Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (161)

Search Parameters:
Keywords = hydrogen production from PV

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 5114 KB  
Article
Optimal Sizing of Electrical and Hydrogen Generation Feeding Electrical and Thermal Load in an Isolated Village in Egypt Using Different Optimization Technique
by Mohammed Sayed, Mohamed A. Nayel, Mohamed Abdelrahem and Alaa Farah
Energies 2026, 19(2), 452; https://doi.org/10.3390/en19020452 - 16 Jan 2026
Viewed by 120
Abstract
This paper analyzes the functional feasibility and strategic value of hybrid hydrogen storage and photovoltaic (PV) energy systems at isolated areas, specifically at Egypt’s Shalateen station. The paper is significant as it formulates a solution to the energy independence coupled with economic feasibility [...] Read more.
This paper analyzes the functional feasibility and strategic value of hybrid hydrogen storage and photovoltaic (PV) energy systems at isolated areas, specifically at Egypt’s Shalateen station. The paper is significant as it formulates a solution to the energy independence coupled with economic feasibility issue in regions where the basic energy infrastructure is non-existent or limited. Through the integration of a portfolio of advanced optimization algorithms—Differential Evolution (DE), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), Multi-Objective Genetic Algorithm (MOGA), Pattern Search, Sequential Quadratic Programming (SQP), and Simulated Annealing—the paper evaluates the performance of two scenarios. The first evaluates the PV system in the absence of hydrogen production to demonstrate how system parameters are optimized by Pattern Search and PSO to achieve a minimum Cost of Energy (COE) of 0.544 USD/kWh. The second extends the system to include hydrogen production, which becomes important to ensure energy continuity during solar irradiation-free months like those during winter months. In this scenario, the same methods of optimization enhance the COE to 0.317 USD/kWh, signifying the economic value of integrating hydrogen storage. The findings underscore the central role played by hybrid renewable energy systems in ensuring high resilience and sustainability of supplies in far-flung districts, where continued enhancement by means of optimization is needed to realize maximum environmental and technological gains. The paper offers a futuristic model towards sustainable, dependable energy solutions key to the energy independence of the future in such challenging environments. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

35 pages, 8721 KB  
Article
Optimal Hybrid Energy System Sizing for Green Hydrogen Production: Scenario-Based Techno-Economic Approach
by Ahmad Abuyahya, Eyad A. Feilat and Anas Abuzayed
Hydrogen 2026, 7(1), 12; https://doi.org/10.3390/hydrogen7010012 - 16 Jan 2026
Viewed by 194
Abstract
This study presents a comprehensive techno-economic assessment to optimize a hybrid renewable energy system for green hydrogen production in Jordan. Using the Hybrid Optimization Model for Electric Renewables (HOMERs) and System Advisor Model (SAM) software, this study evaluates multiple cost projections for 2030 [...] Read more.
This study presents a comprehensive techno-economic assessment to optimize a hybrid renewable energy system for green hydrogen production in Jordan. Using the Hybrid Optimization Model for Electric Renewables (HOMERs) and System Advisor Model (SAM) software, this study evaluates multiple cost projections for 2030 technology costs. Key parameters such as capital cost, efficiency, and lifetime are varied extensively. Highlighted results show a wide range in the Levelized Cost of Hydrogen (LCOH), reaching 1.59 to 3.49 USD/kg, and the Levelized Cost of Energy (LCOE) from 0.0072 to 0.0301 USD/kWh. Furthermore, Net Present Value (NPV) spans from USD 424 to 927 million, depending on the scenario and sensitivity case. Technically, the system’s optimized capacities vary significantly. PV ranges from 203 to 457 MW, wind capacities range from 0 to 220 MW, and electrolyzers range from 192 to 346 MW, demonstrating the flexibility required to meet different cost and performance assumptions. The study’s broad relevance extends to developing countries with grid constraints, where off-grid green hydrogen production is feasible. Its framework can be adapted globally, offering valuable insights. Full article
(This article belongs to the Special Issue Green and Low-Emission Hydrogen: Pathways to a Sustainable Future)
Show Figures

Figure 1

22 pages, 3747 KB  
Article
Integrated Triple-Diode Modeling and Hydrogen Turbine Power for Green Hydrogen Production
by Abdullah Alrasheedi, Mousa Marzband and Abdullah Abusorrah
Energies 2026, 19(2), 435; https://doi.org/10.3390/en19020435 - 15 Jan 2026
Viewed by 162
Abstract
The study establishes a comprehensive mathematical modeling framework for solar-driven hydrogen production by integrating a triple-diode photovoltaic (PV) model, an alkaline electrolyzer, and a hydrogen turbine (H2T), subsequently using hybrid power utilization to optimize hydrogen output. The Triple-Diode Model (TDM) accurately [...] Read more.
The study establishes a comprehensive mathematical modeling framework for solar-driven hydrogen production by integrating a triple-diode photovoltaic (PV) model, an alkaline electrolyzer, and a hydrogen turbine (H2T), subsequently using hybrid power utilization to optimize hydrogen output. The Triple-Diode Model (TDM) accurately reproduces the electrical performance of a 144-cell photovoltaic module under standard test conditions (STC), enabling precise calculations of hourly maximum power point outputs based on real-world conditions of global horizontal irradiance and ambient temperature. The photovoltaic system produced 1.07 MWh during the summer months (May to September 2025), which was sent straight to the alkaline electrolyzer. The electrolyzer, using Specific Energy Consumption (SEC)-based formulations and Faraday’s law, produced 22.6 kg of green hydrogen and used around 203 L of water. The generated hydrogen was later utilized to power a hydrogen turbine (H2T), producing 414.6 kWh, which was then integrated with photovoltaic power to create a hybrid renewable energy source. This hybrid design increased hydrogen production to 31.4 kg, indicating a substantial improvement in renewable hydrogen output. All photovoltaic, electrolyzer, and turbine models were integrated into a cohesive MATLAB R2024b framework, allowing for an exhaustive depiction of system dynamics. The findings validate that the amalgamation of H2T with photovoltaic-driven electrolysis may significantly improve both renewable energy and hydrogen production. This research aligns with Saudi Vision 2030 and global clean-energy initiatives, including the Paris Agreement, to tackle climate change and its negative impacts. An integrated green hydrogen system, informed by this study’s findings, could significantly improve energy sustainability, strengthen production reliability, and augment hydrogen output, fully aligning with economical, technical, and environmental objectives. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production in Renewable Energy Systems)
Show Figures

Figure 1

23 pages, 3268 KB  
Article
Unit Sizing and Feasibility Analysis of Green Hydrogen Storage Utilizing Excess Energy for Energy Islands
by Kemal Koca, Erkan Dursun, Eyüp Bekçi, Suat Uçar, Alper Nabi Akpolat, Maria Tsami, Teresa Simoes, Luana Tesch, Ahmet Aksöz and Ruben Paul Borg
Electronics 2026, 15(2), 362; https://doi.org/10.3390/electronics15020362 - 14 Jan 2026
Viewed by 390
Abstract
This study examines whether green hydrogen production using combined wind and solar energy on Marmara Island can meet the island’s electricity demand and fuel the fuel needs of a hydrogen-powered ferry. A hybrid system consisting of a 10 MW wind farm, a 3 [...] Read more.
This study examines whether green hydrogen production using combined wind and solar energy on Marmara Island can meet the island’s electricity demand and fuel the fuel needs of a hydrogen-powered ferry. A hybrid system consisting of a 10 MW wind farm, a 3 MW solar PV system, and a PEM electrolyzer sized to meet the island’s hydrogen demand was modeled for the island, located in the southwestern Sea of Marmara. The hydrogen production potential, energy flows, and techno-economic performance were evaluated using HOMER-Pro 3.18.4 version. According to the simulation results, the hybrid system generates approximately 62.6 GWh of electricity annually, achieving an 82.8% renewable energy share. A significant portion of the produced energy is transferred to the electrolyzer, producing approximately 729 tons of green hydrogen annually. The economic analysis demonstrates that the system is financially viable, with a net present cost of USD 61.53 million and a levelized energy cost of USD 0.175/kWh. Additionally, the design has the potential to reduce approximately 2637 tons of CO2 emissions over a 25-year period. The results demonstrate that integrating renewable energy sources with hydrogen production can provide a cost-effective and low-carbon solution for isolated communities such as islands, strengthening energy independence and supporting sustainable transportation options. It has been demonstrated that hydrogen produced by PEM electrolyzers powered by excess energy from the hybrid system could provide a reliable fuel source for hydrogen-fueled ferries operating between Marmara Island and the mainland. Overall, the findings indicate that pairing renewable energy generation with hydrogen production offers a realistic pathway for islands seeking cleaner transportation options and greater energy independence. Full article
(This article belongs to the Special Issue Energy Saving Management Systems: Challenges and Applications)
Show Figures

Graphical abstract

41 pages, 6791 KB  
Article
Integrated Biogas–Hydrogen–PV–Energy Storage–Gas Turbine System: A Pathway to Sustainable and Efficient Power Generation
by Artur Harutyunyan, Krzysztof Badyda and Łukasz Szablowski
Energies 2026, 19(2), 387; https://doi.org/10.3390/en19020387 - 13 Jan 2026
Viewed by 285
Abstract
The increasing penetration of variable renewable energy sources intensifies grid imbalance and challenges the reliability of small-scale power systems. This study addresses these challenges by developing and analyzing a fully integrated hybrid energy system that combines biogas upgrading to biomethane, photovoltaic (PV) generation, [...] Read more.
The increasing penetration of variable renewable energy sources intensifies grid imbalance and challenges the reliability of small-scale power systems. This study addresses these challenges by developing and analyzing a fully integrated hybrid energy system that combines biogas upgrading to biomethane, photovoltaic (PV) generation, hydrogen production via alkaline electrolysis, hydrogen storage, and a gas-steam combined cycle (CCGT). The system is designed to supply uninterrupted electricity to a small municipality of approximately 4500 inhabitants under predominantly self-sufficient operating conditions. The methodology integrates high-resolution, full-year electricity demand and solar resource data with detailed process-based simulations performed using Aspen Plus, Aspen HYSYS, and PVGIS-SARAH3 meteorological inputs. Surplus PV electricity is converted into hydrogen and stored, while upgraded biomethane provides dispatchable backup during periods of low solar availability. The gas-steam combined cycle enables flexible and efficient electricity generation, with hydrogen blending supporting dynamic turbine operation and further reducing fossil fuel dependency. The results indicate that a 10 MW PV installation coupled with a 2.9 MW CCGT unit and a hydrogen storage capacity of 550 kg is sufficient to ensure year-round power balance. During winter months, system operation is sustained entirely by biomethane, while in high-solar periods hydrogen production and storage enhance operational flexibility. Compared to a conventional grid-based electricity supply, the proposed system enables near-complete elimination of operational CO2 emissions, achieving an annual reduction of approximately 8800 tCO2, corresponding to a reduction of about 93%. The key novelty of this work lies in the simultaneous and process-level integration of biogas, hydrogen, photovoltaic generation, energy storage, and a gas-steam combined cycle within a single operational framework, an approach that has not been comprehensively addressed in the recent literature. The findings demonstrate that such integrated hybrid systems can provide dispatchable, low-carbon electricity for small communities, offering a scalable pathway toward resilient and decentralized energy systems. Full article
(This article belongs to the Special Issue Transitioning to Green Energy: The Role of Hydrogen)
Show Figures

Figure 1

23 pages, 673 KB  
Article
Advanced Energy Collection and Storage Systems: Socio-Economic Benefits and Environmental Effects in the Context of Energy System Transformation
by Alina Yakymchuk, Bogusława Baran-Zgłobicka and Russell Matia Woruba
Energies 2026, 19(2), 309; https://doi.org/10.3390/en19020309 - 7 Jan 2026
Viewed by 552
Abstract
The rapid advancement of energy collection and storage systems (ECSSs) is fundamentally reshaping global energy markets and accelerating the transition toward low-carbon energy systems. This study provides a comprehensive assessment of the economic benefits and systemic effects of advanced ECSS technologies, including photovoltaic-thermal [...] Read more.
The rapid advancement of energy collection and storage systems (ECSSs) is fundamentally reshaping global energy markets and accelerating the transition toward low-carbon energy systems. This study provides a comprehensive assessment of the economic benefits and systemic effects of advanced ECSS technologies, including photovoltaic-thermal (PV/T) hybrid systems, advanced batteries, hydrogen-based storage, and thermal energy storage (TES). Through a mixed-methods approach combining techno-economic analysis, macroeconomic modeling, and policy review, we evaluate the cost trajectories, performance indicators, and deployment impacts of these technologies across major economies. The paper also introduces a novel economic-mathematical model to quantify the long-term macroeconomic benefits of large-scale ECSS deployment, including GDP growth, job creation, and import substitution effects. Our results indicate significant cost reductions for ECSS by 2050, with battery storage costs projected to fall below USD 50 per kilowatt-hour (kWh) and green hydrogen production reaching as low as USD 1.2 per kilogram. Large-scale ECSS deployment was found to reduce electricity costs by up to 12%, lower fossil fuel imports by up to 25%, and generate substantial GDP growth and job creation, particularly in regions with supportive policy frameworks. Comparative cross-country analysis highlighted regional differences in economic effects, with the European Union, China, and the United States demonstrating the highest economic gains from ECSS adoption. The study also identified key challenges, including high capital costs, material supply risks, and regulatory barriers, emphasizing the need for integrated policies to accelerate ECSS deployment. These findings provide valuable insights for policymakers, industry stakeholders, and researchers aiming to design effective strategies for enhancing energy security, economic resilience, and environmental sustainability through advanced energy storage technologies. Full article
(This article belongs to the Special Issue Energy Economics and Management, Energy Efficiency, Renewable Energy)
Show Figures

Figure 1

17 pages, 733 KB  
Article
Hydrogen Production Using MOF-Enhanced Electrolyzers Powered by Renewable Energy: Techno-Economic and Environmental Assessment Pathways for Uzbekistan
by Wagd Ajeeb
Hydrogen 2026, 7(1), 7; https://doi.org/10.3390/hydrogen7010007 - 4 Jan 2026
Viewed by 531
Abstract
Decarbonizing industry, improving urban sustainability, and expanding clean energy use are key global priorities. This study presents a techno-economic analysis (TEA) and life-cycle assessment (LCA) of green hydrogen (GH2) production via water electrolysis for low-carbon applications in the Central Asian region, [...] Read more.
Decarbonizing industry, improving urban sustainability, and expanding clean energy use are key global priorities. This study presents a techno-economic analysis (TEA) and life-cycle assessment (LCA) of green hydrogen (GH2) production via water electrolysis for low-carbon applications in the Central Asian region, with Uzbekistan considered as a representative case study. Solar PV and wind power are used as renewable electricity sources for a 44 MW electrolyzer. The assessment also incorporates recent advances in alkaline water electrolyzers (AWE) enhanced with metal–organic framework (MOF) materials, reflecting improvements in efficiency and hydrogen output. The LCA, performed using SimaPro, evaluates the global warming potential (GWP) across the full hydrogen production chain. Results show that the MOF-enhanced AWE system achieves a lower levelized cost of hydrogen (LCOH) at 5.18 $/kg H2, compared with 5.90 $/kg H2 for conventional AWE, with electricity procurement remaining the dominant cost driver. Environmentally, green hydrogen pathways reduce GWP by 80–83% relative to steam methane reforming (SMR), with AWE–MOF delivering the lowest footprint at 1.97 kg CO2/kg H2. In transport applications, fuel cell vehicles powered by hydrogen derived from AWE–MOF emit 89% less CO2 per 100 km than diesel vehicles and 83% less than using SMR-based hydrogen, demonstrating the substantial climate benefits of advanced electrolysis. Overall, the findings confirm that MOF-integrated AWE offers a strong balance of economic viability and environmental performance. The study highlights green hydrogen’s strategic role in the Central Asian region, represented by Uzbekistan’s energy transition, and provides evidence-based insights for guiding low-carbon hydrogen deployment. Full article
(This article belongs to the Special Issue Green and Low-Emission Hydrogen: Pathways to a Sustainable Future)
Show Figures

Graphical abstract

32 pages, 2680 KB  
Review
A Review of Multi-Port Converter Architecture in Hydrogen-Based DC Microgrid
by Qiyan Wang, Kosala Gunawardane and Li Li
Energies 2025, 18(24), 6487; https://doi.org/10.3390/en18246487 - 11 Dec 2025
Viewed by 576
Abstract
With the rapid advancement of hydrogen-based direct current microgrid (H2-DCMG) technology, multi-port converters (MPCs) have emerged as the pivotal interface for integrating renewable power generation, energy storage, and diverse DC loads. This paper systematically reviews the current research status and development [...] Read more.
With the rapid advancement of hydrogen-based direct current microgrid (H2-DCMG) technology, multi-port converters (MPCs) have emerged as the pivotal interface for integrating renewable power generation, energy storage, and diverse DC loads. This paper systematically reviews the current research status and development trends of isolated and non-isolated MPC topologies within hydrogen-based DC microgrids. Firstly, it analyses the interface requirements for typical distributed energy sources (DER) such as photovoltaics (PV), wind turbines (WT), fuel cells (FC), battery energy storage (BESS), proton exchange membrane electrolyzers (PEMEL), and supercapacitors (SC). Secondly, it classifies and evaluates existing MPC topologies, clarifying the structural characteristics, technical advantages, and challenges faced by each type. Results indicate that non-isolated topologies offer advantages such as structural simplicity, high efficiency, and high power density, making them more suitable for residential and small-scale microgrid applications. Isolated topologies, conversely, provide electrical isolation and modular scalability, rendering them appropriate for high-voltage electrolytic hydrogen production and industrial scenarios with stringent safety requirements. Finally, the paper identifies current research gaps and proposes that future efforts should focus on exploring topology optimization, system integration design, and reliability enhancement. Full article
(This article belongs to the Special Issue Novel and Emerging Energy Systems)
Show Figures

Figure 1

22 pages, 6006 KB  
Article
Optimal Electrolyzer Placement Strategy via Probabilistic Voltage Stability Assessment in Renewable-Integrated Distribution Systems
by Hyeon Woo, Yeunggurl Yoon, Xuehan Zhang, Jintae Cho and Sungyun Choi
Sustainability 2025, 17(24), 11027; https://doi.org/10.3390/su172411027 - 9 Dec 2025
Viewed by 320
Abstract
Stable operating conditions in electrolyzers are crucial for preserving system durability, ensuring highly pure hydrogen production, and enabling the sustainable utilization of surplus renewable electricity. However, in active distribution networks, the output uncertainty of distributed energy resources, such as renewable energy sources (RES) [...] Read more.
Stable operating conditions in electrolyzers are crucial for preserving system durability, ensuring highly pure hydrogen production, and enabling the sustainable utilization of surplus renewable electricity. However, in active distribution networks, the output uncertainty of distributed energy resources, such as renewable energy sources (RES) on the generation side and load demand side, can lead to voltage fluctuations that threaten the operational stability of electrolyzers and limit their contribution to a low-carbon energy transition. This paper proposes a novel framework for optimal electrolyzer placement, tailored to their operational requirements and to the planning of sustainable renewable-integrated distribution systems. First, probabilistic scenario generation is carried out for RES and load to capture the characteristics of their inherent uncertainties. Second, based on these scenarios, continuous power-flow-based P–V (power–voltage) curve analysis is conducted to evaluate voltage stability and identify the loadability and load margin for each bus. Finally, the optimal siting of electrolyzers is determined by analyzing the load margins obtained from the voltage stability assessment and deriving a probabilistic electrolyzer hosting capacity. A case study under various uncertainty scenarios examines how applying this method influences the ability to maintain acceptable voltage levels at each bus in the grid. The results indicate that the method can significantly improve the likelihood of stable electrolyzer operation, support the reliable integration of green hydrogen production into distribution networks, and contribute to the sustainable planning of other voltage-sensitive equipment. Full article
(This article belongs to the Special Issue Sustainable Energy: Addressing Issues Related to Renewable Energy)
Show Figures

Figure 1

23 pages, 7258 KB  
Article
Optimal Grid-Forming Strategy for a Remote Hydrogen Production System Supplied by Wind and Solar Power Through MMC-HVDC Link
by Wujie Chao, Junwei Huang, Zhibo Zhang, Changgeng Tian, Liyu Dai, Jinke Wang and Xinyi Lin
Electronics 2025, 14(24), 4824; https://doi.org/10.3390/electronics14244824 - 8 Dec 2025
Viewed by 419
Abstract
Large-scale renewable power supply system design for remote hydrogen production is a challenging task due to the 100% power electronics sending-end subsystem. The proper grid-forming strategy for a sending-end system to achieve large-scale remote hydrogen production still remains a research gap. This study [...] Read more.
Large-scale renewable power supply system design for remote hydrogen production is a challenging task due to the 100% power electronics sending-end subsystem. The proper grid-forming strategy for a sending-end system to achieve large-scale remote hydrogen production still remains a research gap. This study first designs two grid-forming strategies for the concerned renewable power supply system, with one being based on virtual synchronous generator (VSG) and another one being based on V/f control. Then, the impedance analysis is carried out for ensuring the small-signal stable operation of the sending-end system including wind power plant and PV plant. Numerical simulation results implemented on PSCAD verify that the VSG-based grid-forming strategy configured on the sending-end modular multilevel converter (MMC) station of the MMC-based high-voltage direct-current (HVDC) link has a larger transient stability margin. Hence, the MMC-HVDC-based grid-forming strategy is a better choice for the power supply of large-scale remote hydrogen production. The enhanced stability margin ensures more robust operation under disturbances, which is critical for maintaining continuous power supply to large-scale electrolyzers. Full article
Show Figures

Figure 1

18 pages, 894 KB  
Article
Simulation and Validation of Green Hydrogen for the Production of Renewable Diesel: Case Study in La Guajira, Colombia
by Adriana Lagos Herrera, Jose Herrera Arroyave, Dario Serrano-Florez and Marlon Bastidas-Barranco
Processes 2025, 13(12), 3913; https://doi.org/10.3390/pr13123913 - 3 Dec 2025
Viewed by 495
Abstract
This study validates green hydrogen (H2) production from a 15 kWe wind–solar PV microplant under real operating conditions and quantifies the renewable diesel (RD) potential from oil hydroprocessing (with palm oil as the base case) via detailed stoichiometric balances. The [...] Read more.
This study validates green hydrogen (H2) production from a 15 kWe wind–solar PV microplant under real operating conditions and quantifies the renewable diesel (RD) potential from oil hydroprocessing (with palm oil as the base case) via detailed stoichiometric balances. The electric output feeding two electrolyzers was monitored for six months (December 2024–May 2025). Three H2 production models were calibrated against the experimental results; the model with the best fit achieved R2 = 0.9848 and MSE = 130.05. Using the estimated H2 production, monthly balances were established for palm oil TAGs (POP, POO, POL, PLP, and SOS) across various deoxygenation routes—namely decarboxylation (DCX), decarbonylation (DCN), and hydrodeoxygenation (HDO)—with coproduct closure (propane, CO2/CO/H2O). The hybrid plant operated above the electrolyzers’ 2.88 kWe minimum, raising the effective H2 output (which peaked in February–March) and, thereby, the RD potential. The specific H2 demand followed the gradient of HDO > DCN > DCX; for POP, the global demand was 0.30 kg (saturation) + 1.20 kg (cracking) + 2.10 kg (DCN) or 2.55 kg (HDO), highlighting the carbon–hydrogen trade-off. The results indicate that green-H2–HDO integration is technically feasible and scalable in La Guajira; the choice of route (DCX/DCN vs. HDO) should align with local renewable availability to either maximize the liters of RD per kg H2 or conserve carbon. Full article
(This article belongs to the Special Issue Biofuels Production Processes)
Show Figures

Figure 1

21 pages, 3351 KB  
Article
Optimizing Standalone Wind–Solar–Hydrogen Systems: Synergistic Integration of Hybrid Renewables and Multi-Electrolyzer Coordination for Enhanced Green Hydrogen Production
by Wenhua Zhang, Mingtao Li and Qingyun Chen
Processes 2025, 13(12), 3801; https://doi.org/10.3390/pr13123801 - 25 Nov 2025
Viewed by 608
Abstract
To achieve optimal performance of renewable hydrogen production systems (RHPS), this study proposes a novel optimization framework for synergistically integrating wind–solar resources with diversified electrolyzers. A comprehensive techno-economic model is developed, incorporating both alkaline electrolyzers (AEL) and proton exchange membrane electrolyzers (PEMEL), and [...] Read more.
To achieve optimal performance of renewable hydrogen production systems (RHPS), this study proposes a novel optimization framework for synergistically integrating wind–solar resources with diversified electrolyzers. A comprehensive techno-economic model is developed, incorporating both alkaline electrolyzers (AEL) and proton exchange membrane electrolyzers (PEMEL), and enabling the determination of the optimal wind–solar configuration ratio, electrolyzer types and capacities, and system-level economic performance. The results reveal that the nature of the renewable energy source predominantly influences the selection of electrolyzers. Specifically, pure photovoltaic (PV) systems tend to favor PEMEL, with an optimal PEMEL:AEL capacity ratio of 2:1, whereas pure wind turbine (WT) systems and PV–WT hybrid systems are more suited to AEL, with corresponding AEL:PEMEL ratios of 8:3 and 7:3, respectively. The combined operation of wind–solar complementarity and diversified electrolyzers reduces the levelized cost of hydrogen (LCOH) to USD 4.52/kg, representing a 41.1% reduction compared to standalone PV systems, with a renewable energy utilization rate of 92.26%. Case studies confirm that collaborative AEL–PEMEL operation enhances system stability and efficiency, with PEMEL mitigating power fluctuations and AEL supplying baseload hydrogen production. This synergy improves hydrogen production efficiency, extends equipment lifespan, and provides a viable and theoretically sound solution for RHPS optimization. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Graphical abstract

30 pages, 2863 KB  
Article
2,4-Epibrassinolide Enhances Drought Tolerance in Prunella vulgaris by Improving Photosynthesis, Redox Homeostasis, and Secondary Metabolism
by Qingshan Chang, Yiming Sun, Hairui Yao, Biao Zhang, Lixia Zhang, Zi Wang, Qiaoming Zhang, Sudan Chen, Rongrong Liu, Wenxin Chang, Xiaohui Wang, Yiqi Zheng and Xiaogai Hou
Plants 2025, 14(23), 3587; https://doi.org/10.3390/plants14233587 - 25 Nov 2025
Viewed by 572
Abstract
As a species of significant traditional medicinal importance, Prunella vulgaris is severely limited by drought stress, given its high sensitivity to this environmental constraint. 24-epibrassinolide (EBR) has shown promise in enhancing plant stress resilience and secondary metabolite production, yet its efficacy in mitigating [...] Read more.
As a species of significant traditional medicinal importance, Prunella vulgaris is severely limited by drought stress, given its high sensitivity to this environmental constraint. 24-epibrassinolide (EBR) has shown promise in enhancing plant stress resilience and secondary metabolite production, yet its efficacy in mitigating drought effects on P. vulgaris requires further elucidation. In this study, foliar application of EBR (0, 0.01, 0.05, 0.1, 0.2 μmol·L−1) was applied to drought-stressed P. vulgaris seedlings (maintained at 60% ± 5% field capacity, FC, for 20 days during the flowering stage; control at 75% ± 5% FC). The results showed that drought inhibited the growth and development of P. vulgaris. Compared with the control group, malondialdehyde, hydrogen peroxide, and superoxide anion increased by 77.82%, 27.47%, and 44.95%, respectively. The total chlorophyll content and the coordination between photosystem I and photosystem II decreased by 42.33% and 46.62%, respectively. Additionally, the net photosynthetic rate and biomass of P. vulgaris significantly decreased by 45.12% and 34.66%, respectively. In contrast, the 0.1 μmol·L−1 EBR significantly enhanced the antioxidant and osmoregulation systems. Compared with drought stress treatment, the activities of SOD, POD, CAT, APX and GPX increased by 10.78%, 45.86%, 48.44%, 40.58% and 63.37%, respectively; soluble sugar, soluble protein and proline contents increased by 53.38%, 29.09% and 45.95%, respectively; and malondialdehyde, hydrogen peroxide and superoxide anion levels decreased by 28.37%, 15.77% and 25.73%, respectively. Total chlorophyll content, photosystem coordination and net photosynthetic rate increased by 55.68%, 43.08% and 45.88%, respectively, along with a significant 42.23% increase in total biomass. Furthermore, EBR upregulated the transcription levels of key phenylpropanoid pathway genes and elevated secondary metabolite contents. The expression of Pv4CL, PvC4H, PvPAL and PvTAT increased by 26.97%, 90.42%, 35.52% and 84.35%, respectively. Accordingly, total phenolic content, caffeic acid, ferulic acid, rosmarinic acid and hyperoside increased by 36.44%, 121.01%, 100.27%, 72.38% and 80.77%, respectively. Lower EBR concentrations (0.01 μmol·L−1) had no significant effect on most indices, while 0.2 μmol L−1 EBR showed weakened effects. In summary, under 60% ± 5% field capacity (FC) drought, 2,4-epibrassinolide (EBR) enhances drought adaptation, medicinal yield, and quality of P. vulgaris, with 0.1 μmol L−1 EBR as the optimal concentration. This improvement is driven by enhanced antioxidant capacity, optimized photosynthesis, promoted root–shoot growth, and activated biosynthesis of medicinal compounds. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

29 pages, 2670 KB  
Article
Modelling Solar Intermittency Effects on PEM Electrolyser Performance & Degradation: A Comparison of Oman and UK
by Mohamed Al-Mandhari and Aritra Ghosh
Energies 2025, 18(23), 6131; https://doi.org/10.3390/en18236131 - 23 Nov 2025
Cited by 1 | Viewed by 676
Abstract
The durability of Proton Exchange Membrane Water Electrolysers (PEMWEs) under intermittent renewable power is a critical challenge for scaling green hydrogen. This study investigates the influence of solar intermittency on PEMWE performance and degradation in direct-coupled photovoltaic (PV) systems by comparing two contrasting [...] Read more.
The durability of Proton Exchange Membrane Water Electrolysers (PEMWEs) under intermittent renewable power is a critical challenge for scaling green hydrogen. This study investigates the influence of solar intermittency on PEMWE performance and degradation in direct-coupled photovoltaic (PV) systems by comparing two contrasting climates: Muscat, Oman (hot-arid, high irradiance) and Brighton, UK (temperate, variable irradiance). A validated physics-based model, incorporating reversible, activation, ohmic, and concentration overpotentials along with empirical degradation laws for catalyst decay, membrane thinning, and interfacial resistance growth, was applied to hourly PV-generation data. The results indicate that Muscat’s high irradiance (985 MWh year−1) produced nearly double Brighton’s hydrogen yield (14,018 kg vs. 7566 kg) and longer operational hours (3269 h vs. 2244 h), but at the cost of accelerated degradation (359.8 μV h−1 vs. 231.4 μV h−1). In contrast, Brighton’s cooler and more humid climate preserved efficiency (65.8% vs. 59.8%) and reduced degradation, although higher daily cycling and seasonal variability constrained total output. The findings reveal a climate-dependent trade-off: hot, stable regions maximise hydrogen productivity at the expense of lifespan, whereas variable, cooler climates extend durability but limit yield. By explicitly linking intermittency to performance and ageing, this work provides a location-specific assessment of PEMWE feasibility, supporting design and operation strategies for renewable hydrogen deployment. Full article
Show Figures

Figure 1

31 pages, 6989 KB  
Article
Feasibility and Sensitivity Analysis of an Off-Grid PV/Wind Hybrid Energy System Integrated with Green Hydrogen Production: A Case Study of Algeria
by Ayoub Boutaghane, Mounir Aksas, Djafar Chabane and Nadhir Lebaal
Hydrogen 2025, 6(4), 103; https://doi.org/10.3390/hydrogen6040103 - 6 Nov 2025
Cited by 1 | Viewed by 1022
Abstract
Algeria’s transition toward sustainable energy requires the exploitation of its abundant solar and wind resources for green hydrogen production. This study assesses the techno-economic feasibility of an off-grid PV/wind hybrid system integrated with a hydrogen subsystem (electrolyzer, fuel cell, and hydrogen storage) to [...] Read more.
Algeria’s transition toward sustainable energy requires the exploitation of its abundant solar and wind resources for green hydrogen production. This study assesses the techno-economic feasibility of an off-grid PV/wind hybrid system integrated with a hydrogen subsystem (electrolyzer, fuel cell, and hydrogen storage) to supply both electricity and hydrogen to decentralized sites in Algeria. Using HOMER Pro, five representative Algerian regions were analyzed, accounting for variations in solar irradiation, wind speed, and groundwater availability. A deferrable water-extraction and treatment load was incorporated to model the water requirements of the electrolyzer. In addition, a comprehensive sensitivity analysis was conducted on solar irradiation, wind speed, and the capital costs of PV panels and wind turbines to capture the effects of renewable resource and investment cost fluctuations. The results indicate significant regional variation, with the levelized cost of energy (LCOE) ranging from 0.514 to 0.868 $/kWh, the levelized cost of hydrogen (LCOH) between 8.31 and 12.4 $/kg, and the net present cost (NPC) between 10.28 M$ and 17.7 M$, demonstrating that all cost metrics are highly sensitive to these variations. Full article
Show Figures

Graphical abstract

Back to TopTop