porcine epidemic diarrhea virus (PEDV) infection induces severe, often fatal, watery diarrhea and vomiting in neonatal piglets, characterized by profound dehydration, villus atrophy, and catastrophic mortality rates approaching 100% in unprotected herds. This study developed a composite probiotic from Min-pig-derived Lactobacillus crispatus LCM233, [...] Read more.
Porcine epidemic diarrhea virus (PEDV) infection induces severe, often fatal, watery diarrhea and vomiting in neonatal piglets, characterized by profound dehydration, villus atrophy, and catastrophic mortality rates approaching 100% in unprotected herds. This study developed a composite probiotic from Min-pig-derived Lactobacillus crispatus LCM233, Ligilactobacillus salivarius LSM231, and Lactiplantibacillus plantarum LPM239, which exhibited synergistic growth, potent acid/bile salt tolerance, and broad-spectrum antimicrobial activity against pathogens. In vitro, the probiotic combination disrupted pathogen ultrastructure and inhibited PEDV replication in IPI-2I cells. In vivo, PEDV-infected piglets administered with the multi-strain probiotic exhibited decreased viral loads in anal and nasal swabs, as well as in intestinal tissues. This intervention was associated with the alleviation of diarrhea symptoms and improved weight gain. Furthermore, the multi-strain probiotic facilitated the repair of intestinal villi and tight junctions, increased the number of goblet cells, downregulated pro-inflammatory cytokines, enhanced the expression of barrier proteins, and upregulated antiviral interferon-stimulated genes. These findings demonstrate that the multi-strain probiotic mitigates PEDV-induced damage by restoring intestinal barrier homeostasis and modulating immune responses, providing a novel strategy for controlling PEDV infections. Full article
(This article belongs to the Special Issue Viral Infection on Swine: Pathogenesis, Diagnosis and Control)
Show Figures

Figure 1

27 pages, 1804 KiB  
Review
The 3D Language of Cancer: Communication via Extracellular Vesicles from Tumor Spheroids and Organoids
by Simona Campora and Alessandra Lo Cicero
Int. J. Mol. Sci. 2025, 26(15), 7104; https://doi.org/10.3390/ijms26157104 - 23 Jul 2025
Viewed by 307
Abstract
Extracellular vesicles (EVs) have emerged as key mediators of intercellular communication, gaining recognition as tumor biomarkers and promising therapeutic targets. As the study of EVs advances, it has become increasingly clear that the cellular context in which they are produced significantly influences their [...] Read more.
Extracellular vesicles (EVs) have emerged as key mediators of intercellular communication, gaining recognition as tumor biomarkers and promising therapeutic targets. As the study of EVs advances, it has become increasingly clear that the cellular context in which they are produced significantly influences their composition and function. Traditional two-dimensional in vitro models are being progressively replaced by more advanced three-dimensional systems, such as tumor spheroids and organoids. These 3D models are particularly valuable in cancer research, providing a more accurate representation of the complex cellular and molecular heterogeneity that characterizes tumors, better mimicking the in vivo microenvironment compared to standard monolayer cultures. This review explores the role of EVs derived from tumor spheroids and organoids in key oncogenic processes, including tumor growth, metastasis, and interactions within the tumor microenvironment. We highlight how EVs contribute to the spread of cancer cells, affecting surrounding tissues, and promote immune evasion, which poses significant challenges in cancer therapy. Full article
(This article belongs to the Special Issue Recent Advances in 3D Tumor Models for Cancer Research)
Show Figures

Figure 1

28 pages, 1763 KiB  
Review
Interaction Between Konjac Glucomannan and Gut Microbiota and Its Impact on Health
by Yufen Yu, Shuo Jin, Yi Yang, Xiaodong Han, Rongfa Guan and Hao Zhong
Biology 2025, 14(8), 923; https://doi.org/10.3390/biology14080923 - 23 Jul 2025
Viewed by 552
Abstract
Konjac glucomannan (KGM) is a natural polysaccharide polymer. It is degraded by gut microbiota-derived β-mannanase into small-molecule nutrients, which exert diverse physiological regulatory effects. As a prebiotic, KGM modulates gut microbiota composition. It selectively fosters the proliferation of beneficial commensals and suppresses potential [...] Read more.
Konjac glucomannan (KGM) is a natural polysaccharide polymer. It is degraded by gut microbiota-derived β-mannanase into small-molecule nutrients, which exert diverse physiological regulatory effects. As a prebiotic, KGM modulates gut microbiota composition. It selectively fosters the proliferation of beneficial commensals and suppresses potential pathogens, thereby alleviating microbiota-related disorders. Moreover, microbiota fermentation of KGM produces metabolites. Short-chain fatty acids (SCFAs) are particularly notable among these metabolites. They exert multifaceted beneficial effects, including metabolic regulation, intestinal barrier strengthening, and neuroprotective functions. These effects are mediated through inhibition of inflammatory pathways (e.g., NF-κB, MAPK), modulation of lipid metabolism genes (e.g., CD36), and regulation of neurotransmitters (e.g., GABA, 5-HT). This highlights KGM’s therapeutic potential for metabolic, inflammatory, and neurodegenerative diseases. Current clinical use is limited by dose-dependent adverse effects and interindividual response variability, which stem from different microbial communities. This necessitates personalized dosage strategies. Despite these limitations, KGM as a prebiotic polysaccharide exhibits multifaceted bioactivity. Current evidence suggests its potential to synergistically modulate metabolic pathways, gut microbiota composition, immune cell signaling, and neuroendocrine interactions. This highlights its promise for developing novel therapeutic interventions. Full article
(This article belongs to the Special Issue Gut Microbiome in Health and Disease (2nd Edition))
Show Figures

Figure 1

20 pages, 1837 KiB  
Review
Vitamin D, Gut Microbiota, and Cancer Immunotherapy—A Potentially Effective Crosstalk
by Yizhen Yan, Yi Guo, Yiting Li, Qingrui Jiang, Chenhang Yuan, Li Zhao and Shanshan Mao
Int. J. Mol. Sci. 2025, 26(15), 7052; https://doi.org/10.3390/ijms26157052 - 22 Jul 2025
Viewed by 185
Abstract
Recent breakthroughs in cancer immunotherapy have shown remarkable success, yet treatment efficacy varies significantly among individuals. Emerging evidence highlights the gut microbiota as a key modulator of immunotherapy response, while vitamin D (VD), an immunomodulatory hormone, has garnered increasing attention for its potential [...] Read more.
Recent breakthroughs in cancer immunotherapy have shown remarkable success, yet treatment efficacy varies significantly among individuals. Emerging evidence highlights the gut microbiota as a key modulator of immunotherapy response, while vitamin D (VD), an immunomodulatory hormone, has garnered increasing attention for its potential interactions with gut microbiota and immunotherapy outcomes. However, the precise mechanisms and clinical applications of VD in this context remain controversial. This study systematically analyzed peer-reviewed evidence from PubMed, Scopus, Web of Science, PsycINFO, and MEDLINE (January 2000–May 2025) to investigate the complex interplay among VD, gut microbiota, and cancer immunotherapy. This review demonstrates that VD exerts dual immunomodulatory effects by directly activating immune cells through vitamin D receptor (VDR) signaling while simultaneously reshaping gut microbial composition to enhance antitumor immunity. Clinical data reveal paradoxical outcomes: optimal VD levels correlate with improved immunotherapy responses and reduced toxicity in some studies yet are associated with immunosuppression and poorer survival in others. The bidirectional VD–microbiota interaction further complicates this relationship: VD supplementation enriches beneficial bacteria, which reciprocally regulate VD metabolism and amplify immune responses, whereas excessive VD intake may disrupt this balance, leading to dysbiosis and compromised therapeutic efficacy. These findings underscore the need to elucidate VD’s dose-dependent and microbiota-mediated mechanisms to optimize its clinical application in immunotherapy regimens. Future research should prioritize mechanistic studies of VD’s immunoregulatory pathways, personalized strategies accounting for host–microbiota variability, and large-scale clinical trials to validate VD’s role as an adjuvant in precision immunotherapy. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

21 pages, 2627 KiB  
Article
A Low-Gluten Diet Reduces the Abundance of Potentially Beneficial Bacteria in Healthy Adult Gut Microbiota
by Eve Delmas, Rea Bingula, Christophe Del’homme, Nathalie Meunier, Aurélie Caille, Noëlle Lyon-Belgy, Ruddy Richard, Maria Gloria Do Couto, Yohann Wittrant and Annick Bernalier-Donadille
Nutrients 2025, 17(15), 2389; https://doi.org/10.3390/nu17152389 - 22 Jul 2025
Viewed by 1905
Abstract
Background/Objectives: An increasing number of apparently healthy individuals are adhering to a gluten-free lifestyle without any underlying medical indications, although the evidence for the health benefits in these individuals remains unclear. Although it has already been shown that a low- or gluten-free diet [...] Read more.
Background/Objectives: An increasing number of apparently healthy individuals are adhering to a gluten-free lifestyle without any underlying medical indications, although the evidence for the health benefits in these individuals remains unclear. Although it has already been shown that a low- or gluten-free diet alters the gut microbiota, few studies have examined the effects of this diet on healthy subjects. Therefore, our aim was to evaluate whether and how a prolonged low-gluten diet impacts gut microbiota composition and function in healthy adults, bearing in mind its intimate link to the host’s health. Methods: Forty healthy volunteers habitually consuming a gluten-containing diet (HGD, high-gluten diet) were included in a randomised control trial consisting of two successive 8-week dietary intervention periods on a low-gluten diet (LGD). After each 8-week period, gut microbiota composition was assessed by 16S rRNA gene sequencing, molecular quantification by qPCR, and a cultural approach, while its metabolic capacity was evaluated through measuring faecal fermentative metabolites by 1H NMR. Results: A prolonged period of LGD for 16 weeks reduced gut microbiota richness and decreased the relative abundance of bacterial species with previously reported potential health benefits such as Akkermansia muciniphila and Bifidobacterium sp. A decrease in certain plant cell wall polysaccharide-degrading species was also observed. While there was no major modification affecting the main short-chain fatty acid profiles, the concentration of the intermediate metabolite, ethanol, was increased in faecal samples. Conclusions: A 16-week LGD significantly altered both composition and metabolic production of the gut microbiota in healthy individuals, towards a more dysbiotic profile previously linked to adverse effects on the host’s health. Therefore, the evaluation of longer-term LDG would consolidate these results and enable a more in-depth examination of its impact on the host’s physiology, immunity, and metabolism. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

29 pages, 4944 KiB  
Article
Distinct Immunological Landscapes of HCMV-Specific T Cells in Bone Marrow and Peripheral Blood
by Sarah E. Jackson, Rosie Fairclough, Veronika Romashova, Georgina Okecha and Mark R. Wills
Pathogens 2025, 14(8), 722; https://doi.org/10.3390/pathogens14080722 - 22 Jul 2025
Viewed by 352
Abstract
Human cytomegalovirus (HCMV) establishes lifelong latency in the host, with the bone marrow (BM) CD34+ cells serving as a key reservoir. To investigate tissue-specific immune responses to CMV, we analysed paired peripheral blood mononuclear cells (PBMCs) and bone marrow mononuclear cells (BMMNCs) from [...] Read more.
Human cytomegalovirus (HCMV) establishes lifelong latency in the host, with the bone marrow (BM) CD34+ cells serving as a key reservoir. To investigate tissue-specific immune responses to CMV, we analysed paired peripheral blood mononuclear cells (PBMCs) and bone marrow mononuclear cells (BMMNCs) from HCMV-seropositive donors using multiparametric flow cytometry and cytokine FluroSpot assays. We assessed immune cell composition, memory T cell subsets, cytokine production, cytotoxic potential, activation marker expression, and checkpoint inhibitory receptor (CIR) profiles, both ex vivo and following stimulation with lytic and latent HCMV antigens. BMMNCs were enriched in CD34+ progenitor cells and exhibited distinct T cell memory subset distributions. HCMV-specific responses were compartmentalised: IFN-γ responses predominated in PBMCs following lytic antigen stimulation, while IL-10 and TNF-α responses were more prominent in BMMNCs, particularly in response to latent antigens. US28-specific T cells in the BM showed elevated expression of CD39, PD-1, BTLA, CTLA-4, ICOS, and LAG-3 on CD4+ T cells and increased expression of PD-1, CD39, BTLA, TIGIT, LAG-3, and ICOS on CD8+ T cell populations, suggesting a more immunoregulatory phenotype. These findings highlight functional and phenotypic differences in HCMV-specific T cell responses between blood and bone marrow, underscoring the role of the BM niche in shaping antiviral immunity and maintaining viral latency. Full article
Show Figures

Figure 1

31 pages, 4179 KiB  
Review
Plant-Derived Vesicle-like Nanoparticles: Pioneering Sustainable and Effective Approaches for Tissue Repair and Regeneration
by Qinjing Wang, Zhijie Huang, Jiming Guo, Weixing Chen, Min Wang, Yue Ming, Hongyu Liu, Mingshu Huang, Yisheng Huang, Zhengming Tang and Bo Jia
Biomolecules 2025, 15(8), 1055; https://doi.org/10.3390/biom15081055 - 22 Jul 2025
Viewed by 390
Abstract
Plant-derived vesicle-like nanoparticles (PDVLNs) are bioactive nanovesicles secreted by plant cells, emerging as a novel therapeutic tool for tissue repair and regeneration due to their low immunogenicity, intrinsic bioactivity, and potential as drug delivery carriers. This review examines PDVLNs’ biogenesis mechanisms, isolation techniques, [...] Read more.
Plant-derived vesicle-like nanoparticles (PDVLNs) are bioactive nanovesicles secreted by plant cells, emerging as a novel therapeutic tool for tissue repair and regeneration due to their low immunogenicity, intrinsic bioactivity, and potential as drug delivery carriers. This review examines PDVLNs’ biogenesis mechanisms, isolation techniques, and compositional diversity, emphasizing their roles in promoting essential regenerative processes—cell proliferation, differentiation, migration, immune modulation, and angiogenesis. We explore their therapeutic applications across multiple tissue types, including skin, bone, neural, liver, gastrointestinal, cardiovascular, and dental tissues, using both natural and engineered PDVLNs in various disease models. Compared to mammalian exosomes, PDVLNs offer advantages such as reduced immune rejection and ethical concerns, enhancing their sustainability and appeal for regenerative medicine. However, challenges in clinical translation, including scalability, standardization, and safety remain. This paper consolidates current knowledge on PDVLNs, highlighting their versatility and providing insights into engineering strategies to optimize efficacy, ultimately outlining future research directions to advance their clinical potential. Plant vesicle-like nanoparticles (PDVLNs) may become a new avenue for the treatment of tissue injury, promoting tissue repair and regeneration through their intrinsic bioactivity or as drug delivery carriers. In addition, PDVLNs can be engineered and modified to achieve better results. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

21 pages, 2961 KiB  
Article
Impact of the Use of 2-Phospho-L Ascorbic Acid in the Production of Engineered Stromal Tissue for Regenerative Medicine
by David Brownell, Laurence Carignan, Reza Alavi, Christophe Caneparo, Maxime Labroy, Todd Galbraith, Stéphane Chabaud, François Berthod, Laure Gibot, François Bordeleau and Stéphane Bolduc
Cells 2025, 14(14), 1123; https://doi.org/10.3390/cells14141123 - 21 Jul 2025
Viewed by 436
Abstract
Tissue engineering enables autologous reconstruction of human tissues, addressing limitations in tissue availability and immune compatibility. Several tissue engineering techniques, such as self-assembly, rely on or benefit from extracellular matrix (ECM) secretion by fibroblasts to produce biomimetic scaffolds. Models have been developed for [...] Read more.
Tissue engineering enables autologous reconstruction of human tissues, addressing limitations in tissue availability and immune compatibility. Several tissue engineering techniques, such as self-assembly, rely on or benefit from extracellular matrix (ECM) secretion by fibroblasts to produce biomimetic scaffolds. Models have been developed for use in humans, such as skin and corneas. Ascorbic acid (vitamin C, AA) is essential for collagen biosynthesis. However, AA is chemically unstable in culture, with a half-life of 24 h, requiring freshly prepared AA with each change of medium. This study aims to demonstrate the functional equivalence of 2-phospho-L-ascorbate (2PAA), a stable form of AA, for tissue reconstruction. Dermal, vaginal, and bladder stroma were reconstructed by self-assembly using tissue-specific protocols. The tissues were cultured in a medium supplemented with either freshly prepared or frozen AA, or with 2PAA. Biochemical analyses were performed on the tissues to evaluate cell density and tissue composition, including collagen secretion and deposition. Histology and quantitative polarized light microscopy were used to evaluate tissue architecture, and mechanical evaluation was performed both by tensiometry and atomic force microscopy (AFM) to evaluate its macroscopic and cell-scale mechanical properties. The tissues produced by the three ascorbate conditions had similar collagen deposition, architecture, and mechanical properties in each organ-specific stroma. Mechanical characterization revealed tissue-specific differences, with tensile modulus values ranging from 1–5 MPa and AFM-derived apparent stiffness in the 1–2 kPa range, reflecting the nonlinear and scale-dependent behavior of the engineered stroma. The results demonstrate the possibility of substituting AA with 2PAA for tissue engineering. This protocol could significantly reduce the costs associated with tissue production by reducing preparation time and use of materials. This is a crucial factor for any scale-up activity. Full article
Show Figures

Figure 1

18 pages, 9009 KiB  
Article
Cancer-Associated Fibroblasts Establish Spatially Distinct Prognostic Niches in Subcutaneous Colorectal Cancer Mouse Model
by Zhixian Lin, Jinmeng Wang, Yixin Ma, Yanan Zhu, Yuhan Li, Zhengtao Xiao and Wei Zhao
Cancers 2025, 17(14), 2402; https://doi.org/10.3390/cancers17142402 - 19 Jul 2025
Viewed by 439
Abstract
Background/Objectives: Subcutaneous tumor models are widely used in colorectal cancer (CRC) research due to their experimental accessibility; however, the spatial organization and regulatory mechanisms of their tumor microenvironment remain poorly understood. Methods: Here, we applied spatial transcriptomics to systematically characterize spatial heterogeneity within [...] Read more.
Background/Objectives: Subcutaneous tumor models are widely used in colorectal cancer (CRC) research due to their experimental accessibility; however, the spatial organization and regulatory mechanisms of their tumor microenvironment remain poorly understood. Methods: Here, we applied spatial transcriptomics to systematically characterize spatial heterogeneity within MC38 subcutaneous tumors in a syngeneic mouse model. Results: We identified two spatially distinct tumor zones, partitioned by cancer-associated fibroblasts (CAFs), that differ markedly in cellular composition, oncogenic signaling, immune infiltration, and metabolic states. One zone exhibited features of TGF-β-driven extracellular matrix remodeling, immune exclusion, and hyperproliferative metabolism, while the other was enriched for immunosuppressive macrophages, metabolic reprogramming via PPAR and AMPK pathways, and high-risk cell populations. Spatially resolved cell–cell communication networks further revealed zone-specific ligand–receptor interactions—such as ANGPTL4–SDC2 and PROS1–AXL—that underpin stromal remodeling and immune evasion and are associated with patient prognosis. Conclusions: Collectively, our study uncovers how region-specific cellular ecosystems and intercellular crosstalk establish prognostically divergent niches within subcutaneous CRC tumors, offering insights into spatially guided therapeutic strategies. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

25 pages, 3050 KiB  
Review
REG3A: A Multifunctional Antioxidant Lectin at the Crossroads of Microbiota Regulation, Inflammation, and Cancer
by Jamila Faivre, Hala Shalhoub, Tung Son Nguyen, Haishen Xie and Nicolas Moniaux
Cancers 2025, 17(14), 2395; https://doi.org/10.3390/cancers17142395 - 19 Jul 2025
Viewed by 424
Abstract
REG3A, a prominent member of the human regenerating islet-derived (REG) lectin family, plays a pivotal and multifaceted role in immune defense, inflammation, and cancer biology. Primarily expressed in gastrointestinal epithelial cells, REG3A reinforces barrier integrity, orchestrates mucosal immune responses, and regulates host–microbiota interactions. [...] Read more.
REG3A, a prominent member of the human regenerating islet-derived (REG) lectin family, plays a pivotal and multifaceted role in immune defense, inflammation, and cancer biology. Primarily expressed in gastrointestinal epithelial cells, REG3A reinforces barrier integrity, orchestrates mucosal immune responses, and regulates host–microbiota interactions. It also functions as a potent non-enzymatic antioxidant, protecting tissues from oxidative stress. REG3A expression is tightly regulated by inflammatory stimuli and is robustly induced during immune activation, where it limits microbial invasion, dampens tissue injury, and promotes epithelial repair. Beyond its antimicrobial and immunomodulatory properties, REG3A contributes to the resolution of inflammation and the maintenance of tissue homeostasis. However, its role in cancer is highly context-dependent. In some tumor types, REG3A fosters malignant progression by enhancing cell survival, proliferation, and invasiveness. In others, it acts as a tumor suppressor, inhibiting growth and metastatic potential. These opposing effects are likely dictated by a combination of factors, including the tissue of origin, the composition and dynamics of the tumor microenvironment, and the stage of disease progression. Additionally, the secreted nature of REG3A implies both local and systemic effects, further modulated by organ-specific physiology. Experimental variability may also reflect differences in methodologies, analytical tools, and model systems used. This review synthesizes current knowledge on the pleiotropic functions of REG3A, emphasizing its roles in epithelial defense, immune regulation, redox homeostasis, and oncogenesis. A deeper understanding of REG3A’s pleiotropic effects could open up new therapeutic avenues in both inflammatory disorders and cancer. Full article
(This article belongs to the Special Issue Lectins in Cancer)
Show Figures

Figure 1

Back to TopTop