Design of a Metal Hydride Cartridge Heated by PEMFC Exhaust
Abstract
1. Introduction
2. Materials and Methods
2.1. Structure of the Cartridge and Metal Hydride Tanks
2.2. Analysis of Heat Flux Using CFD Simulation
2.3. Empirical Equation for the Nusselt Number
2.4. Estimation of the Cartridge Thermal Utilization Rate
3. Results and Discussion
3.1. Distribution of Heat Flux Around the Tanks According to the CFD Simulation
3.2. Analysis of the Nusselt Number Around the Tanks
3.3. Utilization Rate of Fuel Cell Exhaust Heat Transferred to the Tanks
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Beschkov, V.; Ganev, E. Perspectives on the development of technologies for hydrogen as a carrier of sustainable energy. Energies 2023, 16, 6108. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J. Revolution in renewables: Integration of green hydrogen for a sustainable future. Energies 2024, 17, 4148. [Google Scholar] [CrossRef]
- Rezaei, M.; Akimov, A.; Gray, E.M. Economics of renewable hydrogen production using wind and solar energy: A Case Study for Queensland, Australia. J. Clean. Prod. 2024, 435, 140476. [Google Scholar] [CrossRef]
- Azizimehr, B.; Armaghani, T.; Ghasemiasl, R.; Kaabi Nejadian, A.; Javadi, M.A. A comprehensive review of recent developments in hydrogen production methods using a new parameter. Int. J. Hydrogen Energy 2024, 72, 716–729. [Google Scholar] [CrossRef]
- Alasali, F.; Abuashour, M.I.; Hammad, W.; Almomani, D.; Obeidat, A.M.; Holderbaum, W. A Review of hydrogen production and storage materials for efficient integrated hydrogen energy systems. Energy Sci. Eng. 2024, 12, 1934–1968. [Google Scholar] [CrossRef]
- Liu, W.; Liu, C.; Gogoi, P.; Deng, Y. Overview of biomass conversion to electricity and hydrogen and recent developments in low-temperature electrochemical approaches. Engineering 2020, 6, 1351–1363. [Google Scholar] [CrossRef]
- Dincer, I.; Acar, C. Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrogen Energy 2015, 40, 11094–11111. [Google Scholar] [CrossRef]
- Magdziarz, A.; Wilk, M. Thermogravimetric study of biomass, sewage sludge and coal combustion. Energy Convers. Manag. 2013, 75, 425–430. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, Q.; Yu, D. The future of hydrogen energy: Bio-hydrogen production technology. Int. J. Hydrogen Energy 2022, 47, 33677–33698. [Google Scholar] [CrossRef]
- Uchida, H. Clean energy/fuel cells. Jpn. J. Appl. Phys. 2021, 60, 090501. [Google Scholar]
- Napoli, R.; Gandiglio, M.; Lanzini, A.; Santarelli, M. Techno-economic analysis of PEMFC and SOFC Micro-CHP fuel cell systems for the residential sector. Energy Build. 2015, 103, 131–146. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, K.S.; Mishler, J.; Cho, S.C.; Adroher, X.C. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl. Energy 2011, 88, 981–1007. [Google Scholar] [CrossRef]
- Hwang, J.J.; Chang, W.R. Life-Cycle Analysis of Greenhouse Gas Emission and Energy Efficiency of Hydrogen Fuel Cell Scooters. Int. J. Hydrogen Energy 2010, 35, 11947–11956. [Google Scholar] [CrossRef]
- Hosobuchi, E.; Misaki, C.; Katayama, N.; Long, Y.; Dowaki, K. Environmental impacts of fuel cell assisted bicycles in a sharing scheme. J. Jpn. Inst. Energy 2020, 99, 230–235. [Google Scholar] [CrossRef]
- Shen, Z.; Liu, S.; Zhu, W.; Ren, D.; Xu, Q.; Feng, Y. A review on key technologies and developments of hydrogen fuel cell multi-rotor drones. Energies 2024, 17, 4193. [Google Scholar] [CrossRef]
- Donateo, T. Simulation Approaches and validation issues for open-cathode fuel cell systems in manned and unmanned aerial vehicles. Energies 2024, 17, 900. [Google Scholar] [CrossRef]
- Lü, X.; Zhai, X.; Zhang, Y.; Zhu, C.; Qian, S. Energy management and distribution of fuel cell hybrid power system based on efficient and stable movement of mobile robot. Int. J. Hydrogen Energy 2024, 94, 1064–1083. [Google Scholar] [CrossRef]
- Benarfa, G.; Amamou, A.; Kelouwani, S.; Hébert, M.; Zeghmi, L.; Jemei, S. Online health-aware energy management strategy of a fuel cell hybrid autonomous mobile robot under startup–shutdown condition. Expert Syst. Appl. 2025, 266, 125943. [Google Scholar] [CrossRef]
- Yigit, T. Modelling and control of the PEMFC powered wheeled mobile robot. Int. J. Hydrogen Energy 2025, 143, 1154–1162. [Google Scholar] [CrossRef]
- Franco, A.; Giovannini, C. Hydrogen gas compression for efficient storage: Balancing energy and increasing density. Hydrogen 2024, 5, 293–311. [Google Scholar] [CrossRef]
- Ni, M. An Overview of hydrogen storage technologies. Energy Explor. Exploit. 2006, 24, 197–209. [Google Scholar] [CrossRef]
- Overview of the High-Pressure Gas Safety Act in Japan. Available online: https://www.khk.or.jp/english/overview_of_hpg_safety_act.html (accessed on 4 April 2025).
- Ministry of Economy, Trade and Industry. Operation and Interpretation of the High-Pressure Gas Safety Act and Related Ministerial Ordinances. Available online: https://laws.e-gov.go.jp/law/326AC0000000204/#Mp-Ch_1 (accessed on 23 June 2025).
- Klopčič, N.; Grimmer, I.; Winkler, F.; Sartory, M.; Trattner, A. A review on metal hydride materials for hydrogen storage. J. Energy Storage 2023, 72, 108456. [Google Scholar] [CrossRef]
- Nivedhitha, K.S.; Beena, T.; Banapurmath, N.R.; Umarfarooq, M.A.; Ramasamy, V.; Soudagar, M.E.M.; Ağbulut, Ü. Advances in hydrogen storage with metal hydrides: Mechanisms, materials, and challenges. Int. J. Hydrogen Energy 2024, 61, 1259–1273. [Google Scholar] [CrossRef]
- Li, J. Advancements in metal hydride materials for hydrogen storage. Highlights Sci. Eng. Technol. 2023, 58, 313–319. [Google Scholar] [CrossRef]
- Eberle, U.; Felderhoff, M.; Schüth, F. Chemical and physical solutions for hydrogen storage. Angew. Chem. Int. Ed. 2009, 48, 6608–6630. [Google Scholar] [CrossRef]
- Yang, F.S.; Wang, G.X.; Zhang, Z.X.; Meng, X.Y.; Rudolgh, V. Design of the metal hydride reactors—A review on the key technical issues. Int. J. Hydrogen Energy 2010, 35, 3832–3840. [Google Scholar] [CrossRef]
- Lototskyy, M.V.; Tolj, I.; Pickering, L.; Sita, C.; Barbir, F.; Yartys, V. The use of metal hydrides in fuel cell applications. Prog. Nat. Sci. Mater. 2017, 27, 3–20. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Shabani, B. Review of metal hydride hydrogen storage thermal management for use in the fuel cell systems. Int. J. Hydrogen Energy 2021, 46, 31699–31726. [Google Scholar] [CrossRef]
- Liu, J.; Yang, F.; Wu, Z.; Zhang, Z. A review of thermal coupling system of fuel cell-metal hydride tank: Classification, control strategies, and prospect in distributed energy system. Int. J. Hydrogen Energy 2024, 51, 274–289. [Google Scholar] [CrossRef]
- Raju, M.; Kumar, S. System simulation modeling and heat transfer in sodiumlanate based hydrogen storage systems. Int. J. Hydrogen Energy 2011, 36, 1578–1591. [Google Scholar] [CrossRef]
- Segawa, Y.; Endo, N.; Okumura, M.; Suzuki, Y.; Hayashi, R.; Kitagawa, H.; Yamane, T.; Shimoda, E. Development of a high-performance metal hydride tank with novel heat-medium/hydrogen flow paths for off-site hydrogen use in urban areas. Int. J. Hydrogen Energy 2025, 111, 848–858. [Google Scholar] [CrossRef]
- Hwang, J.J.; Chang, W.R. Characteristic study on fuel cell/battery hybrid power system on a light electric vehicle. J. Power Sources 2012, 207, 111–119. [Google Scholar] [CrossRef]
- Chung, C.A.; Yang, S.; Yang, C.; Hsu, C.; Chiu, P. Experimental study on the hydrogen charge and discharge rates of metal hydride tanks using heat pipes to enhance heat transfer. Appl. Energy 2013, 103, 581–587. [Google Scholar] [CrossRef]
- Chung, C.A.; Chen, Y.; Chen, Y.; Chen, Y.; Chang, M. CFD investigation on performance enhancement of metal hydride hydrogen storage vessels using heat pipes. Appl. Therm. Eng. 2015, 91, 434–446. [Google Scholar] [CrossRef]
- Wilson, P.R.; Bowman, R.C., Jr.; Mora, J.L.; Reiter, J.W. Operation of a PEM fuel cell with LaNi4.8Sn0.2 hydride beds. J. Alloys Compd. 2007, 446, 676–680. [Google Scholar] [CrossRef]
- MacDonald, B.D.; Rowe, A.M. A thermally coupled metal hydride hydrogen storage and fuel cell system. J. Power Sources 2006, 161, 346–355. [Google Scholar] [CrossRef]
- Davids, M.W.; Tolj, I.; Jao, T.; Lototskyy, M.; Pasupathi, S.; Site, C. Development of a portable polymer electrolyte membrane fuel cell system using metal hydride as the hydrogen storage medium. ECS Trans. 2016, 75, 553–562. [Google Scholar] [CrossRef]
- Andreasen, G.A.; Ramos, S.G.; Peretti, H.A.; Triaca, W.E. Performance of a thermally coupled hydrogen storage and fuel cell system under different operation conditions. J. Electrochem. Energy Convers. Storage 2016, 13, 021005. [Google Scholar] [CrossRef]
- Yamate, S.; Misaki, C.; Hara, D.; Long, Y.; Dowaki, K. Evaluation of biohydrogen energy density using hydrogen storage alloy P-40. In Proceedings of the 15th Biomass Science Conference, Koriyama, Japan, 11–13 December 2019; The Japan Institute of Energy: Tokyo, Japan, 2019. [Google Scholar] [CrossRef]
- Shimogawa, J.; Hara, D.; Miao, S.; Katayama, N.; Dowaki, K. Design and temperature analysis of a metal hydride cartridge using exhaust heat of a fuel cell for electric-assisted bicycles. J. Jpn. Inst. Energy 2022, 101, 152–161. [Google Scholar] [CrossRef]
- Askri, F.; Jemni, A.; Nasrallah, S.B. Prediction of transient heat and mass transfer in a closed metal–hydrogen reactor. Int. J. Hydrogen Energy 2004, 29, 195–208. [Google Scholar] [CrossRef]
- Hara, D.; Shimogawa, J.; Katayama, N.; Dowaki, K. A suitable design of metal hydride cartridge for a fuel cell assisted bicycle in consideration of heat transfer performance. IOP Conf. Ser. Earth Environ. Sci. 2022, 1034, 012001. [Google Scholar] [CrossRef]
- Miao, S.; Ezawa, T.; Koya, H.; Harano, K.; Sumita, M.; Katayama, N.; Dowaki, K. Enhancing energy efficiency through combined PEMFC and MH systems and advanced exhaust management strategies. Int. J. Hydrogen Energy 2025, 144, 992–1000. [Google Scholar] [CrossRef]
- Askri, F.; Ben Salah, M.; Jemni, A.; Ben Nasrallah, S. Optimization of hydrogen storage in metal-hydride tanks. Int. J. Hydrogen Energy 2009, 34, 897–905. [Google Scholar] [CrossRef]
- Yu, C.; Xue, X.; Shi, K.; Shao, M.; Liu, Y. Comparative study on CFD turbulence models for the flow field in air cooled radiator. Processes 2020, 8, 1687. [Google Scholar] [CrossRef]
- Yu, C.; Qin, S.; Chai, B.; Huang, S.; Liu, Y. The Effect of Compressible Flow on Heat Transfer Performance of Heat Exchanger by Computational Fluid Dynamics (CFD) Simulation. Entropy 2019, 21, 829. [Google Scholar] [CrossRef]
- Guan, Y.; Cui, H.; Fei, J. Study on optimization of copper to aluminum for locomotive finned tube radiator. Energies 2023, 16, 2130. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Effective heat conductivity [W/m K] | 1.32 |
Specific heat [J/kg K] | 419 |
Density [kg/m3] | 8175 |
Parameter | Value |
---|---|
Reference pressure, | 1000 Pa |
Desorption plateau pressure coefficient, | 18.3 |
Plateau pressure coefficient, | 3704.6 K |
a phase coefficient, | 0.0819 |
b phase coefficient, | 330 K |
b phase coefficient in desorption, | 0.7522 |
Items | Condition |
---|---|
Calculation software | ANSYS Fluent 2025R1 |
Calculation method | Steady state |
Governing equations | Conservation of energy Continuity equation Conservation of momentum equation |
Turbulence model | |
Convergence conditions |
Velocity, continuity, k and
criteria for residual: 1 × 10−3 Energy: 1 × 10−6 Iteration: 1000 times |
Fluid gas | Air |
Boundary conditions | Inlet: 1.0 m/s, 40 °C Outlet: total pressure 0 PaG Wall boundary condition: non-slip |
Parameter | Value |
---|---|
Thermal conductivity, [W/m·K] | 0.027076 |
Density, [kg/m3] | 1.1275 |
Specific heat, [J/kg·K] | 1006.9 |
Dynamic viscosity, [kg/m·s] | 1.9150 × 10−5 |
Type | Max Heat Flux [W/m2] | Min Heat Flux [W/m2] |
---|---|---|
A | 1067 (#7) | 210 (#2) |
B | 1128 (#7) | 852 (#8) |
C | 1067 (#7) | 867 (#3) |
D | 1055 (#6) | 235 (#5) |
Analysis Point | [m/s] | [°C] | ||
---|---|---|---|---|
#1 | 27.4 | 1.23 | 29.1 | 1530 |
#2 | 32.7 | 1.48 | 30.3 | 1860 |
#3 | 27.3 | 1.24 | 28.9 | 1560 |
#4 | 31.1 | 1.30 | 30.5 | 1630 |
#5 | 33.6 | 1.58 | 31.8 | 1980 |
#6 | 32.2 | 1.46 | 30.5 | 1820 |
#7 | 33.6 | 1.53 | 31.5 | 1920 |
#8 | 30.9 | 1.33 | 29.6 | 1660 |
Analysis Point | Nu (CFD) | Nu (Estimated) | Relative Error [%] |
---|---|---|---|
#1 | 27.4 | 28.1 | 2.4 |
#2 | 32.7 | 32.7 | 0.0 |
#3 | 27.3 | 28.4 | 4.2 |
#4 | 31.1 | 29.5 | −5.2 |
#5 | 33.6 | 34.4 | 2.2 |
#6 | 32.2 | 32.2 | 0.1 |
#7 | 33.6 | 33.6 | −0.2 |
#8 | 30.9 | 29.9 | −3.2 |
Analysis Point | Surface Temp. of Tank [℃] |
---|---|
#1 | 15.03 |
#2 | 15.05 |
#3 | 15.06 |
#4 | 15.08 |
#5 | 15.10 |
#6 | 15.11 |
#7 | 15.10 |
#8 | 15.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ezawa, T.; Miao, S.; Harano, K.; Sumita, M.; Katayama, N.; Dowaki, K. Design of a Metal Hydride Cartridge Heated by PEMFC Exhaust. Energies 2025, 18, 3399. https://doi.org/10.3390/en18133399
Ezawa T, Miao S, Harano K, Sumita M, Katayama N, Dowaki K. Design of a Metal Hydride Cartridge Heated by PEMFC Exhaust. Energies. 2025; 18(13):3399. https://doi.org/10.3390/en18133399
Chicago/Turabian StyleEzawa, Tomoya, Shan Miao, Koki Harano, Masami Sumita, Noboru Katayama, and Kiyoshi Dowaki. 2025. "Design of a Metal Hydride Cartridge Heated by PEMFC Exhaust" Energies 18, no. 13: 3399. https://doi.org/10.3390/en18133399
APA StyleEzawa, T., Miao, S., Harano, K., Sumita, M., Katayama, N., & Dowaki, K. (2025). Design of a Metal Hydride Cartridge Heated by PEMFC Exhaust. Energies, 18(13), 3399. https://doi.org/10.3390/en18133399