Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (119)

Search Parameters:
Keywords = hydrothermal liquefaction (HTL)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2186 KB  
Review
Bio-Oil from Phototrophic Microorganisms: Innovative Technologies and Strategies
by Kenzhegul Bolatkhan, Ardak B. Kakimova, Bolatkhan K. Zayadan, Akbota Kabayeva, Sandugash K. Sandybayeva, Aliyam A. Dauletova and Tatsuya Tomo
BioTech 2026, 15(1), 11; https://doi.org/10.3390/biotech15010011 - 26 Jan 2026
Viewed by 91
Abstract
The transition to low-carbon energy systems requires scalable and energy-efficient routes for producing liquid biofuels that are compatible with existing fuel infrastructures. This review focuses on bio-oil production from phototrophic microorganisms, highlighting their high biomass productivity, rapid growth, and inherent capacity for carbon [...] Read more.
The transition to low-carbon energy systems requires scalable and energy-efficient routes for producing liquid biofuels that are compatible with existing fuel infrastructures. This review focuses on bio-oil production from phototrophic microorganisms, highlighting their high biomass productivity, rapid growth, and inherent capacity for carbon dioxide fixation as key advantages over conventional biofuel feedstocks. Recent progress in thermochemical conversion technologies, particularly hydrothermal liquefaction (HTL) and fast pyrolysis, is critically assessed with respect to their suitability for wet and dry algal biomass, respectively. HTL enables direct processing of high-moisture biomass while avoiding energy-intensive drying, whereas fast pyrolysis offers high bio-oil yields from lipid-rich feedstocks. In parallel, catalytic upgrading strategies, including hydrodeoxygenation and related hydroprocessing routes, are discussed as essential steps for improving bio-oil stability, heating value, and fuel compatibility. Beyond conversion technologies, innovative biological and biotechnological strategies, such as strain optimization, stress induction, co-cultivation, and synthetic biology approaches, are examined for their role in tailoring biomass composition and enhancing bio-oil precursors. The integration of microalgal cultivation with wastewater utilization is briefly considered as a supporting strategy to reduce production costs and improve overall sustainability. Overall, this review emphasizes that the effective coupling of advanced thermochemical conversion with targeted biological optimization represents the most promising pathway for scalable bio-oil production from phototrophic microorganisms, positioning algal bio-oil as a viable contributor to future low-carbon energy systems. Full article
Show Figures

Figure 1

13 pages, 2006 KB  
Article
Hydrodeoxygenation of Black Liquor HTL Oil Model Compounds in Supercritical Water
by Sari Rautiainen, Tyko Viertiö, Niko Vuorio, Felix Hyppönen, Luděk Meca, Pavel Kukula and Juha Lehtonen
Reactions 2026, 7(1), 7; https://doi.org/10.3390/reactions7010007 - 20 Jan 2026
Viewed by 104
Abstract
Black liquor, the side stream from Kraft pulping, is a promising feedstock for the production of renewable fuels via hydrothermal liquefaction (HTL). However, further upgrading of the black liquor HTL oil is required to reduce the oxygen content for fuel use. In this [...] Read more.
Black liquor, the side stream from Kraft pulping, is a promising feedstock for the production of renewable fuels via hydrothermal liquefaction (HTL). However, further upgrading of the black liquor HTL oil is required to reduce the oxygen content for fuel use. In this work, the hydrodeoxygenation (HDO) of black liquor HTL oil model compounds was investigated to enhance the understanding of catalyst activity and selectivity under hydrothermal conditions. The study focused on isoeugenol and 4-methylcatechol as model compounds, representing different functionalities in black liquor-derived HTL-oil. Sulfided NiMo catalysts supported on titania, zirconia, activated carbon, and α-alumina were evaluated in batch mode at subcritical and supercritical upgrading using hydrogen gas. The results show that isoeugenol was fully converted in all experiments, while 4-methylcatechol conversion varied depending on the catalyst and reaction conditions. Phenols were obtained as the main products and the maximum degree of deoxygenation achieved was around 40%. This research provides insights into the potential of hydrothermal HDO for upgrading BL-derived biocrudes, emphasising the importance of catalyst selection and reaction conditions in hydrothermal conditions. Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2025)
Show Figures

Graphical abstract

16 pages, 1623 KB  
Article
Hydrothermal Carbonization of Fish Waste: A Sustainable Pathway for Valorization and Resource Recovery
by Carmen María Álvez-Medina, Sergio Nogales-Delgado, Beatriz Ledesma Cano, Vicente Montes-Jiménez and Silvia Román Suero
Clean Technol. 2026, 8(1), 4; https://doi.org/10.3390/cleantechnol8010004 - 4 Jan 2026
Viewed by 268
Abstract
Fisheries and aquaculture residues pose escalating environmental challenges due to their high moisture content, nutrient loads, and pollutant potential when improperly managed. Conventional valorization routes, such as fishmeal, fish oil, and silage, offer partial mitigation but remain limited in scalability, conversion efficiency, and [...] Read more.
Fisheries and aquaculture residues pose escalating environmental challenges due to their high moisture content, nutrient loads, and pollutant potential when improperly managed. Conventional valorization routes, such as fishmeal, fish oil, and silage, offer partial mitigation but remain limited in scalability, conversion efficiency, and environmental performance. In this study, fish processing residues were subjected to hydrothermal carbonization (HTC) under controlled subcritical conditions (180–220 °C), along with a high-severity catalytic run (325 °C) using sodium bicarbonate (NaHCO3) as an additive. The latter condition exceeded the typical HTC range and entered the subcritical hydrothermal liquefaction (HTL) regime. The resulting solid, liquid, and gaseous fractions were comprehensively characterized to assess their energy potential, chemical composition, and reactivity. Hydrochars achieved higher heating values (HHVs) ranging from 14.2 to 25.7 MJ/kg. These results underscore their suitability as renewable solid fuels. The gas products were dominated by CO2 under standard HTC conditions. In contrast, the catalytic run in the subcritical HTL regime achieved a hydrogen enrichment of up to 30 vol.%, demonstrating the efficacy of NaHCO3 in promoting the water-gas shift reaction. Subsequent air gasification confirmed the high reactivity of the hydrochars, producing syngas enriched in H2 and CO at elevated temperatures. Overall, this study demonstrates a scalable multiproduct valorization route for fishery residues, supporting circular bioeconomy strategies and contributing to the achievement of UN Sustainable Development Goals (SDGs 7, 12, and 13). Full article
Show Figures

Figure 1

16 pages, 1720 KB  
Article
Analysis of Product Distribution and Quality from the Hydrothermal Liquefaction of Food Waste Feedstocks
by Ezra Nash, Zachary Rehg, Rukiyat Thompson and Sarah Bauer
Energies 2026, 19(1), 109; https://doi.org/10.3390/en19010109 - 25 Dec 2025
Viewed by 345
Abstract
Hydrothermal liquefaction (HTL) is a thermochemical process by which biomass feedstocks are converted into bio-oil and multiple by-products, including aqueous co-product (ACP), gaseous co-product (GCP), and biochar. Bio-oil produced from food waste feedstocks represents a potential candidate for use in commercial waste-to-energy conversions. [...] Read more.
Hydrothermal liquefaction (HTL) is a thermochemical process by which biomass feedstocks are converted into bio-oil and multiple by-products, including aqueous co-product (ACP), gaseous co-product (GCP), and biochar. Bio-oil produced from food waste feedstocks represents a potential candidate for use in commercial waste-to-energy conversions. The objective of this study is to further develop this technology by investigating the product distribution and quality from the HTL of food waste feedstocks. Four food waste feedstocks were selected for analysis: brewery grains, pear lees, coffee grounds, and honeydew skins. Solids analysis was conducted on each as-received feedstock, with the results determining dilution ratios for optimizing water content for HTL (≥80%). HTL conversions were conducted at 300 °C with a retention time of 30 min. Biochar was measured after product filtration, while ACP and bio-oil were measured via liquid–liquid phase separation. Coffee grounds produced the highest percentage of bio-oil (0.460%) and biochar (9.96%), while pear lees produced the highest percentage of ACP (89.5%). After quantification, ACP was characterized for nutrient concentrations. The quality of the ACP differed significantly from values in the literature, highlighting the influence of feedstock type and reaction conditions on HTL product characteristics (in addition to distribution) and underscoring the need for further research to optimize co-product utilization and process efficiency. Full article
(This article belongs to the Topic Advances in Biomass Conversion, 2nd Edition)
Show Figures

Figure 1

17 pages, 3058 KB  
Article
Fertilizer-Derived Low-Cost Culture Medium for Microalgae and Biofuel Production from Hydrothermal Liquefaction
by Alejandra M. Miranda, Fabian Hernandez-Tenorio, Gabriel J. Vargas, David Ocampo and Alex A. Sáez
Energies 2025, 18(24), 6559; https://doi.org/10.3390/en18246559 - 15 Dec 2025
Viewed by 453
Abstract
Microalgae have been characterized as an effective raw material for obtaining bioproducts from a biorefinery approach. However, production costs limit the large-scale production of microalgae, which makes these processes uncompetitive in the market. Therefore, in the present work, different agricultural fertilizers were evaluated [...] Read more.
Microalgae have been characterized as an effective raw material for obtaining bioproducts from a biorefinery approach. However, production costs limit the large-scale production of microalgae, which makes these processes uncompetitive in the market. Therefore, in the present work, different agricultural fertilizers were evaluated as low-cost culture media for microalgae growth and the use of the biomass for biocrude production. The tests were carried out in three phases: phase I, Laboratory scale 1 L Erlenmeyer (Boeco, Hamburg, Germany) and phase II–III Pilot scale with cylindrical photobioreactors (PBRs) (Atb services S.A.S, Medellin, Colombia) with a capacity of 20 L. In phase I, four commercial fertilizers Crecilizer® (C), Florilizer® (F) (Fertilizer, Bogota, Colombia), AcuaLeaf Macros® (Ma), and AcuaLeaf Micros® (Mi) (Deacua, Medellin, Colombia) were tested separately and in combination (C + Ma, F + M, and Ma + Mi). The most effective treatments (C and F) in phase I were chosen for scale-up during phase II. In phase III, the concentration of the best treatment from phase II was increased. The biomass obtained from the best phase III treatment showed a cultivation medium cost 50% lower than the biomass obtained using Bold’s Basal Medium (BBM). Following each treatment, the harvested biomass was processed via hydrothermal liquefaction (HTL) to yield biocrude. The reduction in culture medium cost contributed to an estimated 40% decrease in the relative biocrude yield cost. Full article
(This article belongs to the Special Issue Microalgae Biofuel Production: Challenges and Future Opportunities)
Show Figures

Figure 1

12 pages, 2401 KB  
Article
Kinetic Analysis and Products Characterization of Hydrothermal Liquefaction of Tetra Pak Waste for Bio-Oil Production
by Yuzhen Wang, Ao Lu, Zhuan Liu, Yu Feng, Di Shan and Changqing Fang
Polymers 2025, 17(24), 3246; https://doi.org/10.3390/polym17243246 - 5 Dec 2025
Viewed by 585
Abstract
Hydrothermal liquefaction (HTL) of Tetra Pak waste was investigated at 320–440 °C for 10–50 min to produce bio-crude oil. Bio-oil yield increased with temperature and time, reaching about 43 wt% at 40–50 min, while solid residue decreased and stabilized. Boiling point analysis indicated [...] Read more.
Hydrothermal liquefaction (HTL) of Tetra Pak waste was investigated at 320–440 °C for 10–50 min to produce bio-crude oil. Bio-oil yield increased with temperature and time, reaching about 43 wt% at 40–50 min, while solid residue decreased and stabilized. Boiling point analysis indicated diesel- and kerosene-range fractions as dominant components. FT-IR results showed enhanced aromatic and carbonyl groups with reaction time, suggesting secondary condensation. A modified first-order kinetic model described the conversion of carbohydrates and polyethylene, with activation energies of 25.8–49.0 and 54.9–78.3 kJ mol−1, respectively. The intermediate aqueous/gaseous pathway exhibited a lower activation energy (30.1 kJ mol−1), highlighting its vital role in oil formation. This study advances understanding of Tetra Pak liquefaction and provides guidance for efficient composite waste valorization. Full article
(This article belongs to the Special Issue Thermochemical Conversion of Polymer Waste)
Show Figures

Figure 1

25 pages, 2287 KB  
Article
Processing High-Solid Sludge Through Hydrothermal Liquefaction to Boost Anaerobic Fermentation and Bioresource Yield
by Chun-Ming Yen, Chang-Lung Han and Jiunn-Jyi Lay
Processes 2025, 13(9), 2891; https://doi.org/10.3390/pr13092891 - 10 Sep 2025
Viewed by 990
Abstract
The increasing need for effective sludge management has positioned hydrothermal liquefaction (HTL) as a viable solution, harnessing its capability to transform organic materials into renewable resources under elevated temperature and pressure conditions. This research seeks to assess the performance of HTL in processing [...] Read more.
The increasing need for effective sludge management has positioned hydrothermal liquefaction (HTL) as a viable solution, harnessing its capability to transform organic materials into renewable resources under elevated temperature and pressure conditions. This research seeks to assess the performance of HTL in processing high-solid organic sludge by examining the removal efficiencies of chemical oxygen demand (COD), total solids (TS), and suspended solids (SS), together with improvements in biogas potential (BGP) and hydrogen yield. Experimental procedures were carried out within a temperature range of 100–210 °C and pressure levels of 20–80 kg/cm2, using a hydrogen-producing microbiome (HMb) and anaerobically digested sludge as inoculants for anaerobic fermentation. Multivariate analysis was applied to investigate the influence of temperature and pressure on COD, TS, and SS removal rates as well as BGP, while a series of batch tests further confirmed the effects of these parameters on fermentation outcomes. Findings revealed that COD, SS, and TS removal efficiencies reached 90.6%, 91.5%, and 87.4%, respectively, under conditions of 100 °C and 60 kg/cm2. The maximum biogas potential (BGP) of approximately 500 mL was attained at 180 °C, whereas hydrogen production demonstrated substantial enhancement within the HTL pressure range of 40–60 kg/cm2, decreasing beyond this range. Additionally, total dissolved solids (TDS) reached a peak concentration of 389 g/L under conditions of 180 °C and 40 kg/cm2, emphasizing HTL’s positive impact on enhancing methane fermentation efficiency. These findings demonstrate that HTL pretreatment, when operated under optimized temperature and pressure conditions, offers a promising approach for enhancing both waste reduction and bioenergy recovery from high-solid organic sludge. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Graphical abstract

14 pages, 1132 KB  
Article
Hydrothermal Liquefaction of Structurally Diverse Lignins: Insights into Biocrude Yield, Fuel Properties, and Reaction Mechanisms
by Md Mostafizur Rahman and Toufiq Reza
Energies 2025, 18(17), 4773; https://doi.org/10.3390/en18174773 - 8 Sep 2025
Cited by 3 | Viewed by 1284
Abstract
Lignin holds significant promise as a feedstock for biocrude production via hydrothermal liquefaction (HTL). Although lignin HTL has been widely studied, the specific depolymerization pathways associated with distinct lignin structures remain largely unexplored. This study investigates the HTL of four structurally diverse lignins: [...] Read more.
Lignin holds significant promise as a feedstock for biocrude production via hydrothermal liquefaction (HTL). Although lignin HTL has been widely studied, the specific depolymerization pathways associated with distinct lignin structures remain largely unexplored. This study investigates the HTL of four structurally diverse lignins: alkaline (AL), dealkaline (DAL), organosolv (OL), and lignosulfonate (LS) across 270–310 °C to elucidate structure-specific mechanisms governing biocrude yield and composition. AL and OL achieved the highest yields (16.8 ± 0.3% and 16.8 ± 2.5%), with AL-derived biocrude showing the highest carbon content (70.2 ± 0.0%) and HHV (31.0 ± 0.2 MJ/kg). In contrast, DAL and LS produced lower yields and inferior fuel quality due to higher sulfur content and lower carbon enrichment. The structures of AL and DAL, containing fewer methoxy groups, produced guaiacol-rich biocrudes (46.6% and 69.5%). Methylation in AL formed alkyl guaiacols and veratroles, while DAL favored side-chain oxidation. OL retained complex structures, forming syringols and desaspidinol, which contributed to heavier biocrude compounds. Sulfonate groups in LS were stabilized mostly as sulfides, leading to elevated sulfur content. These findings provide mechanistic insight into how lignin structure governs HTL behavior, enabling targeted control of biocrude yield and quality for renewable fuel production. Full article
(This article belongs to the Special Issue Advances in Bioenergy and Bioproducts Innovation)
Show Figures

Figure 1

21 pages, 2243 KB  
Article
Selective Extraction and Hydrotreatment of Biocrude from Sewage Sludge: Toward High-Yield, Alkane-Rich, Low-Heteroatom Biofuels
by Muhammad Usman, Shuo Cheng, Sasipa Boonyubol, Muhammad Aziz and Jeffrey S. Cross
Energies 2025, 18(17), 4568; https://doi.org/10.3390/en18174568 - 28 Aug 2025
Cited by 1 | Viewed by 1033
Abstract
This study investigates the hydrothermal liquefaction (HTL) of sewage sludge across a temperature range of 250–375 °C, combined with selective solvent extraction and catalytic hydrotreatment to produce high-quality biocrude. Four solvents including dichloromethane (DCM), hexane, ethyl butyrate (EB), and ethyl acetate (EA), were [...] Read more.
This study investigates the hydrothermal liquefaction (HTL) of sewage sludge across a temperature range of 250–375 °C, combined with selective solvent extraction and catalytic hydrotreatment to produce high-quality biocrude. Four solvents including dichloromethane (DCM), hexane, ethyl butyrate (EB), and ethyl acetate (EA), were used to evaluate temperature-dependent extraction performance and product quality. Biocrude yields increased from 250 °C to a maximum at 350 °C for all solvents: hexane (9.3–18.1%), DCM (16.3–49.7%), EB (17.6–50.1%), and EA (9.6–23.5%). A yield decline was observed at 375 °C due to secondary cracking and gasification. Elemental analysis revealed that hexane and EB extracts had higher carbon (up to 61.6 wt%) and hydrogen contents, while DCM retained the most nitrogen (up to 3.96 wt%) due to its polarity. Sulfur remained below 0.5 wt% in all biocrudes. GC–MS analysis of 350 °C biocrudes showed fatty acids as dominant components (43–53%), especially palmitic acid, along with ketones, amides, and heterocyclic compounds. Hydrotreatment using Ni/SiO2–Al2O3 significantly enhanced biocrude quality by increasing alkane content by 40–60% and reducing nitrogen levels by up to 75%, with higher heating values reaching 38–44 MJ/kg. These findings demonstrate the integrated potential of HTL process tuning, green solvent extraction, and catalytic upgrading for converting sewage sludge into cleaner, energy-dense biofuels. Full article
Show Figures

Figure 1

26 pages, 2731 KB  
Article
Coupled CFD-DEM Numerical Simulation of Hydrothermal Liquefaction (HTL) of Sludge Flocs to Biocrude Oil in a Continuous Stirred Tank Reactor (CSTR) in a Scale-Up Study
by Artur Wodołażski
Energies 2025, 18(17), 4557; https://doi.org/10.3390/en18174557 - 28 Aug 2025
Cited by 2 | Viewed by 1188
Abstract
A multiphase model of hydrothermal liquefaction (HTL) using the computational fluid dynamics coupling discrete element method (CFD-DEM) is used to simulate biocrude oil production from sludge flocs in a continuous stirred tank reactor (CSTR). Additionally, the influence of the agitator speed and the [...] Read more.
A multiphase model of hydrothermal liquefaction (HTL) using the computational fluid dynamics coupling discrete element method (CFD-DEM) is used to simulate biocrude oil production from sludge flocs in a continuous stirred tank reactor (CSTR). Additionally, the influence of the agitator speed and the slurry flow rate on dynamic biocrude oil production is investigated through full transient CFD analysis in a scaled-up CSTR study. The kinetics of the HTL mechanism as a function of temperature, pressure, and residence time distribution were employed in the model through a user-defined function (UDF). The multiphysics simulation of the HTL process in a stirred tank reactor using the Lagrangian–Eulerian (LE) approach, along with a standard k-ε turbulence model, integrated HTL kinetics. The simulation accounts for particle–fluid interactions by coupling CFD-derived hydrodynamic fields with discrete particle motion, enabling prediction of individual particle trajectories based on drag, buoyancy, and interphase momentum exchange. The three-phase flow using a compressible non-ideal gas model and multiphase interaction as design requirements increased process efficiency in high-pressure and high-temperature model conditions. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

34 pages, 1661 KB  
Review
Algae to Biofuels: Catalytic Strategies and Sustainable Technologies for Green Energy Conversion
by Shushil Kumar Rai, Gyungmin Kim and Hua Song
Catalysts 2025, 15(9), 806; https://doi.org/10.3390/catal15090806 - 25 Aug 2025
Cited by 2 | Viewed by 5849
Abstract
The global population surge and continuously rising energy demand have led to the rapid depletion of fossil fuel reserves. Over-exploitation of non-renewable fuels is responsible for the emission of greenhouse gases, air pollution, and global warming, which causes serious health issues and ecological [...] Read more.
The global population surge and continuously rising energy demand have led to the rapid depletion of fossil fuel reserves. Over-exploitation of non-renewable fuels is responsible for the emission of greenhouse gases, air pollution, and global warming, which causes serious health issues and ecological imbalance. The present study focuses on the potential of algae-based biofuel as an alternative energy source for fossil fuels. Algal biofuels are more environmentally friendly and economically reasonable to produce on a pilot scale compared to lignocellulosic-derived biofuels. Algae can be cultivated in closed, open, and hybrid photobioreactors. Notably, high-rate raceway ponds with the ability to recycle nutrients can reduce freshwater consumption by 60% compared to closed systems. The algal strain along with various factors such as light, temperature, nutrients, carbon dioxide, and pH is responsible for the growth of biomass and biofuel production. Algal biomass conversion through hydrothermal liquefaction (HTL) can achieve higher energy return on investments (EROI) than conventional techniques, making it a promising Technology Readiness Level (TRL) 5–6 pathway toward circular biorefineries. Therefore, algal-based biofuel production offers numerous benefits in terms of socio-economic growth. This review highlights the basic cultivation, dewatering, and processing of algae to produce biofuels using various methods. A simplified multicriteria evaluation strategy was used to compare various catalytic processes based on multiple performance indicators. We also conferred various advantages of an integrated biorefinery system and current technological advancements for algal biofuel production. In addition to this, policies and market regulations are discussed briefly. At the end, critical challenges and future perspectives of algal biorefineries are reviewed. Algal biofuels are environmentally friendly as well as economically sustainable and usually offer more benefits compared to fossil fuels. Full article
Show Figures

Figure 1

5 pages, 175 KB  
Proceeding Paper
General Concepts from the Risk Assessment and Hazard Identification of HTL-Derived Bio-Oil: A Case Study of the MARINES Project
by Nicholas J. Daras, Paraskevi C. Divari, Constantinos C. Karamatsoukis, Konstantinos G. Kolovos, Theodore Liolios, Georgia Melagraki, Christos Michalopoulos and Dionysios E. Mouzakis
Proceedings 2025, 121(1), 12; https://doi.org/10.3390/proceedings2025121012 - 25 Jul 2025
Viewed by 552
Abstract
This study evaluates the risk assessment and hazard identification of hydrothermal liquefaction (HTL)-derived bio-oil from the MARINES project, which converts military organic waste into fuel. The high oxygen content (35–50 wt%), acidic pH (2–4), and viscosity (10–1000 cP) of bio-oils pose unique challenges, [...] Read more.
This study evaluates the risk assessment and hazard identification of hydrothermal liquefaction (HTL)-derived bio-oil from the MARINES project, which converts military organic waste into fuel. The high oxygen content (35–50 wt%), acidic pH (2–4), and viscosity (10–1000 cP) of bio-oils pose unique challenges, including oxidative polymerization, corrosion, and micro-explosions during combustion. Key hazards include storage instability, particulate emissions (20–30% higher than diesel), and aquatic toxicity (LC50 < 10 mg/L for phenolics). Mitigation strategies such as inert gas blanketing, preheating, and spill containment are proposed. While offering renewable fuel potential, HTL bio-oil demands rigorous safety protocols for military/industrial deployment, warranting further experimental validation. Full article
(This article belongs to the Proceedings of The 1st SUSTENS Meeting)
5 pages, 665 KB  
Proceeding Paper
Opportunities of Coupling Hydrothermal Liquefaction with Wet Oxidation: Significance of Appropriate Thermodynamic Model Selection in Process Modeling
by Arif Hussain, Bertram Thoning Hvass Søgaard and Konstantinos Anastasakis
Proceedings 2025, 121(1), 7; https://doi.org/10.3390/proceedings2025121007 - 17 Jul 2025
Cited by 1 | Viewed by 668
Abstract
This study examines the significance of thermodynamic model selection to improve predictions when modeling a wet oxidation (WO) process. WO is a promising technology for treating the highly concentrated process water stream from hydrothermal liquefaction (HTL) while generating heat, due to the exothermic [...] Read more.
This study examines the significance of thermodynamic model selection to improve predictions when modeling a wet oxidation (WO) process. WO is a promising technology for treating the highly concentrated process water stream from hydrothermal liquefaction (HTL) while generating heat, due to the exothermic oxidation reactions, leading to a potential integrated HTL-WO autothermal process. However, the harsh process conditions employed fail to describe oxygen solubility accurately, leading to major deviations in predicted COD reduction, heat generation, vapor fraction, and final design. To accurately capture oxygen solubility at elevated temperatures and pressures, experimental oxygen solubility data were regressed using activity coefficient models. This yielded improved oxygen solubility predictions at 280–350 °C, more realistic vapor fractions and heat outputs, and COD reduction close to experimental values. Full article
(This article belongs to the Proceedings of The 1st SUSTENS Meeting)
Show Figures

Figure 1

19 pages, 1065 KB  
Review
Recovery of Nutrients from the Aqueous Phase of Hydrothermal Liquefaction—A Review
by Barbara Camila Bogarin Cantero, Yalin Li, Prasanta Kalita, Yuanhui Zhang and Paul Davidson
Water 2025, 17(14), 2099; https://doi.org/10.3390/w17142099 - 14 Jul 2025
Cited by 4 | Viewed by 3032
Abstract
Hydrothermal liquefaction (HTL) is a thermochemical conversion process that converts wet biomass into biocrude oil, a gas phase, a solid phase, and an aqueous phase (HTL-AP). An obstacle to the development and scaling of HTL is the volume of HTL-AP produced during the [...] Read more.
Hydrothermal liquefaction (HTL) is a thermochemical conversion process that converts wet biomass into biocrude oil, a gas phase, a solid phase, and an aqueous phase (HTL-AP). An obstacle to the development and scaling of HTL is the volume of HTL-AP produced during the process, which has high concentrations of nitrogen and carbon and cannot be disposed of in the environment without treatment. The HTL-AP is enriched with organic compounds, particularly light polar organics and nitrogenous compounds, which are inhibitory to microbial treatment in wastewater treatment plants. For this reason, the valorization of the HTL-AP is significant for the circular economy of HTL. This review synthesizes published findings on different types of treatment of the HTL-AP for the recovery of valuable nutrients and the removal of toxic compounds. This work outlines the trade-offs of the treatments to serve as a guide for future research to address these weaknesses and improve the valorization of the HTL-AP. Furthermore, this work uniquely focuses on HTL-AP treatment for recovering plant-available nitrogen, targeting its potential use as a fertilizer. The literature highlights the importance of increasing nitrogen bioavailability in HTL-AP through two-step treatments and by selecting HTL-AP derived from protein-rich feedstocks, which offer higher initial nitrogen content. According to the current state of research, further work is needed to optimize chemical and biological treatments for nutrient recovery from HTL-AP, particularly regarding treatment scale and duration. Additionally, economic analyses across different treatment types are currently lacking, but are essential to evaluate their feasibility and practicality. Full article
(This article belongs to the Special Issue Emerging Technologies for Nutrient Recovery and Wastewater Treatment)
Show Figures

Figure 1

7 pages, 933 KB  
Proceeding Paper
Hydrothermal Liquefaction of Pulp and Paper Mill Residues for Biocrude Production
by Toluwanimi Adetunji, Mohammad Yusuf, Pali Rosha and Hussameldin Ibrahim
Eng. Proc. 2024, 76(1), 108; https://doi.org/10.3390/engproc2024076108 - 5 Jun 2025
Viewed by 857
Abstract
The pulp and paper industry is one of the leading waste-generating industries globally. With the rich energy content of these wastes and many of these mills not paying attention/implementing efficient waste disposal methods, it has become imperative that research efforts on pulp and [...] Read more.
The pulp and paper industry is one of the leading waste-generating industries globally. With the rich energy content of these wastes and many of these mills not paying attention/implementing efficient waste disposal methods, it has become imperative that research efforts on pulp and paper waste valorization be performed; hence this paper. Hydrothermal liquefaction (HTL) technology was adopted due to its ability to transform wet biomass into biocrude. The research studied the effects of reaction parameters such as temperature, residence time, feed concentration, and catalysts on the yield of biocrude. While central composite design (CCD) was used in the design of the experiments, response surface methodology (RSM) was utilized for their optimization. The optimum parametric conditions obtained were the following: temperature: 340 °C; residence time: 56min; and feed concentration: 5%. Zeolite (HZSM-5), gamma-alumina (γ-Al2O3), and activated carbon were utilized as catalysts, and their performances with respect to biocrude yield improvement were evaluated. The order of catalytic effect on the biocrude yield was γ-Al2O3 (25.65%) > HZSM-5 (23.18%) > activated carbon (21.94%). Catalyst characterization was performed on the fresh and spent catalysts to study their properties and to make informed inferences on their impacts on biocrude yield. Based on the findings from this research, necessary conclusions and recommendations for future work are presented. Full article
Show Figures

Figure 1

Back to TopTop