Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,476)

Search Parameters:
Keywords = ice production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2046 KiB  
Article
Characterization of Natural Products as Inhibitors of Shikimate Dehydrogenase from Methicillin-Resistant Staphylococcus aureus: Kinetic and Molecular Dynamics Simulations, and Biological Activity Studies
by Noé Fabián Corral-Rodríguez, Valeria Itzel Moreno-Contreras, Erick Sierra-Campos, Mónica Valdez-Solana, Jorge Cisneros-Martínez, Alfredo Téllez-Valencia and Claudia Avitia-Domínguez
Biomolecules 2025, 15(8), 1137; https://doi.org/10.3390/biom15081137 - 6 Aug 2025
Abstract
Antibiotic resistance is considered to be one of the most complex health obstacles of our time. Methicillin-resistant Staphylococcus aureus (MRSA) represents a global health challenge due to its broad treatment resistance capacity, resulting in high mortality rates. The shikimate pathway (SP) is responsible [...] Read more.
Antibiotic resistance is considered to be one of the most complex health obstacles of our time. Methicillin-resistant Staphylococcus aureus (MRSA) represents a global health challenge due to its broad treatment resistance capacity, resulting in high mortality rates. The shikimate pathway (SP) is responsible for the biosynthesis of chorismate from glycolysis and pentose phosphate pathway intermediates. This pathway plays a crucial role in producing aromatic amino acids, folates, ubiquinone, and other secondary metabolites in bacteria. Notably, SP is absent in humans, which makes it a specific and potential therapeutic target to explore for discovering new antibiotics against MRSA. The present study characterized in vitro and in silico natural products as inhibitors of the shikimate dehydrogenase from methicillin-resistant S. aureus (SaSDH). The results showed that, from the set of compounds studied, phloridzin, rutin, and caffeic acid were the most potent inhibitors of SaSDH, with IC50 values of 140, 160, and 240 µM, respectively. Furthermore, phloridzin showed a mixed-type inhibition mechanism, whilst rutin and caffeic acid showed non-competitive mechanisms. The structural characterization of the SaSDH–inhibitor complex indicated that these compounds interacted with amino acids from the catalytic site and formed stable complexes. In biological activity studies against MRSA, caffeic acid showed an MIC of 2.2 mg/mL. Taken together, these data encourage using these compounds as a starting point for developing new antibiotics based on natural products against MRSA. Full article
Show Figures

Figure 1

26 pages, 14813 KiB  
Article
Application and Comparison of Satellite-Derived Sea Surface Temperature Gradients to Identify Seasonal and Interannual Variability off the California Coast: Preliminary Results and Future Perspectives
by Jorge Vazquez-Cuervo, Marisol García-Reyes, David S. Wethey, Daniele Ciani and Jose Gomez-Valdes
Remote Sens. 2025, 17(15), 2722; https://doi.org/10.3390/rs17152722 - 6 Aug 2025
Abstract
The application of satellite-derived sea surface temperature in coastal regions is critical for resolving the dynamics of frontal features and coastal upwelling. Here, we examine and compare sea surface temperature (SST) gradients derived from two satellite products, the Multi-Scale Ultra-High Resolution SST Product [...] Read more.
The application of satellite-derived sea surface temperature in coastal regions is critical for resolving the dynamics of frontal features and coastal upwelling. Here, we examine and compare sea surface temperature (SST) gradients derived from two satellite products, the Multi-Scale Ultra-High Resolution SST Product (MUR, 0.01° grid scale) and the Operational SST and Ice Analysis (OSTIA, 0.05° grid scale), available through the Group for High Resolution SST (GHRSST). Both products show similar seasonal variability, with maxima occurring in the summer time frame. Additionally, both products show an increasing trend of SST gradients near the coast. However, differences exist between the two products (maximum gradient intensities were around 0.11 and 0.06 °C/km for OSTIA and MUR, respectively). The potential contributions of both cloud cover and the collocation of the MUR SST onto the OSTIA SST grid product to these differences were examined. Spectra and coherences were examined at two specific latitudes along the coast where upwelling can occur. A major conclusion is that future work needs to focus on cloud cover and its impact on the derivation of SST in coastal regions. Future comparisons also need to apply collocation methodologies that maintain, as much as possible, the spatial variability of the high-resolution product. Full article
Show Figures

Figure 1

22 pages, 3858 KiB  
Article
Thermodynamic Performance and Parametric Analysis of an Ice Slurry-Based Cold Energy Storage System
by Bingxin Zhao, Jie Li, Chenchong Zhou, Zicheng Huang and Nan Xie
Energies 2025, 18(15), 4158; https://doi.org/10.3390/en18154158 - 5 Aug 2025
Abstract
Subcooling-based ice slurry production faces challenges in terms of energy efficiency and operational stability, which limit its applications for large-scale cold energy storage. A thermodynamic model is established to investigate the effects of key control parameters, including evaporation temperature, condensation temperature, subcooling degree, [...] Read more.
Subcooling-based ice slurry production faces challenges in terms of energy efficiency and operational stability, which limit its applications for large-scale cold energy storage. A thermodynamic model is established to investigate the effects of key control parameters, including evaporation temperature, condensation temperature, subcooling degree, water flow rate, type of refrigerant, and adiabatic compression efficiency. The results show that using the refrigerant R161 achieves the highest energy efficiency, indicating that R161 is the optimal refrigerant in this research. When the evaporation and condensation temperatures are −10 °C and 30 °C, respectively, the system achieves the maximum comprehensive performance coefficient of 2.43. Moreover, under a flow velocity of 0.8 m/s and a temperature of 0.5 °C, the system achieves a peak ice production rate of 45.28 kg/h. A high water temperature and high flow velocity would significantly degrade the system’s ice production capacity. This research provides useful guidance for the design, optimization, and application of ice slurry-based cold energy storage systems. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

42 pages, 2191 KiB  
Review
Photochemical Haze Formation on Titan and Uranus: A Comparative Review
by David Dubois
Int. J. Mol. Sci. 2025, 26(15), 7531; https://doi.org/10.3390/ijms26157531 - 4 Aug 2025
Viewed by 94
Abstract
The formation and evolution of haze layers in planetary atmospheres play a critical role in shaping their chemical composition, radiative balance, and optical properties. In the outer solar system, the atmospheres of Titan and the giant planets exhibit a wide range of compositional [...] Read more.
The formation and evolution of haze layers in planetary atmospheres play a critical role in shaping their chemical composition, radiative balance, and optical properties. In the outer solar system, the atmospheres of Titan and the giant planets exhibit a wide range of compositional and seasonal variability, creating environments favorable for the production of complex organic molecules under low-temperature conditions. Among them, Uranus—the smallest of the ice giants—has, since Voyager 2, emerged as a compelling target for future exploration due to unanswered questions regarding the composition and structure of its atmosphere, as well as its ring system and diverse icy moon population (which includes four possible ocean worlds). Titan, as the only moon to harbor a dense atmosphere, presents some of the most complex and unique organics found in the solar system. Central to the production of these organics are chemical processes driven by low-energy photons and electrons (<50 eV), which initiate reaction pathways leading to the formation of organic species and gas phase precursors to high-molecular-weight compounds, including aerosols. These aerosols, in turn, remain susceptible to further processing by low-energy UV radiation as they are transported from the upper atmosphere to the lower stratosphere and troposphere where condensation occurs. In this review, I aim to summarize the current understanding of low-energy (<50 eV) photon- and electron-induced chemistry, drawing on decades of insights from studies of Titan, with the objective of evaluating the relevance and extent of these processes on Uranus in anticipation of future observational and in situ exploration. Full article
(This article belongs to the Special Issue Chemistry Triggered by Low-Energy Particles)
Show Figures

Figure 1

20 pages, 753 KiB  
Article
Production of Vegan Ice Cream: Enrichment with Fermented Hazelnut Cake
by Levent Yurdaer Aydemir, Hande Demir, Zafer Erbay, Elif Kılıçarslan, Pelin Salum and Melike Beyza Ozdemir
Fermentation 2025, 11(8), 454; https://doi.org/10.3390/fermentation11080454 - 4 Aug 2025
Viewed by 305
Abstract
The growing demand for sustainable plant-based dairy alternatives has spurred interest in valorizing agro-industrial byproducts like hazelnut cake, a protein-rich byproduct of oil extraction. This study developed formulations for vegan ice cream using unfermented (HIC) and Aspergillus oryzae-fermented hazelnut cake (FHIC), comparing [...] Read more.
The growing demand for sustainable plant-based dairy alternatives has spurred interest in valorizing agro-industrial byproducts like hazelnut cake, a protein-rich byproduct of oil extraction. This study developed formulations for vegan ice cream using unfermented (HIC) and Aspergillus oryzae-fermented hazelnut cake (FHIC), comparing their physicochemical, functional, and sensory properties to conventional dairy ice cream (DIC). Solid-state fermentation (72 h, 30 °C) enhanced the cake’s bioactive properties, and ice creams were characterized for composition, texture, rheology, melting behavior, antioxidant activity, and enzyme inhibition pre- and post-in vitro digestion. The results indicate that FHIC had higher protein content (64.64% vs. 58.02% in HIC) and unique volatiles (e.g., benzaldehyde and 3-methyl-1-butanol). While DIC exhibited superior overrun (15.39% vs. 4.01–7.00% in vegan samples) and slower melting, FHIC demonstrated significantly higher post-digestion antioxidant activity (4.73 μmol TE/g DPPH vs. 1.44 in DIC) and angiotensin-converting enzyme (ACE) inhibition (4.85–7.42%). Sensory evaluation ranked DIC highest for overall acceptability, with FHIC perceived as polarizing due to pronounced flavors. Despite textural challenges, HIC and FHIC offered nutritional advantages, including 18–30% lower calories and enhanced bioactive compounds. This study highlights fermentation as a viable strategy to upcycle hazelnut byproducts into functional vegan ice creams, although the optimization of texture and flavor is needed for broader consumer acceptance. Full article
(This article belongs to the Topic Fermented Food: Health and Benefit)
Show Figures

Figure 1

13 pages, 1608 KiB  
Article
Enhanced Antioxidant and Anti-Inflammatory Activities of Diospyros lotus Leaf Extract via Enzymatic Conversion of Rutin to Isoquercitrin
by Yeong-Su Kim, Chae Sun Na and Kyung-Chul Shin
Antioxidants 2025, 14(8), 950; https://doi.org/10.3390/antiox14080950 (registering DOI) - 2 Aug 2025
Viewed by 174
Abstract
Isoquercitrin, a monoglucoside form of quercetin, exhibits superior antioxidant, anti-inflammatory, and cardiovascular protective effects in comparison to its precursor, rutin. However, its natural abundance is limited. This study aimed to increase the functional value of Diospyros lotus leaf extract through enzymatic conversion of [...] Read more.
Isoquercitrin, a monoglucoside form of quercetin, exhibits superior antioxidant, anti-inflammatory, and cardiovascular protective effects in comparison to its precursor, rutin. However, its natural abundance is limited. This study aimed to increase the functional value of Diospyros lotus leaf extract through enzymatic conversion of rutin to isoquercitrin using α-l-rhamnosidase and to evaluate the changes in biological activities after conversion. A sugar-free D. lotus leaf extract was prepared and subjected to enzymatic hydrolysis with α-l-rhamnosidase under optimized conditions (pH 5.5, 55 °C, and 0.6 U/mL). Isoquercitrin production was monitored via high-performance liquid chromatography. Antioxidant and anti-inflammatory activities were assessed using the 2,2-diphenyl-1-picrylhydrazyl radical scavenging and lipoxygenase (LOX) inhibition assays, respectively. The enzymatic reaction resulted in complete conversion of 30 mM rutin into isoquercitrin within 180 min, increasing isoquercitrin content from 9.8 to 39.8 mM. The enzyme-converted extract exhibited significantly enhanced antioxidant activity, with a 48% improvement in IC50 value compared with the untreated extract. Similarly, LOX inhibition increased from 39.2% to 48.3% after enzymatic conversion. Both extracts showed higher inhibition than isoquercitrin alone, indicating synergistic effects of other phytochemicals present in the extract. This study is the first to demonstrate that α-l-rhamnosidase-mediated conversion of rutin to isoquercitrin in D. lotus leaf extract significantly improves its antioxidant and anti-inflammatory activities. The enzymatically enhanced extract shows potential as a functional food or therapeutic ingredient. Full article
Show Figures

Figure 1

21 pages, 2074 KiB  
Article
Preliminary Analysis of Bilberry NaDES Extracts as Versatile Active Ingredients of Natural Dermocosmetic Products: In Vitro Evaluation of Anti-Tyrosinase, Anti-Hyaluronidase, Anti-Collagenase, and UV Protective Properties
by Milica Martinović, Ivana Nešić, Ana Žugić and Vanja M. Tadić
Plants 2025, 14(15), 2374; https://doi.org/10.3390/plants14152374 - 1 Aug 2025
Viewed by 225
Abstract
Bilberry (Vaccinium myrtillus L.) fruits represent the recognized wellspring of bioactive compounds with various documented bioactivities. Although bilberry leaves are often treated as industrial by-products, they also represent a valuable source of phytochemicals with potential dermocosmetic applications. In this study, extracts of [...] Read more.
Bilberry (Vaccinium myrtillus L.) fruits represent the recognized wellspring of bioactive compounds with various documented bioactivities. Although bilberry leaves are often treated as industrial by-products, they also represent a valuable source of phytochemicals with potential dermocosmetic applications. In this study, extracts of bilberry fruits and leaves were prepared using both conventional solvents (water and 50% ethanol) and natural deep eutectic solvents (NaDES) as green, biodegradable alternatives. The aim of this study was to examine the UV protective activity and inhibitory potential of those extracts against some enzymes (tyrosinase, hyaluronidase, collagenase) that are important in terms of skin conditioning and skin aging. The results of in vitro tests have shown the superiority of NaDES extracts compared to conventional extracts regarding all tested bioactivities. In addition, bilberry leaves extracts were more potent compared to fruit extracts in all cases. The most potent extract was bilberry leaf extract made with malic acid–glycerol, which exhibited strong anti-tyrosinase (IC50 = 3.52 ± 0.26 mg/mL), anti-hyaluronidase (IC50 = 3.23 ± 0.30 mg/mL), and anti-collagenase (IC50 = 1.84 ± 0.50 mg/mL) activities. The correlation analysis revealed correlation between UV protective and anti-tyrosinase, UV protective and anti-collagenase as well as between anti-hyaluronidase and anti-collagenase activity. UV protection and anti-tyrosinase activity correlated significantly with chlorogenic acid and hyperoside contents in extracts. The extracts with the best activities also demonstrated a good safety profile in a 24 h in vivo study on human volunteers. Full article
Show Figures

Figure 1

20 pages, 2586 KiB  
Article
Virome Survey of Banana Plantations and Surrounding Plants in Malawi
by Johnny Isaac Gregorio Masangwa, Coline Temple, Johan Rollin, François Maclot, Serkan Önder, Jamestone Kamwendo, Elizabeth Mwafongo, Philemon Moses, Isaac Fandika and Sebastien Massart
Viruses 2025, 17(8), 1068; https://doi.org/10.3390/v17081068 - 31 Jul 2025
Viewed by 291
Abstract
A virome survey of banana plantations and their surrounding plants was carried out at nation-wide level in Malawi using virion associated nucleic acids (VANA) high throughput sequencing (HTS) on pooled samples and appropriate alien controls. In total, 366 plants were sequenced, and 23 [...] Read more.
A virome survey of banana plantations and their surrounding plants was carried out at nation-wide level in Malawi using virion associated nucleic acids (VANA) high throughput sequencing (HTS) on pooled samples and appropriate alien controls. In total, 366 plants were sequenced, and 23 plant virus species were detected, three species on banana (275 plants) and 20 species in surrounding plants (91 plants). Two putative novel virus species; ginger tymo-like virus and pepper derived totivirus were detected and confirmed by RT-PCR on ginger and pepper. Nine known virus species and detected a host plant was identified for two of them. No viral exchange between banana and surrounding plants was observed. Results from the VANA protocol, applied to pooled banana samples, were compared with previous targeted PCR results obtained from individual banana samples. HTS test detected better BanMMV than IC-(RT)-PCR on individual samples (better inclusivity) but detected with much lower sensitivity BBTV and BSV species, often with less than 10 reads per sample. Detection of novel and known viruses and new host plants calls for strengthened sanitory and phytosanitory measures within and beyond banana production systems. Our research confirms that HTS sensitivity depends on sampling, pooling protocol and targeted virus species. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Graphical abstract

22 pages, 1916 KiB  
Article
Freeze-Dried Probiotic Fermented Camel Milk Enriched with Ajwa Date Pulp: Evaluation of Functional Properties, Probiotic Viability, and In Vitro Antidiabetic and Anticancer Activities
by Sally S. Sakr and Hassan Barakat
Foods 2025, 14(15), 2698; https://doi.org/10.3390/foods14152698 - 31 Jul 2025
Viewed by 338
Abstract
Noncommunicable diseases (NCDs) like diabetes and cancer drive demand for therapeutic functional foods. This study developed freeze-dried fermented camel milk (FCM) with Ajwa date pulp (ADP), evaluating its physical and functional properties, probiotic survival, and potential benefits for diabetes and cancer. To achieve [...] Read more.
Noncommunicable diseases (NCDs) like diabetes and cancer drive demand for therapeutic functional foods. This study developed freeze-dried fermented camel milk (FCM) with Ajwa date pulp (ADP), evaluating its physical and functional properties, probiotic survival, and potential benefits for diabetes and cancer. To achieve this target, six FCM formulations were prepared using ABT-5 starter culture (containing Lactobacillus acidophilus, Bifidobacterium bifidum, and Streptococcus thermophilus) with or without Lacticaseibacillus rhamnosus B-1937 and ADP (12% or 15%). The samples were freeze-dried, and their functional properties, such as water activity, dispersibility, water absorption capacity, water absorption index, water solubility index, insolubility index, and sedimentation, were assessed. Reconstitution properties such as density, flowability, air content, porosity, loose bulk density, packed bulk density, particle density, carrier index, Hausner ratio, porosity, and density were examined. In addition, color and probiotic survivability under simulated gastrointestinal conditions were analyzed. Also, antidiabetic potential was assessed via α-amylase and α-glucosidase inhibition assays, while cytotoxicity was evaluated using the MTT assay on Caco-2 cells. The results show that ADP supplementation significantly improved dispersibility (up to 72.73% in FCM15D+L). These improvements are attributed to changes in particle size distribution and increased carbohydrate and mineral content, which facilitate powder rehydration and reduce clumping. All FCM variants demonstrated low water activity (0.196–0.226), indicating good potential for shelf stability. The reconstitution properties revealed that FCM powders with ADP had higher bulk and packed densities but lower particle density and porosity than controls. Including ADP reduced interstitial air and increased occluded air within the powders, which may minimize oxidation risks and improve packaging efficiency. ADP incorporation resulted in a significant decrease in lightness (L*) and increases in redness (a*) and yellowness (b*), with greater pigment and phenolic content at higher ADP levels. These changes reflect the natural colorants and browning reactions associated with ADP, leading to a more intense and visually distinct product. Probiotic survivability was higher in ADP-fortified samples, with L. acidophilus and B. bifidum showing resilience in intestinal conditions. The FCM15D+L formulation exhibited potent antidiabetic effects, with IC50 values of 111.43 μg mL−1 for α-amylase and 77.21 μg mL−1 for α-glucosidase activities, though lower than control FCM (8.37 and 10.74 μg mL−1, respectively). Cytotoxicity against Caco-2 cells was most potent in non-ADP samples (IC50: 82.22 μg mL−1 for FCM), suggesting ADP and L. rhamnosus may reduce antiproliferative effects due to proteolytic activity. In conclusion, the study demonstrates that ADP-enriched FCM is a promising functional food with enhanced probiotic viability, antidiabetic potential, and desirable physical properties. This work highlights the potential of camel milk and date synergies in combating some NCDs in vitro, suggesting potential for functional food application. Full article
Show Figures

Figure 1

38 pages, 2064 KiB  
Systematic Review
Humulus lupulus (Hop)-Derived Chemical Compounds Present Antiproliferative Activity on Various Cancer Cell Types: A Meta-Regression Based Panoramic Meta-Analysis
by Georgios Tsionkis, Elisavet M. Andronidou, Panagiota I. Kontou, Ioannis A. Tamposis, Konstantinos Tegopoulos, Panagiotis Pergantas, Maria E. Grigoriou, George Skavdis, Pantelis G. Bagos and Georgia G. Braliou
Pharmaceuticals 2025, 18(8), 1139; https://doi.org/10.3390/ph18081139 - 31 Jul 2025
Viewed by 385
Abstract
Background/Objectives: Humulus lupulus (hops) are a perennial, dioecious plant widely cultivated for beer production, used for their distinguishing aroma and bitterness—traits that confer high added value status. Various hop-derived compounds have been reported to exhibit antioxidant, antimicrobial, antiproliferative and other bioactive effects. [...] Read more.
Background/Objectives: Humulus lupulus (hops) are a perennial, dioecious plant widely cultivated for beer production, used for their distinguishing aroma and bitterness—traits that confer high added value status. Various hop-derived compounds have been reported to exhibit antioxidant, antimicrobial, antiproliferative and other bioactive effects. This systematic review and meta-analysis assesses the impact of hop compounds on the viability of diverse cancer cell lines. Methods: A comprehensive literature search was performed following PRISMA guidelines. Data were synthesized via multivariate meta-analysis and meta-regression, using IC50 values as the effect size. Key variables included assay type (SRB, tetrazolium salt-based, crystal violet), exposure duration (24, 48, 72 h), specific hop compound and cancer cell line. Results: Of 622 articles identified, 61 met eligibility criteria, yielding 354 individual experiments. Meta-regression of xanthohumol (XN) IC50 values across SRB, tetrazolium and crystal violet assays revealed no statistically significant differences at 24 h (p = 0.77), 48 h (p = 0.35) and 72 h (p = 0.70), supporting the interchangeability of the methods. Meta-analysis confirmed that hop constituents inhibit cancer cell proliferation; XN emerged as the most potent flavonoid (IC50 = 16.89 μM at 72 h), while lupulone was the strongest compound overall (IC50 = 5.00 μM at 72 h). Crude hop extracts demonstrated greater antiproliferative selectivity for cancer versus non-cancer cells (IC50 = 35.23 vs. 43.80 μg/mL at 72 h). Conclusions: Hop compounds, and particularly bitter acids, demonstrate promising antiproliferative activity against cancer cells with comparatively low toxicity to healthy cells. Furthermore, our analysis confirms the comparability of SRB, tetrazolium-based and crystal violet assays, supporting the robust integration of antiproliferative data. Full article
Show Figures

Figure 1

12 pages, 1849 KiB  
Article
Dolabellane Diterpenoids from Soft Coral Clavularia viridis with Anti-Inflammatory Activities
by Chufan Gu, Hongli Jia, Kang Zhou, Bin Wang, Wenhan Lin and Wei Cheng
Mar. Drugs 2025, 23(8), 312; https://doi.org/10.3390/md23080312 - 30 Jul 2025
Viewed by 192
Abstract
A chemical investigation of the EtOAc fraction from soft coral Clavularia viridis resulted in the isolation of 12 undescribed dolabellane-type diterpenoids, namely clavirolides W–Z (14), clavularols A–H (512), and three known analogs (13 [...] Read more.
A chemical investigation of the EtOAc fraction from soft coral Clavularia viridis resulted in the isolation of 12 undescribed dolabellane-type diterpenoids, namely clavirolides W–Z (14), clavularols A–H (512), and three known analogs (1315). Their structures were characterized by an extensive analysis of spectroscopic data, including X-ray diffraction and ECD calculations for the assignment of absolute configurations. The structures of 2 and 46 are feathered as peroxyl-substituted derivatives, while compounds 712 possess additional oxidative cyclization, including epoxide or furan that are rare in the dolabellane family. All these compounds were evaluated for activities on cytotoxic and anti-inflammatory models. Compound 10 exhibited most potential against NO production in the BV2 cell induced by LPS with an IC50 value of 18.3 μM. Full article
(This article belongs to the Section Structural Studies on Marine Natural Products)
Show Figures

Figure 1

19 pages, 2509 KiB  
Article
Semi-Synthesis, Anti-Leukemia Activity, and Docking Study of Derivatives from 3α,24-Dihydroxylup-20(29)-en-28-Oic Acid
by Mario J. Noh-Burgos, Sergio García-Sánchez, Fernando J. Tun-Rosado, Antonieta Chávez-González, Sergio R. Peraza-Sánchez and Rosa E. Moo-Puc
Molecules 2025, 30(15), 3193; https://doi.org/10.3390/molecules30153193 - 30 Jul 2025
Viewed by 407
Abstract
Current treatments against leukemia present several limitations, prompting the search for new therapeutic agents, particularly those derived from natural products. In this context, structural modifications were performed on the triterpene 3α,24-dihydroxylup-20(29)-en-28-oic acid (T1), isolated from Phoradendron wattii. Among [...] Read more.
Current treatments against leukemia present several limitations, prompting the search for new therapeutic agents, particularly those derived from natural products. In this context, structural modifications were performed on the triterpene 3α,24-dihydroxylup-20(29)-en-28-oic acid (T1), isolated from Phoradendron wattii. Among the five derivatives obtained, 3α,24-dihydroxy-30-oxolup-20(29)-en-28-oic acid (T1c) exhibited the highest activity, with an IC50 value of 12.90 ± 0.1 µM against THP-1 cells. T1c significantly reduced cell viability in both acute lymphoblastic leukemia (CCRF-CEM, REH, JURKAT, and MOLT-4) and acute myeloid leukemia (THP-1) cell lines, inducing apoptosis after 48 h of treatment, while showing minimal cytotoxicity toward normal mononuclear cells (MNCs). In silico molecular docking studies were conducted against three key protein targets: BCL-2 (B-cell lymphoma 2), EGFR (epidermal growth factor receptor, tyrosine kinase domain), and FLT3 (FMS-like tyrosine kinase 3). The lowest binding energies (kcal/mol) observed were as follows: T1–BCL-2: −10.12, EGFR: −12.75, FLT3: −14.05; T1c–BCL-2: −10.23, EGFR: −14.50, FLT3: −14.07; T2–BCL-2: −11.59, EGFR: −15.00, FLT3: −14.03. These findings highlight T1c as a promising candidate in the search for anti-leukemic drugs which deserves further study. Full article
(This article belongs to the Special Issue Synthesis and Derivatization of Heterocyclic Compounds)
Show Figures

Graphical abstract

19 pages, 4477 KiB  
Article
Agapanthussaponin A from the Underground Parts of Agapanthus africanus Induces Apoptosis and Ferroptosis in Human Small-Cell Lung Cancer Cells
by Tomoki Iguchi, Tamami Shimazaki and Yoshihiro Mimaki
Molecules 2025, 30(15), 3189; https://doi.org/10.3390/molecules30153189 - 30 Jul 2025
Viewed by 222
Abstract
To explore the potential seed compounds from natural products as anticancer agents against small-cell lung cancer (SCLC), the underground parts of Agapanthus africanus, a plant commonly used for ornamental purposes, were investigated. Three spirostan-type steroidal glycosides (13) were [...] Read more.
To explore the potential seed compounds from natural products as anticancer agents against small-cell lung cancer (SCLC), the underground parts of Agapanthus africanus, a plant commonly used for ornamental purposes, were investigated. Three spirostan-type steroidal glycosides (13) were isolated and identified by nuclear magnetic resonance spectral analysis. Compounds 13 exhibited cytotoxicity against SBC-3 human SCLC cells, with IC50 values of 0.56, 1.4, and 7.4 µM, respectively. Compound 1, also known an agapanthussaponin A, demonstrated the most potent cytotoxicity among the isolated compounds and was evaluated for its apoptosis- and ferroptosis-inducing activities. Compound 1 arrested the cell cycle of SBC-3 cells in the G2/M phase and induced apoptosis primarily via the mitochondrial pathway, characterized by caspases-3 and -9 activation, loss of mitochondrial membrane potential, and overproduction of reactive oxygen species. Additionally, 1 triggered ferroptosis via a dual mechanism consisting of enhanced cellular iron uptake through upregulation of transferrin and transferrin receptor 1 expression and impaired glutathione synthesis via downregulation of both xCT and glutathione peroxidase 4 expression. Compound 1 induces cell death via the apoptosis and ferroptosis pathways, suggesting its promise as a seed compound for the development of anticancer therapeutics against SCLC. Full article
Show Figures

Graphical abstract

17 pages, 1884 KiB  
Article
Modification of Spanish Mackerel (Scomberomorus niphonius) Surimi Gels by Three Anionic Polysaccharides
by Zhu-Jun Zhang, Fan-Yu Kong, Lin-Da Zhang, Miao-Miao Luo, Yin-Yin Lv, Ce Wang, Bin Lai, Li-Chao Zhang, Jia-Nan Yan and Hai-Tao Wu
Foods 2025, 14(15), 2671; https://doi.org/10.3390/foods14152671 - 29 Jul 2025
Viewed by 252
Abstract
This study investigated the gel performance of Spanish mackerel surimi gels (SMSGs) modified by three anionic polysaccharides: κ-carrageenan (KC), ι-carrageenan (IC), and gellan gum (GG). By incorporating polysaccharides, SMSGs showed a 24.9–103.4% improvement in gel and textural properties, in which KC and IC [...] Read more.
This study investigated the gel performance of Spanish mackerel surimi gels (SMSGs) modified by three anionic polysaccharides: κ-carrageenan (KC), ι-carrageenan (IC), and gellan gum (GG). By incorporating polysaccharides, SMSGs showed a 24.9–103.4% improvement in gel and textural properties, in which KC and IC had more improvement effects than GG. Moreover, polysaccharides led to a 10.7–13.1% increment in WHC, a shortened water migration from 61.34 to 52.43–55.93 ms in T22, and enhanced thermal stability of SMSGs. The content of α-helix in SMSGs reduced markedly accompanied by a concurrent enhancement of β-sheet and β-turn by adding polysaccharides, where β-sheet and β-turn are positively correlated with hardness being favorable for gelling. The microstructure of SMSGs/polysaccharides showed a homogeneous network mainly due to hydrophobic interactions and disulfide bonds in SMSG-based gels. This study will demonstrate the effectiveness of KC, IC, and GG in improving the texture and functionality as well as expanding the application of surimi products. Full article
(This article belongs to the Special Issue Applications of Hydrocolloids for Food Product Development)
Show Figures

Figure 1

25 pages, 3359 KiB  
Article
In Vitro and In Silico Evaluation of the Anti-Aging Potential of Eugenia uniflora UAE Extracts
by Desy Muliana Wenas, Berna Elya, Sutriyo Sutriyo, Heri Setiawan, Rozana Othman, Syamsu Nur, Nita Triadisti, Fenny Yunita and Erwi Putri Setyaningsih
Molecules 2025, 30(15), 3168; https://doi.org/10.3390/molecules30153168 - 29 Jul 2025
Viewed by 437
Abstract
Skin aging is a natural biological process that can be accelerated by free radical induction, leading to a reduction in skin elasticity and the formation of wrinkles due to the depletion of elastin. Eugenia uniflora (dewandaru) is a promising plant believed to possess [...] Read more.
Skin aging is a natural biological process that can be accelerated by free radical induction, leading to a reduction in skin elasticity and the formation of wrinkles due to the depletion of elastin. Eugenia uniflora (dewandaru) is a promising plant believed to possess anti-aging properties, primarily attributed to its major constituents, myricitrin and quercetin. This study aimed to investigate the anti-elastase and antioxidant properties of Eugenia uniflora stem bark, ripe fruit, and seed extracts. Extracts were obtained using an ultrasound-assisted extraction (UAE) method with 70% ethanol. Quantitative phytochemical analysis involved measuring the total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity. Bioactive constituents were identified using LC-MS analysis, and their interactions with target enzymes were further evaluated through in silico molecular docking. The results demonstrated that the E. uniflora seed extract exhibited the highest antioxidant activity, with an IC50 of 5.23 µg/mL (DPPH assay) and a FRAP value of 3233.32 µmol FeSO4/g. Furthermore, the ethanolic seed extract showed significant anti-elastase activity with an IC50 of 114.14 µg/mL. Molecular docking predicted strong potential for several compounds as pancreatic elastase inhibitors, including 5-phenylvaleric acid, 2-(3-phenylpropyl)phenol, n-amylbenzene, 2-aminoadipic acid, and traumatin, each showing a prediction activity (PA) value exceeding 0.6. Notably, these compounds also exhibited inhibitory activity against tyrosinase. These findings collectively underscore the significant promise of E. uniflora seed extract as a novel and natural candidate for pharmacocosmeceutical product development, particularly for anti-aging applications. Full article
Show Figures

Graphical abstract

Back to TopTop