Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (252)

Search Parameters:
Keywords = hydrogen storage tank

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5773 KiB  
Article
Multi-Seasonal Risk Assessment of Hydrogen Leakage, Diffusion, and Explosion in Hydrogen Refueling Station
by Yaling Liu, Yao Zeng, Guanxi Zhao, Huarong Hou, Yangfan Song and Bin Ding
Energies 2025, 18(15), 4172; https://doi.org/10.3390/en18154172 - 6 Aug 2025
Abstract
To reveal the influence mechanisms of seasonal climatic factors (wind speed, wind direction, temperature) and leakage direction on hydrogen dispersion and explosion behavior from single-source leaks at typical risk locations (hydrogen storage tanks, compressors, dispensers) in hydrogen refueling stations (HRSs), this work established [...] Read more.
To reveal the influence mechanisms of seasonal climatic factors (wind speed, wind direction, temperature) and leakage direction on hydrogen dispersion and explosion behavior from single-source leaks at typical risk locations (hydrogen storage tanks, compressors, dispensers) in hydrogen refueling stations (HRSs), this work established a full-scale 1:1 three-dimensional numerical model using the FLACS v22.2 software based on the actual layout of an HRS in Xichang, Sichuan Province. Through systematic simulations of 72 leakage scenarios (3 equipment types × 4 seasons × 6 leakage directions), the coupled effects of climatic conditions, equipment layout, and leakage direction on hydrogen dispersion patterns and explosion risks were quantitatively analyzed. The key findings indicate the following: (1) Downward leaks (−Z direction) from storage tanks tend to form large-area ground-hugging hydrogen clouds, representing the highest explosion risk (overpressure peak: 0.25 barg; flame temperature: >2500 K). Leakage from compressors (±X/−Z directions) readily affects adjacent equipment. Dispenser leaks pose relatively lower risks, but specific directions (−Y direction) coupled with wind fields may drive significant hydrogen dispersion toward station buildings. (2) Southeast/south winds during spring/summer promote outward migration of hydrogen clouds, reducing overall station risk but causing localized accumulation near storage tanks. Conversely, north/northwest winds in autumn/winter intensify hydrogen concentrations in compressor and station building areas. (3) An empirical formula integrating climatic parameters, leakage conditions, and spatial coordinates was proposed to predict hydrogen concentration (error < 20%). This model provides theoretical and data support for optimizing sensor placement, dynamically adjusting ventilation strategies, and enhancing safety design in HRSs. Full article
Show Figures

Figure 1

28 pages, 4460 KiB  
Article
New Protocol for Hydrogen Refueling Station Operation
by Carlos Armenta-Déu
Future Transp. 2025, 5(3), 96; https://doi.org/10.3390/futuretransp5030096 (registering DOI) - 1 Aug 2025
Viewed by 241
Abstract
This work proposes a new method to refill fuel cell electric vehicle hydrogen tanks from a storage system in hydrogen refueling stations. The new method uses the storage tanks in cascade to supply hydrogen to the refueling station dispensers. This method reduces the [...] Read more.
This work proposes a new method to refill fuel cell electric vehicle hydrogen tanks from a storage system in hydrogen refueling stations. The new method uses the storage tanks in cascade to supply hydrogen to the refueling station dispensers. This method reduces the hydrogen compressor power requirement and the energy consumption for refilling the vehicle tank; therefore, the proposed alternative design for hydrogen refueling stations is feasible and compatible with low-intensity renewable energy sources like solar photovoltaic, wind farms, or micro-hydro plants. Additionally, the cascade method supplies higher pressure to the dispenser throughout the day, thus reducing the refueling time for specific vehicle driving ranges. The simulation shows that the energy saving using the cascade method achieves 9% to 45%, depending on the vehicle attendance. The hydrogen refueling station design supports a daily vehicle attendance of 9 to 36 with a complete refueling process coverage. The carried-out simulation proves that the vehicle tank achieves the maximum attainable pressure of 700 bars with a storage system of six tanks. The data analysis shows that the daily hourly hydrogen demand follows a sinusoidal function, providing a practical tool to predict the hydrogen demand for any vehicle attendance, allowing the planners and station designers to resize the elements to fulfill the new requirements. The proposed system is also applicable to hydrogen ICE vehicles. Full article
Show Figures

Figure 1

27 pages, 5196 KiB  
Article
Impact of Hydrogen Release on Accidental Consequences in Deep-Sea Floating Photovoltaic Hydrogen Production Platforms
by Kan Wang, Jiahui Mi, Hao Wang, Xiaolei Liu and Tingting Shi
Hydrogen 2025, 6(3), 52; https://doi.org/10.3390/hydrogen6030052 - 29 Jul 2025
Viewed by 259
Abstract
Hydrogen is a potential key component of a carbon-neutral energy carrier and an input to marine industrial processes. This study examines the consequences of coupled hydrogen release and marine environmental factors during floating photovoltaic hydrogen production (FPHP) system failures. A validated three-dimensional numerical [...] Read more.
Hydrogen is a potential key component of a carbon-neutral energy carrier and an input to marine industrial processes. This study examines the consequences of coupled hydrogen release and marine environmental factors during floating photovoltaic hydrogen production (FPHP) system failures. A validated three-dimensional numerical model of FPHP comprehensively characterizes hydrogen leakage dynamics under varied rupture diameters (25, 50, 100 mm), transient release duration, dispersion patterns, and wind intensity effects (0–20 m/s sea-level velocities) on hydrogen–air vapor clouds. FLACS-generated data establish the concentration–dispersion distance relationship, with numerical validation confirming predictive accuracy for hydrogen storage tank failures. The results indicate that the wind velocity and rupture size significantly influence the explosion risk; 100 mm ruptures elevate the explosion risk, producing vapor clouds that are 40–65% larger than 25 mm and 50 mm cases. Meanwhile, increased wind velocities (>10 m/s) accelerate hydrogen dilution, reducing the high-concentration cloud volume by 70–84%. Hydrogen jet orientation governs the spatial overpressure distribution in unconfined spaces, leading to considerable shockwave consequence variability. Photovoltaic modules and inverters of FPHP demonstrate maximum vulnerability to overpressure effects; these key findings can be used in the design of offshore platform safety. This study reveals fundamental accident characteristics for FPHP reliability assessment and provides critical insights for safety reinforcement strategies in maritime hydrogen applications. Full article
Show Figures

Figure 1

20 pages, 3338 KiB  
Article
Mitigation of Reverse Power Flows in a Distribution Network by Power-to-Hydrogen Plant
by Fabio Massaro, John Licari, Alexander Micallef, Salvatore Ruffino and Cyril Spiteri Staines
Energies 2025, 18(15), 3931; https://doi.org/10.3390/en18153931 - 23 Jul 2025
Viewed by 260
Abstract
The increase in power generation facilities from nonprogrammable renewable sources is posing several challenges for the management of electrical systems, due to phenomena such as congestion and reverse power flows. In mitigating these phenomena, Power-to-Gas plants can make an important contribution. In this [...] Read more.
The increase in power generation facilities from nonprogrammable renewable sources is posing several challenges for the management of electrical systems, due to phenomena such as congestion and reverse power flows. In mitigating these phenomena, Power-to-Gas plants can make an important contribution. In this paper, a linear optimisation study is presented for the sizing of a Power-to-Hydrogen plant consisting of a PEM electrolyser, a hydrogen storage system composed of multiple compressed hydrogen tanks, and a fuel cell for the eventual reconversion of hydrogen to electricity. The plant was sized with the objective of minimising reverse power flows in a medium-voltage distribution network characterised by a high presence of photovoltaic systems, considering economic aspects such as investment costs and the revenue obtainable from the sale of hydrogen and excess energy generated by the photovoltaic systems. The study also assessed the impact that the electrolysis plant has on the power grid in terms of power losses. The results obtained showed that by installing a 737 kW electrolyser, the annual reverse power flows are reduced by 81.61%, while also reducing losses in the transformer and feeders supplying the ring network in question by 17.32% and 29.25%, respectively, on the day with the highest reverse power flows. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy IV)
Show Figures

Figure 1

26 pages, 3954 KiB  
Article
Bi-Level Planning of Grid-Forming Energy Storage–Hydrogen Storage System Considering Inertia Response and Frequency Parameter Optimization
by Dongqi Huang, Pengwei Sun, Wenfeng Yao, Chang Liu, Hefeng Zhai and Yehao Gao
Energies 2025, 18(15), 3915; https://doi.org/10.3390/en18153915 - 23 Jul 2025
Viewed by 284
Abstract
Energy storage plays an essential role in stabilizing fluctuations in renewable energy sources such as wind and solar, enabling surplus electricity retention, and delivering dynamic frequency regulation. However, relying solely on a single form of storage often proves insufficient due to constraints in [...] Read more.
Energy storage plays an essential role in stabilizing fluctuations in renewable energy sources such as wind and solar, enabling surplus electricity retention, and delivering dynamic frequency regulation. However, relying solely on a single form of storage often proves insufficient due to constraints in performance, capacity, and cost-effectiveness. To tackle frequency regulation challenges in remote desert-based renewable energy hubs—where traditional power infrastructure is unavailable—this study introduces a planning framework for an electro-hydrogen energy storage system with grid-forming capabilities, designed to supply both inertia and frequency response. At the system design stage, a direct current (DC) transmission network is modeled, integrating battery and hydrogen storage technologies. Using this configuration, the capacity settings for both grid-forming batteries and hydrogen units are optimized. This study then explores how hydrogen systems—comprising electrolyzers, storage tanks, and fuel cells—and grid-forming batteries contribute to inertial support. Virtual inertia models are established for each technology, enabling precise estimation of the total synthetic inertia provided. At the operational level, this study addresses stability concerns stemming from renewable generation variability by introducing three security indices. A joint optimization is performed for virtual inertia constants, which define the virtual inertia provided by energy storage systems to assist in frequency regulation, and primary frequency response parameters within the proposed storage scheme are optimized in this model. This enhances the frequency modulation potential of both systems and confirms the robustness of the proposed approach. Lastly, a real-world case study involving a 13 GW renewable energy base in Northwest China, connected via a ±10 GW HVDC export corridor, demonstrates the practical effectiveness of the optimization strategy and system configuration. Full article
(This article belongs to the Special Issue Advanced Battery Management Strategies)
Show Figures

Figure 1

18 pages, 3631 KiB  
Article
Analysis of Implementing Hydrogen Storage for Surplus Energy from PV Systems in Polish Households
by Piotr Olczak and Dominika Matuszewska
Energies 2025, 18(14), 3674; https://doi.org/10.3390/en18143674 - 11 Jul 2025
Viewed by 304
Abstract
One of the methods for mitigating the duck curve phenomenon in photovoltaic (PV) energy systems is storing surplus energy in the form of hydrogen. However, there is a lack of studies focused on residential PV systems that assess the impact of hydrogen storage [...] Read more.
One of the methods for mitigating the duck curve phenomenon in photovoltaic (PV) energy systems is storing surplus energy in the form of hydrogen. However, there is a lack of studies focused on residential PV systems that assess the impact of hydrogen storage on the reduction of energy flow imbalance to and from the national grid. This study presents an analysis of hydrogen energy storage based on real-world data from a household PV installation. Using simulation methods grounded in actual electricity consumption and hourly PV production data, the research identified the storage requirements, including the required operating hours and the capacity of the hydrogen tank. The analysis was based on a 1 kW electrolyzer and a fuel cell, representing the smallest and most basic commercially available units, and included a sensitivity analysis. At the household level—represented by a single-family home with an annual energy consumption and PV production of approximately 4–5 MWh over a two-year period—hydrogen storage enabled the production of 49.8 kg and 44.6 kg of hydrogen in the first and second years, respectively. This corresponded to the use of 3303 kWh of PV-generated electricity and an increase in self-consumption from 30% to 64%. Hydrogen storage helped to smooth out peak energy flows from the PV system, decreasing the imbalance from 5.73 kWh to 4.42 kWh. However, while it greatly improves self-consumption, its capacity to mitigate power flow imbalance further is constrained; substantial improvements would necessitate a much larger electrolyzer proportional in size to the PV system’s output. Full article
(This article belongs to the Special Issue Challenges and Opportunities in the Global Clean Energy Transition)
Show Figures

Figure 1

31 pages, 4719 KiB  
Review
Exploring the Gas Permeability of Type IV Hydrogen Storage Cylinder Liners: Research and Applications
by Xinshu Li, Qing Wang, Shuang Wu, Dongyang Wu, Chunlei Wu, Da Cui and Jingru Bai
Materials 2025, 18(13), 3127; https://doi.org/10.3390/ma18133127 - 1 Jul 2025
Viewed by 618
Abstract
As hydrogen fuel cell vehicles gain momentum as crucial zero-emission transportation solutions, the urgency to address hydrogen permeability through the polymer liner becomes paramount for ensuring the safety, efficiency, and longevity of Type IV hydrogen storage tanks. This paper synthesizes existing research findings, [...] Read more.
As hydrogen fuel cell vehicles gain momentum as crucial zero-emission transportation solutions, the urgency to address hydrogen permeability through the polymer liner becomes paramount for ensuring the safety, efficiency, and longevity of Type IV hydrogen storage tanks. This paper synthesizes existing research findings, analyzes the influence of different materials and structures on gas permeability, elucidates the dissolution and diffusion mechanisms of hydrogen in plastic liners, and discusses their engineering applications. We focus on measurement methods, influencing factors, and improvement strategies for liner gas permeability. Additionally, we explore the prospects of Type IV hydrogen storage tanks in fields such as automotive, aerospace, and energy storage industries. Through this comprehensive review of liner gas permeability, critical insights are provided to guide the development of efficient and safe hydrogen storage and transportation systems. These insights are vital for advancing the widespread application of hydrogen energy technology and fostering sustainable energy development, significantly contributing to efforts aimed at enhancing the performance and safety of Type IV hydrogen storage tanks. Full article
Show Figures

Figure 1

18 pages, 3223 KiB  
Article
Design of a Metal Hydride Cartridge Heated by PEMFC Exhaust
by Tomoya Ezawa, Shan Miao, Koki Harano, Masami Sumita, Noboru Katayama and Kiyoshi Dowaki
Energies 2025, 18(13), 3399; https://doi.org/10.3390/en18133399 - 27 Jun 2025
Viewed by 404
Abstract
This study investigates the structure of a metal hydride (MH) cartridge as a hydrogen storage tank for small-scale fuel cells (FCs). This cartridge is designed to be stacked and used in layers, allowing flexible capacity adjustment according to demand. MH enables compact and [...] Read more.
This study investigates the structure of a metal hydride (MH) cartridge as a hydrogen storage tank for small-scale fuel cells (FCs). This cartridge is designed to be stacked and used in layers, allowing flexible capacity adjustment according to demand. MH enables compact and safe hydrogen storage for small-scale fuel cell (FC) applications due to its high energy density and low-pressure operation. However, because hydrogen desorption from MH is an endothermic reaction, an external heat supply is required for stable performance. To enhance both the heat transfer efficiency and cartridge usability, we propose a heat supply method that utilizes waste heat from an air-cooled proton-exchange membrane fuel cell (PEMFC). The proposed cartridge incorporates four cylindrical MH tanks that require uniform heat transfer. Therefore, we proposed the tank arrangements within the cartridge to minimize the non-uniformity of heat transfer distribution on the surface. The flow of exhaust air from the PEMFC into the cartridge was analyzed using computational fluid dynamics (CFD) simulations. In addition, an empirical correlation for the Nusselt number was developed to estimate the heat transfer coefficient. As a result, it was concluded that the heat utilization rate of the exhaust heat flowing into the cartridge was 13.2%. Full article
(This article belongs to the Special Issue Hydrogen Energy Storage: Materials, Methods and Perspectives)
Show Figures

Figure 1

23 pages, 4417 KiB  
Review
Underground Hydrogen Storage in Salt Cavern: A Review of Advantages, Challenges, and Prospects
by Xiaojun Qian, Shaohua You, Ruizhe Wang, Yunzhi Yue, Qinzhuo Liao, Jiacheng Dai, Shouceng Tian and Xu Liu
Sustainability 2025, 17(13), 5900; https://doi.org/10.3390/su17135900 - 26 Jun 2025
Cited by 1 | Viewed by 1139
Abstract
The transition to a sustainable energy future hinges on the development of reliable large-scale hydrogen storage solutions to balance the intermittency of renewable energy and decarbonize hard-to-abate industries. Underground hydrogen storage (UHS) in salt caverns emerged as a technically and economically viable strategy, [...] Read more.
The transition to a sustainable energy future hinges on the development of reliable large-scale hydrogen storage solutions to balance the intermittency of renewable energy and decarbonize hard-to-abate industries. Underground hydrogen storage (UHS) in salt caverns emerged as a technically and economically viable strategy, leveraging the unique geomechanical properties of salt formations—including low permeability, self-healing capabilities, and chemical inertness—to ensure safe and high-purity hydrogen storage under cyclic loading conditions. This review provides a comprehensive analysis of the advantages of salt cavern hydrogen storage, such as rapid injection and extraction capabilities, cost-effectiveness compared to other storage methods (e.g., hydrogen storage in depleted oil and gas reservoirs, aquifers, and aboveground tanks), and minimal environmental impact. It also addresses critical challenges, including hydrogen embrittlement, microbial activity, and regulatory fragmentation. Through global case studies, best operational practices for risk mitigation in real-world applications are highlighted, such as adaptive solution mining techniques and microbial monitoring. Focusing on China’s regional potential, this study evaluates the hydrogen storage feasibility of stratified salt areas such as Jiangsu Jintan, Hubei Yunying, and Henan Pingdingshan. By integrating technological innovation, policy coordination, and cross-sector collaboration, salt cavern hydrogen storage is poised to play a pivotal role in realizing a resilient hydrogen economy, bridging the gap between renewable energy production and industrial decarbonization. Full article
Show Figures

Figure 1

23 pages, 2535 KiB  
Article
Molecular Dynamics Simulation of Hydrogen Permeation Behavior in Epoxy Resin Systems
by Chang Gao, Hongzhi Chen, Hao Xu, Zhanjun Wu and Xufeng Dong
Polymers 2025, 17(13), 1755; https://doi.org/10.3390/polym17131755 - 25 Jun 2025
Viewed by 476
Abstract
Liquid hydrogen (LH2) storage using carbon-fiber-reinforced composite pressure vessels is facing increasing demands in aerospace engineering. However, hydrogen permeation in epoxy resin matrixes seriously jeopardizes the function and safety of the cryogenic vessels, and the micro-behavior of hydrogen permeation in epoxy [...] Read more.
Liquid hydrogen (LH2) storage using carbon-fiber-reinforced composite pressure vessels is facing increasing demands in aerospace engineering. However, hydrogen permeation in epoxy resin matrixes seriously jeopardizes the function and safety of the cryogenic vessels, and the micro-behavior of hydrogen permeation in epoxy resins remains mysterious. This study performed molecular dynamics (MD) simulations to investigate the hydrogen molecule permeation behaviors in two types of epoxy resin systems, with similar epoxy reins of bisphenol A diglycidyl ether (DGEBA) and different curing agents, i.e., 4,4′-diaminodiphenylmethane (DDM) and polypropylene glycol bis(2-aminopropyl ether) (PEA). The influencing factors, including the cross-linking degrees and temperatures, on hydrogen permeation were analyzed. It was revealed that increased cross-linking degrees enhance the tortuosity of hydrogen diffusion pathways, thereby inhibiting permeation. The adsorption characteristics demonstrated high sensitivity to temperature variations, leading to intensified hydrogen permeation at low temperatures. By triggering defects in the epoxy resin systems by uniaxial tensile simulation, high consistency between the simulation results and the results from helium permeability experiments can be achieved due to the micro-defects in the simulation model that are more realistic in practical materials. The findings provide theoretical insights into micro-scale permeation behavior and facilitate the development of high-performance epoxy resins in liquid hydrogen storage. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

17 pages, 4407 KiB  
Article
Effect of T6 and T8 Ageing on the Mechanical and Microstructural Properties of Graphene-Reinforced AA2219 Composites for Hydrogen Storage Tank Inner Liner Applications
by Bharathiraja Parasuraman, Ashwath Pazhani, Anthony Xavior Michael, Sudhagar Pitchaimuthu and Andre Batako
J. Compos. Sci. 2025, 9(7), 328; https://doi.org/10.3390/jcs9070328 - 25 Jun 2025
Viewed by 396
Abstract
This study examines the mechanical and microstructural properties of graphene-reinforced AA2219 composites developed for hydrogen storage tank inner liner applications. A novel processing route combining high-energy ball milling, ultrasonic-assisted stir casting, and squeeze casting was used to achieve homogeneous dispersion of 0.5 wt.% [...] Read more.
This study examines the mechanical and microstructural properties of graphene-reinforced AA2219 composites developed for hydrogen storage tank inner liner applications. A novel processing route combining high-energy ball milling, ultrasonic-assisted stir casting, and squeeze casting was used to achieve homogeneous dispersion of 0.5 wt.% graphene nanoplatelets and minimise agglomeration. The composites were subjected to T6 and T8 ageing treatments to optimize their properties. Microstructural analysis revealed refined grains, uniform Al2Cu precipitate distribution, and stable graphene retention. Mechanical testing showed that the as-cast composite exhibited a UTS of 308.6 MPa with 13.68% elongation. After T6 treatment, the UTS increased to 353.6 MPa with an elongation of 11.24%. T8 treatment further improved the UTS to 371.5 MPa, with an elongation of 8.54%. Hardness improved by 46%, from 89.6 HV (as-cast) to 131.3 HV (T8). Fractography analysis indicated a shift from brittle to ductile fracture modes after heat treatment. The purpose of this work is to develop lightweight, high-strength composites for hydrogen storage applications. The novelty of this study lies in the integrated processing approach, which ensures uniform graphene dispersion and superior mechanical performance. The results demonstrate the suitability of these composites for advanced aerospace propulsion systems. Full article
(This article belongs to the Special Issue Composite Materials for Hydrogen Storage)
Show Figures

Figure 1

32 pages, 7008 KiB  
Article
Revealing the Roles of Heat Transfer, Thermal Dynamics, and Reaction Kinetics in Hydrogenation/Dehydrogenation Processes for Mg-Based Metal Hydride Hydrogen Storage
by Zhiqian Li, Min Zhang and Huijin Xu
Energies 2025, 18(11), 2924; https://doi.org/10.3390/en18112924 - 4 Jun 2025
Viewed by 606
Abstract
Hydrogen is critical for achieving carbon neutrality as a clean energy source. However, its low ambient energy density poses challenges for storage, making efficient and safe hydrogen storage a bottleneck. Metal hydride-based solid-state hydrogen storage has emerged as a promising solution due to [...] Read more.
Hydrogen is critical for achieving carbon neutrality as a clean energy source. However, its low ambient energy density poses challenges for storage, making efficient and safe hydrogen storage a bottleneck. Metal hydride-based solid-state hydrogen storage has emerged as a promising solution due to its high energy density, low operating pressure, and safety. In this work, the thermodynamic and kinetic characteristics of the hydrogenation and dehydrogenation processes are investigated and analyzed in detail, and the effects of initial conditions on the thermochemical hydrogen storage reactor are discussed. Multiphysics field modeling of the magnesium-based hydrogen storage tank was conducted to analyze the reaction processes. Distributions of temperature and reaction rate in the reactor and temperature and pressure during the hydrogen loading process were discussed. Radially, wall-adjacent regions rapidly dissipate heat with short reaction times, while the central area warms into a thermal plateau. Inward cooling propagation shortens the plateau, homogenizing temperatures—reflecting inward-to-outward thermal diffusion and exothermic attenuation, alongside a reaction rate peak migrating from edge to center. Axially, initial uniformity transitions to bottom-up thermal expansion after 60 min, with sustained high top temperatures showing nonlinear decay under t = 20 min intervals, where cooling rates monotonically accelerate. The greater the hydrogen pressure, the shorter the period of the temperature rise and the steeper the curve, while lower initial temperatures preserve local maxima but shorten plateaus and cooling time via enhanced thermal gradients. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Graphical abstract

28 pages, 6692 KiB  
Article
Integration of the Chimp Optimization Algorithm and Rule-Based Energy Management Strategy for Enhanced Microgrid Performance Considering Energy Trading Pattern
by Mukhtar Fatihu Hamza, Babangida Modu and Sulaiman Z. Almutairi
Electronics 2025, 14(10), 2037; https://doi.org/10.3390/electronics14102037 - 16 May 2025
Cited by 1 | Viewed by 496
Abstract
The increasing integration of renewable energy into modern power systems has prompted the need for efficient hybrid energy solutions to ensure reliability, sustainability, and economic viability. However, optimizing the design of hybrid renewable energy systems, particularly those incorporating both hydrogen and battery storage, [...] Read more.
The increasing integration of renewable energy into modern power systems has prompted the need for efficient hybrid energy solutions to ensure reliability, sustainability, and economic viability. However, optimizing the design of hybrid renewable energy systems, particularly those incorporating both hydrogen and battery storage, remains challenging due to system complexity and fluctuating energy trading conditions. This study addresses these gaps by proposing a novel framework that combines the Chimp Optimization Algorithm (ChOA) with a rule-based energy management strategy (REMS) to optimize component sizing and operational efficiency in a grid-connected microgrid. The proposed system integrates photovoltaic (PV) panels, wind turbines (WT), electrolyzers (ELZ), hydrogen storage, fuel cells (FC), and battery storage (BAT), while accounting for seasonal variations and dynamic energy trading. Each contribution in the Research Contributions section directly addresses critical limitations in previous studies, including the lack of advanced metaheuristic optimization, underutilization of hydrogen-battery synergy, and the absence of practical control strategies for energy management. Simulation results show that the proposed ChOA-based model achieves the most cost-effective and efficient configuration, with a PV capacity of 1360 kW, WT capacity of 462 kW, 164 kWh of BAT storage, 138 H2 tanks, a 571 kW ELZ, and a 381 kW FC. This configuration yields the lowest cost of energy (COE) at $0.272/kWh and an annualized system cost (ASC) of $544,422. Comparatively, the Genetic Algorithm (GA), Salp Swarm Algorithm (SSA), and Grey Wolf Optimizer (GWO) produce slightly higher COE values of $0.274, $0.275, and $0.276 per kWh, respectively. These findings highlight the superior performance of ChOA in optimizing hybrid energy systems and offer a scalable, adaptable framework to support future renewable energy deployment and smart grid development. Full article
Show Figures

Figure 1

54 pages, 38719 KiB  
Review
Recent Advances in the Hydrogen Gas Barrier Performance of Polymer Liners and Composites for Type IV Hydrogen Storage Tanks: Fabrication, Properties, and Molecular Modeling
by Omar Dagdag and Hansang Kim
Polymers 2025, 17(9), 1231; https://doi.org/10.3390/polym17091231 - 30 Apr 2025
Viewed by 1234
Abstract
Developing high-performance polymer liners and their composites is essential for ensuring the safety and efficiency of type IV high-pressure hydrogen storage tanks. This review provides a thorough analysis of recent innovations in hydrogen gas barrier materials, fabrication techniques, and molecular modeling approaches to [...] Read more.
Developing high-performance polymer liners and their composites is essential for ensuring the safety and efficiency of type IV high-pressure hydrogen storage tanks. This review provides a thorough analysis of recent innovations in hydrogen gas barrier materials, fabrication techniques, and molecular modeling approaches to minimize hydrogen gas permeation. It examines key polymeric materials, such as polyamide 6 (PA6) and high-density polyethylene (HDPE), and emerging nanofiller reinforcements, such as graphene and montmorillonite clay. Additionally, it discusses manufacturing methods in relation to their effects on liner integrity and permeability. Molecular modeling techniques, especially molecular dynamics simulations, are emphasized as powerful tools for understanding hydrogen transport mechanisms and optimizing the interactions between polymers and fillers. Despite these notable advancements, challenges remain in achieving ultra-low hydrogen gas permeability, long-term stability, and scalable production methods. Future research should focus on developing multifunctional hybrid fillers, enhancing computational modeling frameworks, and designing novel polymer architectures specifically tailored for hydrogen storage applications. Full article
Show Figures

Graphical abstract

33 pages, 13813 KiB  
Review
Advances in Thermal Management for Liquid Hydrogen Storage: The Lunar Perspective
by Jing Li, Fulin Fan, Jingkai Xu, Heran Li, Jian Mei, Teng Fei, Chuanyu Sun, Jinhai Jiang, Rui Xue, Wenying Yang and Kai Song
Energies 2025, 18(9), 2220; https://doi.org/10.3390/en18092220 - 27 Apr 2025
Viewed by 852
Abstract
Liquid hydrogen is regarded as a key energy source and propellant for lunar bases due to its high energy density and abundance of polar water ice resources. However, its low boiling point and high latent heat of vaporization pose severe challenges for storage [...] Read more.
Liquid hydrogen is regarded as a key energy source and propellant for lunar bases due to its high energy density and abundance of polar water ice resources. However, its low boiling point and high latent heat of vaporization pose severe challenges for storage and management under the extreme lunar environment characterized by wide temperature variations, low pressure, and low gravity. This paper reviews the strategies for siting and deployment of liquid hydrogen storage systems on the Moon and the technical challenges posed by the lunar environment, with particular attention for thermal management technologies. Passive technologies include advanced insulation materials, thermal shielding, gas-cooled shielding layers, ortho-para hydrogen conversion, and passive venting, which optimize insulation performance and structural design to effectively reduce evaporation losses and maintain storage stability. Active technologies, such as cryogenic fluid mixing, thermodynamic venting, and refrigeration systems, dynamically regulate heat transfer and pressure variations within storage tanks, further enhancing storage efficiency and system reliability. In addition, this paper explores boil-off hydrogen recovery and reutilization strategies for liquid hydrogen, including hydrogen reliquefaction, mechanical, and non-mechanical compression. By recycling vaporized hydrogen, these strategies reduce resource waste and support the sustainable development of energy systems for lunar bases. In conclusion, this paper systematically evaluates passive and active thermal management technologies as well as vapor recovery strategies along with their technical adaptability, and then proposes feasible storage designs for the lunar environment. These efforts provide critical theoretical foundations and technical references for achieving safe and efficient storage of liquid hydrogen and energy self-sufficiency in lunar bases. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

Back to TopTop