Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,352)

Search Parameters:
Keywords = hydrogen demand

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 525 KB  
Review
Towards Carbon-Neutral Hydrogen: Integrating Methane Pyrolysis with Geothermal Energy
by Ayann Tiam, Marshall Watson and Talal Gamadi
Processes 2025, 13(10), 3195; https://doi.org/10.3390/pr13103195 - 8 Oct 2025
Abstract
Methane pyrolysis produces hydrogen (H2) with solid carbon black as a co-product, eliminating direct CO2 emissions and enabling a low-carbon supply when combined with renewable or low-carbon heat sources. In this study, we propose a hybrid geothermal pyrolysis configuration in [...] Read more.
Methane pyrolysis produces hydrogen (H2) with solid carbon black as a co-product, eliminating direct CO2 emissions and enabling a low-carbon supply when combined with renewable or low-carbon heat sources. In this study, we propose a hybrid geothermal pyrolysis configuration in which an enhanced geothermal system (EGS) provides base-load preheating and isothermal holding, while either electrical or solar–thermal input supplies the final temperature rise to the catalytic set-point. The work addresses four main objectives: (i) integrating field-scale geothermal operating envelopes to define heat-integration targets and duty splits; (ii) assessing scalability through high-pressure reactor design, thermal management, and carbon separation strategies that preserve co-product value; (iii) developing a techno-economic analysis (TEA) framework that lists CAPEX and OPEX, incorporates carbon pricing and credits, and evaluates dual-product economics for hydrogen and carbon black; and (iv) reorganizing state-of-the-art advances chronologically, linking molten media demonstrations, catalyst development, and integration studies. The process synthesis shows that allocating geothermal heat to the largest heat-capacity streams (feed, recycle, and melt/salt hold) reduces electric top-up demand and stabilizes reactor operation, thereby mitigating coking, sintering, and broad particle size distributions. High-pressure operation improves the hydrogen yield and equipment compactness, but it also requires corrosion-resistant materials and careful thermal-stress management. The TEA indicates that the levelized cost of hydrogen is primarily influenced by two factors: (a) electric duty and the carbon intensity of power, and (b) the achievable price and specifications of the carbon co-product. Secondary drivers include the methane price, geothermal capacity factor, and overall conversion and selectivity. Overall, geothermal-assisted methane pyrolysis emerges as a practical pathway to turquoise hydrogen, if the carbon quality is maintained and heat integration is optimized. The study offers design principles and reporting guidelines intended to accelerate pilot-scale deployment. Full article
24 pages, 2257 KB  
Article
Hybrid Renewable Energy Systems: Integration of Urban Mobility Through Metal Hydrides Solution as an Enabling Technology for Increasing Self-Sufficiency
by Lorenzo Bartolucci, Edoardo Cennamo, Stefano Cordiner, Vincenzo Mulone and Alessandro Polimeni
Energies 2025, 18(19), 5306; https://doi.org/10.3390/en18195306 - 8 Oct 2025
Abstract
The ongoing energy transition and decarbonization efforts have prompted the development of Hybrid Renewable Energy Systems (HRES) capable of integrating multiple generation and storage technologies to enhance energy autonomy. Among the available options, hydrogen has emerged as a versatile energy carrier, yet most [...] Read more.
The ongoing energy transition and decarbonization efforts have prompted the development of Hybrid Renewable Energy Systems (HRES) capable of integrating multiple generation and storage technologies to enhance energy autonomy. Among the available options, hydrogen has emerged as a versatile energy carrier, yet most studies have focused either on stationary applications or on mobility, seldom addressing their integration withing a single framework. In particular, the potential of Metal Hydride (MH) tanks remains largely underexplored in the context of sector coupling, where the same storage unit can simultaneously sustain household demand and provide in-house refueling for light-duty fuel-cell vehicles. This study presents the design and analysis of a residential-scale HRES that combines photovoltaic generation, a PEM electrolyzer, a lithium-ion battery and MH storage intended for direct integration with a fuel-cell electric microcar. A fully dynamic numerical model was developed to evaluate system interactions and quantify the conditions under which low-pressure MH tanks can be effectively integrated into HRES, with particular attention to thermal management and seasonal variability. Two simulation campaigns were carried out to provide both component-level and system-level insights. The first focused on thermal management during hydrogen absorption in the MH tank, comparing passive and active cooling strategies. Forced convection reduced absorption time by 44% compared to natural convection, while avoiding the additional energy demand associated with thermostatic baths. The second campaign assessed seasonal operation: even under winter irradiance conditions, the system ensured continuous household supply and enabled full recharge of two MH tanks every six days, in line with the hydrogen requirements of the light vehicle daily commuting profile. Battery support further reduced grid reliance, achieving a Grid Dependency Factor as low as 28.8% and enhancing system autonomy during cold periods. Full article
Show Figures

Figure 1

18 pages, 1311 KB  
Article
Thermo-Energetic Analysis of Electrolytic Oxygen Valorization via Biomass Oxy-Fuel Combustion: A Case Study Applied to a Power-to-Liquid Route for Methanol Synthesis
by Flávio S. Pereira, Argimiro R. Secchi and Alexandre Szklo
Thermo 2025, 5(4), 41; https://doi.org/10.3390/thermo5040041 - 7 Oct 2025
Abstract
The decarbonization of hard-to-defossilize sectors, such as international maritime transport, requires innovative, and at times disruptive, energy solutions that combine efficiency, scalability, and climate benefits. Therefore, power-to-liquid (PtL) routes have stood out for their potential to use low-emission electricity for the production of [...] Read more.
The decarbonization of hard-to-defossilize sectors, such as international maritime transport, requires innovative, and at times disruptive, energy solutions that combine efficiency, scalability, and climate benefits. Therefore, power-to-liquid (PtL) routes have stood out for their potential to use low-emission electricity for the production of synthetic fuels, via electrolytic hydrogen and CO2 capture. However, the high energy demand inherent to these routes poses significant challenges to large-scale implementation. Moreover, PtL routes are usually at most neutral in terms of CO2 emissions. This study evaluates, from a thermo-energetic perspective, the optimization potential of an e-methanol synthesis route through integration with a biomass oxy-fuel combustion process, making use of electrolytic oxygen as the oxidizing agent and the captured CO2 as the carbon source. From the standpoint of a first-law thermodynamic analysis, mass and energy balances were developed considering the full oxygen supply for oxy-fuel combustion to be met through alkaline electrolysis, thus eliminating the energy penalty associated with conventional oxygen production via air separation units. The balance closure was based on a small-scale plant with a capacity of around 100 kta of methanol. In this integrated configuration, additional CO2 surpluses beyond methanol synthesis demand can be directed to geological storage, which, when combined with bioenergy with carbon capture and storage (BECCS) strategies, may lead to net negative CO2 emissions. The results demonstrate that electrolytic oxygen valorization is a promising pathway to enhance the efficiency and climate performance of PtL processes. Full article
Show Figures

Figure 1

18 pages, 5933 KB  
Article
The Impact of Reservoir Parameters and Fluid Properties on Seepage Characteristics and Fracture Morphology Using Water-Based Fracturing Fluid
by Zhaowei Zhang, Qiang Sun, Hongge Wang, Chaoxian Chen, Changyu Chen, Qian Zhou, Qisen Gong, Xiaoyue Zhuo and Peng Zhuo
Processes 2025, 13(10), 3166; https://doi.org/10.3390/pr13103166 - 5 Oct 2025
Viewed by 258
Abstract
This study, motivated by the pronounced fluid loss characteristics of water-based fracturing fluids, developed a fluid–solid coupling model to investigate water-based fracturing in geological reservoirs. The model was further employed to analyse the effects of multiple factors on fracture propagation and the seepage [...] Read more.
This study, motivated by the pronounced fluid loss characteristics of water-based fracturing fluids, developed a fluid–solid coupling model to investigate water-based fracturing in geological reservoirs. The model was further employed to analyse the effects of multiple factors on fracture propagation and the seepage capacity of water-based fracturing fluids. Moreover, the underlying mechanisms of fracture propagation and seepage enhancement were elucidated from a microscopic molecular perspective. The results obtained that the high apparent viscosity of water-based fracturing fluids not only enhances the fracturing efficiency of reservoir rocks but also results in a reduced seepage volume (−17 mL) in low-permeability reservoirs. Furthermore, the reservoir porosity (+2.5%) exhibits a clear inverse proportional relationship with fracturing efficiency (−0.9 m), while the seepage volume (+7 mL) of water-based fracturing fluids continues to increase. The strength and quantity of hydrogen bonds between molecules in water-based fracturing fluid, influenced by external factors, directly affect fluid seepage. The seepage behaviour of water-based fracturing fluids in geological reservoirs, together with the influence of reservoir conditions on fracture propagation, provides valuable reference data for rock fracturing and reservoir stimulation. However, the absence of data analysis and microscopic images of microscopic molecular dynamics constitutes a challenging problem that demands attention. Full article
Show Figures

Figure 1

45 pages, 5989 KB  
Review
A Review of Hybrid-Electric Propulsion in Aviation: Modeling Methods, Energy Management Strategies, and Future Prospects
by Feifan Yu, Jiajie Chen, Panao Gao, Yu Kong, Xiaokang Sun, Jiqiang Wang and Xinmin Chen
Aerospace 2025, 12(10), 895; https://doi.org/10.3390/aerospace12100895 - 3 Oct 2025
Viewed by 472
Abstract
Aviation is under increasing pressure to reduce carbon emissions in conventional transports and support the growth of low-altitude operations such as long-endurance eVTOLs. Hybrid-electric propulsion addresses these challenges by integrating the high specific energy of fuels or hydrogen with the controllability and efficiency [...] Read more.
Aviation is under increasing pressure to reduce carbon emissions in conventional transports and support the growth of low-altitude operations such as long-endurance eVTOLs. Hybrid-electric propulsion addresses these challenges by integrating the high specific energy of fuels or hydrogen with the controllability and efficiency of electrified powertrains. At present, the field of hybrid-electric aircraft is developing rapidly. To systematically study hybrid-electric propulsion control in aviation, this review focuses on practical aspects of system development, including propulsion architectures, system- and component-level modeling approaches, and energy management strategies. Key technologies in the future are examined, with emphasis on aircraft power-demand prediction, multi-timescale control, and thermal integrated energy management. This review aims to serve as a reference for configuration design, modeling and control simulation, as well as energy management strategy design of hybrid-electric propulsion systems. Building on this reference role, the review presents a coherent guidance scheme from architectures through modeling to energy-management control, with a practical roadmap toward flight-ready deployment. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

15 pages, 1942 KB  
Article
Predictive URANS/PDF Modeling of Unsteady-State Phenomena in Turbulent Hydrogen–Air Flames
by Mohamed Boukhelef, Mohammed Senouci, Mounir Alliche, Habib Merouane and Abdelhamid Bounif
Fluids 2025, 10(10), 258; https://doi.org/10.3390/fluids10100258 - 29 Sep 2025
Viewed by 214
Abstract
The escalating global demand for primary energy—still predominantly met by conventional carbon-based fuels—has led to increased atmospheric pollution. This underscores the urgent need for alternative energy strategies capable of reducing carbon emissions while meeting global energy requirements. Hydrogen, as a clean combustible fuel, [...] Read more.
The escalating global demand for primary energy—still predominantly met by conventional carbon-based fuels—has led to increased atmospheric pollution. This underscores the urgent need for alternative energy strategies capable of reducing carbon emissions while meeting global energy requirements. Hydrogen, as a clean combustible fuel, offers a promising alternative to hydrocarbons, producing neither soot, CO2, nor unburned hydrocarbons. Although nitrogen oxides (NOx) are the primary combustion by-products, their formation can be mitigated by controlling flame temperature. This study investigates the viability of hydrogen as a clean energy vector by simulating an unsteady, turbulent, non-premixed hydrogen jet flame interacting with an air co-flow. The numerical simulations employ the Unsteady Reynolds-Averaged Navier–Stokes (URANS) framework for efficient and accurate prediction of transient flow behavior. Turbulence is modeled using the Shear Stress Transport (SST k-ω) model, which enhances accuracy in high Reynolds number reactive flows. The combustion process is described using a presumed Probability Density Function (PDF) model, allowing for a statistical representation of turbulent mixing and chemical reaction. The simulation results are validated by comparison with experimental temperature and mixture fraction data, demonstrating the reliability and predictive capability of the proposed numerical approach. Full article
(This article belongs to the Special Issue Turbulence and Combustion)
Show Figures

Figure 1

15 pages, 1631 KB  
Article
Towards Sustainable Biogas Production: Valorizing Dairy Waste Through Green Thermo-Oxidative Pretreatment
by Bani Kheiredine, Kerroum Derbal, Maissa Talhi, Randa Touil, Meriem Zamouche, Sabrina Lekmine, Mohammad Shamsul Ola, Jie Zhang, Abdeltif Amrane and Hichem Tahraoui
Water 2025, 17(19), 2844; https://doi.org/10.3390/w17192844 - 29 Sep 2025
Viewed by 315
Abstract
This study was conducted to investigate the effect of hydrogen peroxide (H2O2) pretreatment on the anaerobic digestion performance of dairy wastewater. Initial physicochemical characterization revealed that the substrate is highly enriched in volatile solids (approximately 90.67%), indicating its strong [...] Read more.
This study was conducted to investigate the effect of hydrogen peroxide (H2O2) pretreatment on the anaerobic digestion performance of dairy wastewater. Initial physicochemical characterization revealed that the substrate is highly enriched in volatile solids (approximately 90.67%), indicating its strong potential for anaerobic biodegradation. Given this favorable composition, biochemical methane potential (BMP) assays were performed under mesophilic conditions (37 °C) to quantify biogas and methane generation from the untreated and pretreated dairy effluent. To enhance substrate biodegradability and increase methane yield, an oxidative pretreatment using various doses of H2O2 was applied. This pretreatment aimed to disrupt the complex organic matter and promote the solubilization of chemical oxygen demand (COD), especially in its soluble form (sCOD), which is more readily assimilated by methanogenic microorganisms. The experimental results demonstrated a significant improvement in biogas production efficiency. While the untreated sample yielded approximately 100 mL CH4/g VS, the pretreated substrate achieved a maximum of 168 mL CH4/g VS, marking a substantial enhancement. Gas composition analysis further revealed that methane accounted for nearly 45% of the total biogas produced under optimal conditions. The dosage of 0.2 g H2O2 per g of volatile solids (VS) resulted in the highest improvement in methane production after thermal treatment C1, followed by 1.35 g H2O2/g VS, and then 0.5 g H2O2/g VS. Furthermore, the kinetics of methane production were assessed by fitting the experimental data to the modified Gompertz model. This model enabled the determination of key parameters, such as the maximum specific methane production rate and the duration of the lag phase. The high coefficient of determination (R2) values obtained confirmed the excellent agreement between the experimental data and the model predictions, highlighting the robustness and reliability of the modified Gompertz model in describing the anaerobic digestion process of dairy waste subjected to oxidative pretreatment. Full article
Show Figures

Figure 1

20 pages, 3052 KB  
Article
Hydrogen-Enabled Microgrids for Railway Applications: A Seasonal Energy Storage Solution for Switch-Point Heating
by Gerhard Fritscher, Christoph Steindl, Jasmin Helnwein and Julian Heger
Sustainability 2025, 17(19), 8664; https://doi.org/10.3390/su17198664 - 26 Sep 2025
Viewed by 259
Abstract
Switch-point heating systems are essential for railway reliability and safety in winter, but present logistical and economic challenges in remote regions. This study presents a novel application of a hydrogen-enabled microgrid as an off-grid energy solution for powering a switch-point heating system at [...] Read more.
Switch-point heating systems are essential for railway reliability and safety in winter, but present logistical and economic challenges in remote regions. This study presents a novel application of a hydrogen-enabled microgrid as an off-grid energy solution for powering a switch-point heating system at a rural Austrian railway station, offering an alternative to conventional grid-based electricity with a specific focus on enhancing the share of renewable energy sources. The proposed system integrates photovoltaics (PV), optional wind energy, and hydrogen storage to address the seasonal mismatch between a high energy supply in the summer and peak winter demand. Three energy supply scenarios are analysed and compared based on local conditions, technical simplicity, and economic viability. Energy flow modelling based on site-specific climate and operational data is used to determine hydrogen production rates, storage capacity requirements and system sizing. A comprehensive cost analysis of all major subsystems is conducted to assess economic viability. The study demonstrates that hydrogen is a highly effective solution for seasonal energy storage, with a PV-only configuration emerging as the most suitable option under current site conditions. Thus, it offers a replicable framework for decarbonising critical stationary railway infrastructure. Full article
Show Figures

Figure 1

18 pages, 2846 KB  
Article
Sensitivity Analysis in Simple Cycles for Hydrogen Liquefaction
by Kevin M. Omori, Ramón Mazon-Cartagena, María J. Fernández-Torres, José A. Caballero, Mauro A. S. S. Ravagnani, Leandro V. Pavão and Caliane B. B. Costa
Processes 2025, 13(10), 3076; https://doi.org/10.3390/pr13103076 - 25 Sep 2025
Viewed by 267
Abstract
Due to the increase in global energy demand, as well as environmental concerns, hydrogen presents itself as a promising energy source. Liquid hydrogen is more suited for long-distance transportation, but hydrogen liquefaction is an energy-intensive process, and many studies have been published proposing [...] Read more.
Due to the increase in global energy demand, as well as environmental concerns, hydrogen presents itself as a promising energy source. Liquid hydrogen is more suited for long-distance transportation, but hydrogen liquefaction is an energy-intensive process, and many studies have been published proposing more efficient liquefaction cycles. In this study, simple hydrogen liquefaction cycles like Claude, pre-cooled Linde–Hampson (PLH), single mixed refrigerant (SMR), and dual mixed refrigerant (DMR) were assessed regarding the influence of the cycle’s high pressure on energy efficiency, exergy destruction, and its distribution along the equipment. Among the main results, Claude presented the best specific energy consumption (SEC) of 16.47 kWh/kgLH, followed by DMR with an SEC of 17.30 kWh/kgLH, SMR with 17.58 kWh/kgLH, and finally PLH, with an SEC of 45.07 kWh/kgLH. The exergy efficiency followed the same pattern as the SEC, with Claude having the lowest exergy destruction, followed by DMR and SMR with close exergy destruction, and finally PLH. Nonetheless, although cycles were not optimized in evaluating the effect of increasing the high pressure, which constrains the direct applicability of the result found, especially in the pre-cooled cycles, the analysis provides valuable insights into the sensitivity of cycle performance. The method and its findings provide the basis for further studies, including optimization steps. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

22 pages, 1203 KB  
Review
Modelling Syngas Combustion from Biomass Gasification and Engine Applications: A Comprehensive Review
by José Ramón Copa Rey, Andrei Longo, Bruna Rijo, Cecilia Mateos-Pedrero, Paulo Brito and Catarina Nobre
Energies 2025, 18(19), 5112; https://doi.org/10.3390/en18195112 - 25 Sep 2025
Viewed by 563
Abstract
Syngas, a renewable fuel primarily composed of hydrogen and carbon monoxide, is emerging as a viable alternative to conventional fossil fuels in internal combustion engines (ICEs). Obtained mainly through the gasification of biomass and organic waste, syngas offers significant environmental benefits but also [...] Read more.
Syngas, a renewable fuel primarily composed of hydrogen and carbon monoxide, is emerging as a viable alternative to conventional fossil fuels in internal combustion engines (ICEs). Obtained mainly through the gasification of biomass and organic waste, syngas offers significant environmental benefits but also presents challenges due to its lower heating value and variable composition. This review establishes recent advances in understanding syngas combustion, chemical kinetics, and practical applications in spark-ignition (SI) and compression-ignition (CI) engines. Variability in syngas composition, dependent on feedstock and gasification conditions, strongly influences ignition behavior, flame stability, and emissions, demanding detailed kinetic models and adaptive engine control strategies. In SI engines, syngas can replace up to 100% of conventional fuel, typically at 20–30% reduced power output. CI engines generally require a pilot fuel representing 10–20% of total energy to start combustion, favoring dual-fuel (DF) operation for efficiency and emissions control. This work underlines the need to integrate advanced modelling approaches with experimental insights to optimize performance and meet emission targets. By addressing challenges of fuel variability and engine adaptation, syngas reveals promising potential as a clean fuel for future sustainable power generation and transport applications. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

22 pages, 2195 KB  
Article
Capacity Optimization of Integrated Energy System for Hydrogen-Containing Parks Under Strong Perturbation Multi-Objective Control
by Qiang Wang, Jiahao Wang and Yaoduo Ya
Energies 2025, 18(19), 5101; https://doi.org/10.3390/en18195101 - 25 Sep 2025
Viewed by 256
Abstract
To address the issue of significant perturbations caused by the limited flexibility of clean energy grid integration, along with the combined effects of electric vehicle charging demand and the uncertainty of high-penetration intermittent energy in the integrated energy system (IES), a capacity optimization [...] Read more.
To address the issue of significant perturbations caused by the limited flexibility of clean energy grid integration, along with the combined effects of electric vehicle charging demand and the uncertainty of high-penetration intermittent energy in the integrated energy system (IES), a capacity optimization method for the IES subsystem of a hydrogen-containing chemical park, accounting for strong perturbations, is proposed in the context of the park’s energy usage. Firstly, a typical scenario involving source-load disturbances is characterized using Latin hypercube sampling and Euclidean distance reduction techniques. An energy management strategy for subsystem coordination is then developed. Building on this, a capacity optimization model is established, with the objective of minimizing daily integrated costs, carbon emissions, and system load variance. The Pareto optimal solution set is derived using a non-dominated genetic algorithm, and the optimal allocation case is selected through a combination of ideal solution similarity ranking and a subjective–objective weighting method. The results demonstrate that the proposed approach effectively balances economic efficiency, carbon reduction, and system stability while managing strong perturbations. When compared to relying solely on external hydrogen procurement, the integration of hydrogen storage in chemical production can offset high investment costs and deliver substantial environmental benefits. Full article
Show Figures

Figure 1

22 pages, 2915 KB  
Article
Resilience Assessment and Sustainability Enhancement of Gas and CO2 Utilization via Carbon–Hydrogen–Oxygen Symbiosis Networks
by Meshal Aldawsari and Mahmoud M. El-Halwagi
Sustainability 2025, 17(19), 8622; https://doi.org/10.3390/su17198622 - 25 Sep 2025
Viewed by 231
Abstract
Decarbonizing the industrial sector is essential to achieving net-zero targets and ensuring a sustainable future. Carbon–Hydrogen–Oxygen Symbiosis Networks (CHOSYN) are a set of interconnected hydrocarbon-processing plants that optimize the synergistic use of mass and energy resources in pursuit of both environmental objectives and [...] Read more.
Decarbonizing the industrial sector is essential to achieving net-zero targets and ensuring a sustainable future. Carbon–Hydrogen–Oxygen Symbiosis Networks (CHOSYN) are a set of interconnected hydrocarbon-processing plants that optimize the synergistic use of mass and energy resources in pursuit of both environmental objectives and profitability enhancement. However, this interconnectedness also introduces fragility, arising from technical and administrative dependencies among the participating facilities. In this work, a systematic framework is introduced to incorporate resilience assessment and sustainability enhancement within CHOSYNs. A CHOSYN representation is developed for a proposed industrial cluster, where processes are linked through interceptor units, which facilitate the exchange and conversion of carbon-, hydrogen-, and oxygen-based streams to meet demands. A multi-objective optimization framework is formulated with four competing goals: minimizing cost, minimizing net CO2 emissions, maximizing internal CO2 utilization, and minimizing the number of interceptors’ processing steps. The augmented ε-constraint method is used to generate a Pareto front that captures the trade-offs among these objectives. To complement the synthesis, a resilience assessment framework is applied to evaluate network performance under disruption by incorporating inter-plant dependencies and modeling disruption propagation. The results show that even under worst-case scenarios, integration through CHOSYN can achieve significant gains in CO2 utilization and reductions in raw material procurement requirements. Resilience analysis adds an important dimension by quantifying the economic impacts of disruptions to both highly connected and sparsely connected yet critical nodes, revealing vulnerabilities not evident from topology alone. Full article
Show Figures

Figure 1

16 pages, 569 KB  
Article
The Viability of Green Hydrogen for Electric Power Generation: Evaluating Current Practicability and Future Demand
by Pantea Parvinhosseini and Greig Mordue
Energies 2025, 18(19), 5100; https://doi.org/10.3390/en18195100 - 25 Sep 2025
Viewed by 358
Abstract
This study investigates the feasibility of green hydrogen as an alternative to natural gas for power generation. In doing so, it contributes to the broader discourse surrounding hydrogen’s potential role in the transition of the energy sector. Our case study is of Ontario, [...] Read more.
This study investigates the feasibility of green hydrogen as an alternative to natural gas for power generation. In doing so, it contributes to the broader discourse surrounding hydrogen’s potential role in the transition of the energy sector. Our case study is of Ontario, Canada, where natural gas serves as the sole remaining carbon-emitting energy source for the generation of electricity. Through this, we present a practical reference and methodology that energy planners, policymakers, and researchers can use to analyze fuel consumption patterns and their costs. Our research involves estimating the volume of hydrogen required to support the conversion of natural gas-powered turbines. At present, electrical power in Ontario generated by natural gas may reach 39 TWh annually by 2035. Our findings suggest that the cost of hydrogen to generate that volume of electricity will range between USD 1.8 billion and USD 23.2 billion, contingent upon turbine efficiency and fluctuations in hydrogen prices. Moreover, if hydrogen prices remain elevated (up to USD 8/kg), the annual premium for hydrogen-generated electricity compared to natural gas could reach USD 20.604 billion, a significant deterrence for energy planners in Ontario from adopting hydrogen at scale. Thus, the added costs of hydrogen, along with challenges related to infrastructure requirements, safety, and technological considerations, render a potential transition to hydrogen, and to green hydrogen specifically, a complex undertaking. Ultimately, insights derived here enhance understanding of hydrogen’s potential within the context of power generation and may be applicable to other regions considering similar transitions toward hydrogen-based energy systems. Full article
Show Figures

Figure 1

28 pages, 2256 KB  
Article
Comparative Evaluation of Performance Parameters of Conventional and Waste Fuels for Diesel Engines Towards Sustainable Transport
by Dariusz Szpica, Andrzej Borawski, Grzegorz Mieczkowski, Hubert Kuszewski, Artur Jaworski and Jacek Hunicz
Energies 2025, 18(19), 5081; https://doi.org/10.3390/en18195081 - 24 Sep 2025
Viewed by 318
Abstract
Sustainable development and growing energy demand require the search for alternative fuels, especially for heavy transport. The study compared diesel fuel (DF), hydrogenated vegetable oil (HVO) and fuels from the pyrolysis of polypropylene (PPO), polystyrene (PSO) and car tyres (TPO). The lowest cold [...] Read more.
Sustainable development and growing energy demand require the search for alternative fuels, especially for heavy transport. The study compared diesel fuel (DF), hydrogenated vegetable oil (HVO) and fuels from the pyrolysis of polypropylene (PPO), polystyrene (PSO) and car tyres (TPO). The lowest cold filter plugging point values were obtained for HVO (−38 °C) and PSO (−29 °C). TPO and DF were in the moderate range, while PPO achieved the worst result (−10 °C). Only DF met the EN 590 standard requirements for density at 15 °C (0.820–0.845) g/cm3. HVO and PPO were approx. 5% below the lower limit, while PSO and TPO exceeded the upper limit. All samples except PPO, which was below the lower limit, met the kinematic viscosity requirement according to the same standard at 40 °C (2.0–4.5) mm2/s. Based on a series of tribological tests, it was found that DF (400 µm) had the lowest lubricity expressed by the WSD index, while PSO (246 µm) had the highest. All samples tested met the requirements of EN 590, ASTM D975 and the Worldwide Fuel Charter in this respect. The results provide valuable information for engine technology, enabling more accurate durability predictions and fuel mixture optimization. Full article
Show Figures

Figure 1

23 pages, 1217 KB  
Review
Additive Manufacturing as a Catalyst for Low-Carbon Production and the Renewable Energy Transition in Electric Vehicles
by Thywill Cephas Dzogbewu, Deon Johan de Beer and Isaac Kwesi Nooni
Technologies 2025, 13(10), 428; https://doi.org/10.3390/technologies13100428 - 23 Sep 2025
Viewed by 560
Abstract
Additive manufacturing (AM), or 3D printing, is increasingly recognised as a disruptive production technology with the capacity to reduce greenhouse gas (GHG) emissions across manufacturing and transportation sectors. By enabling material efficiency, lightweighting, part consolidation, and decentralised, on-demand production, AM offers pathways to [...] Read more.
Additive manufacturing (AM), or 3D printing, is increasingly recognised as a disruptive production technology with the capacity to reduce greenhouse gas (GHG) emissions across manufacturing and transportation sectors. By enabling material efficiency, lightweighting, part consolidation, and decentralised, on-demand production, AM offers pathways to lower embodied energy, minimise waste, and shorten supply chains. This review critically evaluates AM’s role in decarbonisation, with a focus on clean transportation applications, including electric vehicles, fuel cells, and hydrogen storage systems. Case studies quantify energy savings, operational efficiency gains, and life-cycle GHG reductions compared to conventional manufacturing routes. The analysis also addresses technical and economic limitations—such as material availability, scalability, certification, and cost competitiveness—and explores synergies with circular economy principles, digital design optimisation, and artificial intelligence. Policy recommendations and industry–academia collaboration models are proposed to accelerate AM adoption, integrate renewable energy sources, and strengthen recycling infrastructure. By synthesising technical, economic, and policy perspectives, the study positions AM as a critical enabler of net-zero manufacturing and a catalyst for sustainable industrial transformation. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2024)
Show Figures

Figure 1

Back to TopTop