Hydrodeoxygenation of Black Liquor HTL Oil Model Compounds in Supercritical Water
Abstract
1. Introduction
2. Materials and Methods
2.1. Model Compounds
2.2. Catalyst Synthesis
2.3. Catalyst Characterisation
2.4. Hydrodeoxygenation Experiments
2.5. Product Analysis
3. Results
3.1. Catalyst Preparation and Characterisation
3.2. Hydrodeoxygenation of Model Compounds
3.2.1. Catalyst Comparison
3.2.2. Statistical Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agency, I.E. Greenhouse Gas Emissions from Energy: Overview; IEA: Paris, France, 2021; Available online: https://www.iea.org/data-and-statistics/data-tools/greenhouse-gas-emissions-from-energy-data-explorer (accessed on 7 October 2022).
- Agency, I.E. Black Liquor Gasification Summary and Conclusions from the IEA Bioenergy ExCo54 Workshop; IEA Bioenergy: Paris, France, 2007; Available online: https://www.ieabioenergy.com/wp-content/uploads/2013/10/Black-Liquor-Gasification-summary-and-conclusions3.pdf (accessed on 7 October 2022).
- Lappalainen, J.; Baudouin, D.; Hornung, U.; Schuler, J.; Melin, K.; Bjelić, S.; Vogel, F.; Konttinen, J.; Joronen, T. Sub- and Supercritical Water Liquefaction of Kraft Lignin and Black Liquor Derived Lignin. Energies 2020, 13, 3309. [Google Scholar] [CrossRef]
- Jafri, Y.; Wetterlund, E.; Mesfun, S.; Rådberg, H.; Mossberg, J.; Hulteberg, C.; Furusjö, E. Combining expansion in pulp capacity with production of sustainable biofuels–Techno-economic and greenhouse gas emissions assessment of drop-in fuels from black liquor part-streams. Appl. Energy 2020, 279, 115879. [Google Scholar] [CrossRef]
- Grande, L.; Pedroarena, I.; Korili, S.A.; Gil, A. Hydrothermal Liquefaction of Biomass as One of the Most Promising Alternatives for the Synthesis of Advanced Liquid Biofuels: A Review. Materials 2021, 14, 5286. [Google Scholar] [CrossRef]
- Lee, H.S.; Jae, J.; Ha, J.M.; Suh, D.J. Hydro- and solvothermolysis of kraft lignin for maximizing production of monomeric aromatic chemicals. Bioresour. Technol. 2016, 203, 142–149. [Google Scholar] [CrossRef]
- Orebom, A.; Verendel, J.J.; Samec, J.S.M. High Yields of Bio Oils from Hydrothermal Processing of Thin Black Liquor without the Use of Catalysts or Capping Agents. ACS Omega 2018, 3, 6757–6763. [Google Scholar] [CrossRef]
- Haarlemmer, G.; Guizani, C.; Anouti, S.; Déniel, M.; Roubaud, A.; Valin, S. Analysis and comparison of bio-oils obtained by hydrothermal liquefaction and fast pyrolysis of beech wood. Fuel 2016, 174, 180–188. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, X.; Zhang, H.; Chu, C.; Zheng, K.; Ju, M.; Liu, L. Liquefaction of Biomass and Upgrading of Bio-Oil: A Review. Molecules 2019, 24, 2250. [Google Scholar] [CrossRef] [PubMed]
- Si, Z.; Zhang, X.; Wang, C.; Ma, L.; Dong, R. An Overview on Catalytic Hydrodeoxygenation of Pyrolysis Oil and Its Model Compounds. Catalysts 2017, 7, 169. [Google Scholar] [CrossRef]
- Lindfors, C.; Mäki-Arvela, P.; Paturi, P.; Aho, A.; Eränen, K.; Hemming, J.; Peurla, M.; Kubička, D.; Simakova, I.L.; Murzin, D.Y. Hydrodeoxygenation of Isoeugenol over Ni- and Co-Supported Catalysts. ACS Sustain. Chem. Eng. 2019, 7, 14545–14560. [Google Scholar] [CrossRef]
- Cheah, Y.W.; Salam, M.A.; Arora, P.; Öhrman, O.; Creaser, D.; Olsson, L. Role of transition metals on MoS2-based supported catalysts for hydrodeoxygenation (HDO) of propylguaiacol. Sustain. Energy Fuels 2021, 5, 2097–2113. [Google Scholar] [CrossRef]
- Zhao, C.; He, J.; Lemonidou, A.A.; Li, X.; Lercher, J.A. Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes. J. Catal. 2011, 280, 8–16. [Google Scholar] [CrossRef]
- Yang, C.; Wang, S.; Yang, J.; Xu, D.; Li, Y.; Li, J.; Zhang, Y. Hydrothermal liquefaction and gasification of biomass and model compounds: A review. Green Chem. 2020, 22, 8210–8232. [Google Scholar] [CrossRef]
- Mao, J.; Jiang, D.; Fang, Z.; Wu, X.; Ni, J.; Li, X. Efficient hydrothermal hydrodeoxygenation of triglycerides with in situ generated hydrogen for production of diesel-like hydrocarbons. Catal. Commun. 2017, 90, 47–50. [Google Scholar] [CrossRef]
- Liu, X.; Yang, M.; Deng, Z.; Dasgupta, A.; Guo, Y. Hydrothermal hydrodeoxygenation of palmitic acid over Pt/C catalyst: Mechanism and kinetic modeling. Chem. Eng. J. 2021, 407, 126332. [Google Scholar] [CrossRef]
- Usman, M.; Cheng, S.; Boonyubol, S.; Cross, J.S. From biomass to biocrude: Innovations in hydrothermal liquefaction and upgrading. Energy Convers. Manag. 2024, 302, 118093. [Google Scholar] [CrossRef]
- Yao, X.; Strathmann, T.J.; Li, Y.; Cronmiller, L.E.; Ma, H.; Zhang, J. Catalytic hydrothermal deoxygenation of lipids and fatty acids to diesel-like hydrocarbons: A review. Green Chem. 2021, 23, 1114–1129. [Google Scholar] [CrossRef]
- Kurlov, A.; Meca, L.; Viertiö, T.; Rautiainen, S.; Vogel, F.; Lehtonen, J.; Kukula, P.; Baudouin, D. Stability assessment of sulfided NiMo-based catalysts for continuous flow supercritical water hydrodeoxygenation applications. J. Supercrit. Fluids 2025, 225, 106682. [Google Scholar] [CrossRef]
- Xiong, H.; Pham, H.N.; Datye, A.K. Hydrothermally stable heterogeneous catalysts for conversion of biorenewables. Green Chem. 2014, 16, 4627–4643. [Google Scholar] [CrossRef]
- Wörner, M.; Barsuhn, A.; Zevaco, T.; Hornung, U.; Dahmen, N. From Pulp to Aromatic Products─Reaction Pathways of Lignin Depolymerization. Energy Fuels 2024, 38, 6020–6035. [Google Scholar] [CrossRef] [PubMed]
- Wörner, M.; Werner, L.; Hornung, U.; Islongo Canabarro, N.; Baudouin, D.; Dahmen, N. The Impact of Sulfur-Containing Inorganic Compounds during the Depolymerization of Lignin by Hydrothermal Liquefaction of Black Liquor. Energy Fuels 2024, 38, 6036–6047. [Google Scholar] [CrossRef] [PubMed]
- Guadix-Montero, S.; Sankar, M. Review on Catalytic Cleavage of C–C Inter-unit Linkages in Lignin Model Compounds: Towards Lignin Depolymerisation. Top. Catal. 2018, 61, 183–198. [Google Scholar] [CrossRef]
- Wörner, M.; Hornung, U.; Arjmand, B. EU Project Report: BL2F D1.4-Report on HTL-Oil Characterization. 2024. Available online: https://bl2f.eu/docs/BL2F%20DELIVERABLES/D1.4%20BL2F_D1.4%20under%20revision%20by%20the%20European%20Commission.pdf (accessed on 19 November 2025).
- Shuai, L.; Sitison, J.; Sadula, S.; Ding, J.; Thies, M.C.; Saha, B. Selective C–C Bond Cleavage of Methylene-Linked Lignin Models and Kraft Lignin. ACS Catal. 2018, 8, 6507–6512. [Google Scholar] [CrossRef]
- de Souza, P.M.; Rabelo-Neto, R.C.; Borges, L.E.P.; Jacobs, G.; Davis, B.H.; Resasco, D.E.; Noronha, F.B. Hydrodeoxygenation of Phenol over Pd Catalysts. Effect of Support on Reaction Mechanism and Catalyst Deactivation. ACS Catal. 2017, 7, 2058–2073. [Google Scholar] [CrossRef]
- Bjelić, A.; Grilc, M.; Likozar, B. Catalytic hydrogenation and hydrodeoxygenation of lignin-derived model compound eugenol over Ru/C: Intrinsic microkinetics and transport phenomena. Chem. Eng. J. 2018, 333, 240–259. [Google Scholar] [CrossRef]
- Tieuli, S.; Mäki-Arvela, P.; Peurla, M.; Eränen, K.; Wärnå, J.; Cruciani, G.; Menegazzo, F.; Murzin, D.Y.; Signoretto, M. Hydrodeoxygenation of isoeugenol over Ni-SBA-15: Kinetics and modelling. Appl. Catal. A Gen. 2019, 580, 1–10. [Google Scholar] [CrossRef]







| Catalyst | Support | Granulate Size (mm) | Physisorption Data | XRF Data | ||
|---|---|---|---|---|---|---|
| BET (m2/g) | Desorp. Pore Vol. (mm3/g) | NiO (wt%) | MoO3 (wt%) | |||
| NiMo/TiO2 | TiO2 rutile | 0.2–0.4 | 6.2 | 18.1 | 6.45 | 31.0 |
| NiMo/ZrO2 | ZrO2 monoclinic | 0.2–0.4 | 26.6 | 101 | 5.7 | 26.5 |
| NiMo/α-Al2O3 | α-Al2O3 corundum | <0.4 | 3.5 | 12.3 | 3.78 | 23.2 |
| NiMo/AC | Activated carbon | 0.4–0.8 | 759 | 341 | 4.1 | 18.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Rautiainen, S.; Viertiö, T.; Vuorio, N.; Hyppönen, F.; Meca, L.; Kukula, P.; Lehtonen, J. Hydrodeoxygenation of Black Liquor HTL Oil Model Compounds in Supercritical Water. Reactions 2026, 7, 7. https://doi.org/10.3390/reactions7010007
Rautiainen S, Viertiö T, Vuorio N, Hyppönen F, Meca L, Kukula P, Lehtonen J. Hydrodeoxygenation of Black Liquor HTL Oil Model Compounds in Supercritical Water. Reactions. 2026; 7(1):7. https://doi.org/10.3390/reactions7010007
Chicago/Turabian StyleRautiainen, Sari, Tyko Viertiö, Niko Vuorio, Felix Hyppönen, Luděk Meca, Pavel Kukula, and Juha Lehtonen. 2026. "Hydrodeoxygenation of Black Liquor HTL Oil Model Compounds in Supercritical Water" Reactions 7, no. 1: 7. https://doi.org/10.3390/reactions7010007
APA StyleRautiainen, S., Viertiö, T., Vuorio, N., Hyppönen, F., Meca, L., Kukula, P., & Lehtonen, J. (2026). Hydrodeoxygenation of Black Liquor HTL Oil Model Compounds in Supercritical Water. Reactions, 7(1), 7. https://doi.org/10.3390/reactions7010007

