Hydrogen-Enabled Microgrids for Railway Applications: A Seasonal Energy Storage Solution for Switch-Point Heating
Abstract
1. Introduction
2. Materials and Methods
2.1. Microgrid System Description and Calculations
2.2. Renewable Power Generation
2.2.1. Scenario 1: Photovoltaic (PV)
2.2.2. Scenario 2: Wind
2.2.3. Scenario 3: Hybrid: PV + Wind
2.3. Site and Climate Context
3. Results
3.1. Hydrogen Production and Energy Balance
3.2. System Dimensioning and Cost Analysis
4. Discussion
Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IRENA. World Energy Transitions Outlook 2024: 1.5 °C Pathway; IRENA: Abu Dhabi, United Arab Emirates, 2024. [Google Scholar]
- IEA. Renewables 2024—Analysis; IEA: Paris, France, 2024. [Google Scholar]
- European Commission. REPowerEU Plan; European Commission: Brussels, Belgium, 2022. [Google Scholar]
- Schladitz, M.; Adam, R.; Schlegel, S. Investigations on the Heat Transfer between an Electrical Heating Rod and a Rail for Heated Railway Switch Points. Energies 2023, 16, 1678. [Google Scholar] [CrossRef]
- Heger, J. Inductive Railway Turnout Heating Systems—A Review of Scientific Publications. In Proceedings of the 8th International Conference on Road and Rail Infrastructure, Cavtat, Croatia, 17 May 2024; pp. 533–541. [Google Scholar]
- Deng, H.; Li, Y.; Tang, C.; Liu, J.; Yi, Q.; Wang, Y.; Wang, P.; Gao, M. Green Micro-Grid for Railway Infrastructure. IEEE Trans. Intell. Transp. Syst. 2025, 26, 4346–4364. [Google Scholar] [CrossRef]
- Roth, S.; Tricoli, P. Stationary Fuel Cell Power Supply for Railway Electrification Systems. In Proceedings of the 2023 IEEE 17th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Tallinn, Estonia, 14 June 2023; IEEE: Piscataway, NJ, USA; pp. 1–6. [Google Scholar]
- Comello, S.D.; Reichelstein, S.J.; Sahoo, A.; Schmidt, T.S. Enabling Mini-Grid Development in Rural India. World Dev. 2017, 93, 94–107. [Google Scholar] [CrossRef]
- Zenith, F.; Isaac, R.; Hoffrichter, A.; Thomassen, M.S.; Møller-Holst, S. Techno-Economic Analysis of Freight Railway Electrification by Overhead Line, Hydrogen and Batteries: Case Studies in Norway and USA. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2020, 234, 791–802. [Google Scholar] [CrossRef]
- Marocco, P.; Ferrero, D.; Lanzini, A.; Santarelli, M. The Role of Hydrogen in the Optimal Design of Off-Grid Hybrid Renewable Energy Systems. J. Energy Storage 2022, 46, 103893. [Google Scholar] [CrossRef]
- Thaler, B.; Posch, S.; Wimmer, A.; Pirker, G. Hybrid Model Predictive Control of Renewable Microgrids and Seasonal Hydrogen Storage. Int. J. Hydrogen Energy 2023, 48, 38125–38142. [Google Scholar] [CrossRef]
- Van, L.P.; Chi, K.D.; Duc, T.N. Review of Hydrogen Technologies Based Microgrid: Energy Management Systems, Challenges and Future Recommendations. Int. J. Hydrogen Energy 2023, 48, 14127–14148. [Google Scholar] [CrossRef]
- Serra, F.; Lucariello, M.; Petrollese, M.; Cau, G. Optimal Integration of Hydrogen-Based Energy Storage Systems in Photovoltaic Microgrids: A Techno-Economic Assessment. Energies 2020, 13, 4149. [Google Scholar] [CrossRef]
- Wang, X.; Huang, J.; Xu, Z.; Zhang, C.; Guan, X. Real-World Scale Deployment of Hydrogen-Integrated Microgrid: Design and Control. IEEE Trans. Sustain. Energy 2024, 15, 2380–2392. [Google Scholar] [CrossRef]
- Dawood, F.; Shafiullah, G.; Anda, M. Stand-Alone Microgrid with 100% Renewable Energy: A Case Study with Hybrid Solar PV-Battery-Hydrogen. Sustainability 2020, 12, 2047. [Google Scholar] [CrossRef]
- Kharel, S.; Shabani, B. Hydrogen as a Long-Term Large-Scale Energy Storage Solution to Support Renewables. Energies 2018, 11, 2825. [Google Scholar] [CrossRef]
- Sun, X.; Cao, X.; Li, M.; Zhai, Q.; Guan, X. Seasonal Operation Planning of Hydrogen-Enabled Multi-Energy Microgrids through Multistage Stochastic Programming. J. Energy Storage 2024, 85, 111125. [Google Scholar] [CrossRef]
- Hemmati, R.; Bornapour, S.M.; Saboori, H. Standalone Hybrid Power-Hydrogen System Incorporating Daily-Seasonal Green Hydrogen Storage and Hydrogen Refueling Station. Energy 2024, 295, 131122. [Google Scholar] [CrossRef]
- Clemens, T.; Hunyadi-Gall, M.; Lunzer, A.; Arekhov, V.; Datler, M.; Gauer, A. Wind–Photovoltaic–Electrolyzer-Underground Hydrogen Storage System for Cost-Effective Seasonal Energy Storage. Energies 2024, 17, 5696. [Google Scholar] [CrossRef]
- Li, N.; Lukszo, Z.; Schmitz, J. An Approach for Sizing a PV–Battery–Electrolyzer–Fuel Cell Energy System: A Case Study at a Field Lab. Renew. Sustain. Energy Rev. 2023, 181, 113308. [Google Scholar] [CrossRef]
- Chatenet, M.; Pollet, B.G.; Dekel, D.R.; Dionigi, F.; Deseure, J.; Millet, P.; Braatz, R.D.; Bazant, M.Z.; Eikerling, M.; Staffell, I.; et al. Water Electrolysis: From Textbook Knowledge to the Latest Scientific Strategies and Industrial Developments. Chem. Soc. Rev. 2022, 51, 4583–4762. [Google Scholar] [CrossRef]
- Giovanniello, M.A.; Wu, X.-Y. Hybrid Lithium-Ion Battery and Hydrogen Energy Storage Systems for a Wind-Supplied Microgrid. Appl. Energy 2023, 345, 121311. [Google Scholar] [CrossRef]
- Staffell, I.; Scamman, D.; Velazquez Abad, A.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The Role of Hydrogen and Fuel Cells in the Global Energy System. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar] [CrossRef]
- Alam, M.; Kumar, K.; Dutta, V. Design and Analysis of Fuel Cell and Photovoltaic Based 110 V DC Microgrid Using Hydrogen Energy Storage. Energy Storage 2019, 1, e60. [Google Scholar] [CrossRef]
- Ayodele, T.R.; Mosetlhe, T.C.; Yusuff, A.A.; Ogunjuyigbe, A.S.O. Off-Grid Hybrid Renewable Energy System with Hydrogen Storage for South African Rural Community Health Clinic. Int. J. Hydrogen Energy 2021, 46, 19871–19885. [Google Scholar] [CrossRef]
- Babatunde, O.M.; Munda, J.L.; Hamam, Y. Off-Grid Hybrid Photovoltaic—Micro Wind Turbine Renewable Energy System with Hydrogen and Battery Storage: Effects of Sun Tracking Technologies. Energy Convers. Manag. 2022, 255, 115335. [Google Scholar] [CrossRef]
- Damato, A.; Iamarino, M.; Ferraro, A.; D’Angola, A. PV-Based Hybrid Residential Microgrid with Hydrogen and Battery Energy Storage Options: A Northern Italy Case Study. J. Phys. Conf. Ser. 2022, 2385, 012119. [Google Scholar] [CrossRef]
- Meriläinen, A.; Montonen, J.-H.; Hopsu, J.; Kosonen, A.; Lindh, T.; Ahola, J. Power Balance Control and Dimensioning of a Hybrid Off-Grid Energy System for a Nordic Climate Townhouse. Renew. Energy 2023, 209, 310–324. [Google Scholar] [CrossRef]
- Ceylan, C.; Devrim, Y. Green Hydrogen Based Off-Grid and on-Grid Hybrid Energy Systems. Int. J. Hydrogen Energy 2023, 48, 39084–39096. [Google Scholar] [CrossRef]
- Marocco, P.; Ferrero, D.; Gandiglio, M.; Ortiz, M.M.; Sundseth, K.; Lanzini, A.; Santarelli, M. A Study of the Techno-Economic Feasibility of H2-Based Energy Storage Systems in Remote Areas. Energy Convers. Manag. 2020, 211, 112768. [Google Scholar] [CrossRef]
- Miri, M.; Tolj, I.; Barbir, F. Review of Proton Exchange Membrane Fuel Cell-Powered Systems for Stationary Applications Using Renewable Energy Sources. Energies 2024, 17, 3814. [Google Scholar] [CrossRef]
- IEA. Global Hydrogen Review 2024; IEA: Paris, France, 2024. [Google Scholar]
- European Commission. A Hydrogen Strategy for a Climate-Neutral Europe; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- BMK. Hydrogen Strategy for Austria; BMK: Vienna, Austria, 2022. [Google Scholar]
- Dincer, I.; Zamfirescu, C. A Review of Novel Energy Options for Clean Rail Applications. J. Nat. Gas Sci. Eng. 2016, 28, 461–478. [Google Scholar] [CrossRef]
- Böhm, M.; Fernández Del Rey, A.; Pagenkopf, J.; Varela, M.; Herwartz-Polster, S.; Nieto Calderón, B. Review and Comparison of Worldwide Hydrogen Activities in the Rail Sector with Special Focus on On-Board Storage and Refueling Technologies. Int. J. Hydrogen Energy 2022, 47, 38003–38017. [Google Scholar] [CrossRef]
- Xu, Z.; Zhao, N.; Hillmansen, S.; Roberts, C.; Yan, Y. Techno-Economic Analysis of Hydrogen Storage Technologies for Railway Engineering: A Review. Energies 2022, 15, 6467. [Google Scholar] [CrossRef]
- Mitrofanov, S.V.; Kiryanova, N.G.; Gorlova, A.M. Stationary Hybrid Renewable Energy Systems for Railway Electrification: A Review. Energies 2021, 14, 5946. [Google Scholar] [CrossRef]
- Heide, D.; Von Bremen, L.; Greiner, M.; Hoffmann, C.; Speckmann, M.; Bofinger, S. Seasonal Optimal Mix of Wind and Solar Power in a Future, Highly Renewable Europe. Renew. Energy 2010, 35, 2483–2489. [Google Scholar] [CrossRef]
- BIMSolar, Version 1.8.1. Available online: https://www.bim-solar.com/ (accessed on 19 May 2025).
- Photovoltaic Geographical Information System (PVGIS)—European Commission. Available online: https://joint-research-centre.ec.europa.eu/photovoltaic-geographical-information-system-pvgis_en (accessed on 2 August 2025).
- Lichtenegg Energy Research Park. Available online: https://www.technikum-wien.at/en/department-industrial-engineering-lichtenegg-energy-research-park/ (accessed on 19 May 2025).
- IE-POWER 4. Available online: https://www.intelligent-energy.com/wp-content/uploads/2024/02/IE-POWER-4-APRIL-2023-1.pdf (accessed on 26 June 2025).
- Enapter AEM EL 4.1. Available online: https://handbook.enapter.com/electrolyser/el41/downloads/Enapter_Datasheet_EL41_EN.pdf (accessed on 26 June 2025).
- Global Wind Atlas. Available online: https://globalwindatlas.info/en/ (accessed on 19 May 2025).
- Hirschl-Schmol, A.; Österreicher, D. IEA Windenergie Task 41: Integration Dezentraler Windkraft-Anlagen in Ein Gesamtenergiesystem; BMK: Vienna, Austria, 2023. [Google Scholar]
- Formayer, H.; Parajka, J.; Petermann, J.S. Chapter 1. Physical and Ecological Manifestation of Climate Change in Austria. In Second Austrian Assessment Report on Climate Change; Verlag der Österreichischen Akademie der Wissenschaften: Vienna, Austria, 2025. [Google Scholar]
- GeoSphere. Austria Klimabilanz Winter 24/25; GeoSphere: Vienna, Austria, 2025. [Google Scholar]
- Klima-und Energiefonds; Umweltbundesamt GmbH. GeoSphere Austria Factsheets der KLAR! Regionen—Klima im Wandel (KLAR! Region Horn); Klima-und Energiefonds: Vienna, Austria; Umweltbundesamt GmbH: Vienna, Austria, 2019. [Google Scholar]
- Haslinger, K.; Breinl, K.; Pavlin, L.; Pistotnik, G.; Bertola, M.; Olefs, M.; Greilinger, M.; Schöner, W.; Blöschl, G. Increasing Hourly Heavy Rainfall in Austria Reflected in Flood Changes. Nature 2025, 639, 667–672. [Google Scholar] [CrossRef]
- Hiebl, J.; Orlik, A. Klimarückblick Niederösterreich. In Klimastatusbericht Österreich; CCCA: Vienna, Austria, 2022. [Google Scholar]
- GeoSphere. Austria Messstationen Stundendaten V2; GeoSphere: Vienna, Austria, 2024. [Google Scholar]
- Clean Hydrogen JU—SRIA Key Performance Indicators (KPIs)—Clean Hydrogen Partnership. Available online: https://www.clean-hydrogen.europa.eu/knowledge-management/strategy-map-and-key-performance-indicators/clean-hydrogen-ju-sria-key-performance-indicators-kpis_en (accessed on 23 May 2025).
- Khan, M.A.; Young, C.; MacKinnon, C.; Layzell, D.B. The Techno-Economics of Hydrogen Compression. Transit. Accel. Tech. Briefs 2021, 1, 1–36. [Google Scholar]
- Zhang, X.; Wei, Q.S.; Oh, B.S. Cost Analysis of Off-Grid Renewable Hybrid Power Generation System on Ui Island, South Korea. Int. J. Hydrogen Energy 2022, 47, 13199–13212. [Google Scholar] [CrossRef]
- Nasser, M.; Megahed, T.F.; Ookawara, S.; Hassan, H. A Review of Water Electrolysis–Based Systems for Hydrogen Production Using Hybrid/Solar/Wind Energy Systems. Environ. Sci. Pollut. Res. 2022, 29, 86994–87018. [Google Scholar] [CrossRef]
- Usman, M.R. Hydrogen Storage Methods: Review and Current Status. Renew. Sustain. Energy Rev. 2022, 167, 112743. [Google Scholar] [CrossRef]
- Jahanbin, A.; Abdolmaleki, L.; Berardi, U. Techno-Economic Feasibility of Integrating Hybrid Battery-Hydrogen Energy Storage System into an Academic Building. Energy Convers. Manag. 2024, 309, 118445. [Google Scholar] [CrossRef]
- Liu, K.; Wu, T.; Cheng, X.; Cao, M.; Wang, X.; Su, J.; Zhang, J. Technical and Economic Analysis of a Pilot-Scale Hydrogen System: From Production to Application. Energy Convers. Manag. 2023, 291, 117218. [Google Scholar] [CrossRef]
- Kumar, K.; Alam, M.; Dutta, V. Techno-economic Analysis of Metal Hydride-based Energy Storage System in Microgrid. Energy Storage 2019, 1, e62. [Google Scholar] [CrossRef]
- Umweltbundesamt Berechnung von Treibhausgas (THG)-Emissionen Verschiedener Energieträger. Available online: https://secure.umweltbundesamt.at/co2mon/co2mon.html (accessed on 2 August 2025).
- Copernicus Climate Change Service (C3S). European State of the Climate 2024; Copernicus Climate Change Service (C3S): Reading, UK, 2025. [Google Scholar]
Scenario | Configuration |
---|---|
Scenario 1: PV | Power generation via PV |
Scenario 2: Wind | Power generation via small wind turbine |
Scenario 3: Hybrid (PV + Wind) | System combining PV and small wind turbine |
System | Component | Value | CAPEX | OPEX | ||
---|---|---|---|---|---|---|
Hydrogen | Electrolyser (AEM) | 5 kW | 19,200 € | * | 34 €/(kg/d)/y | [53] |
Electrolyser Power Module | - | 4200 € | * | - | ||
Water Treatment | - | 5300 € | * | - | ||
Hydrogen Purification | - | 6000 € | * | - | ||
Fuel Cell (PEM) | 20 kW | 60,000 € | * | 0.1 €/kWh | [53] | |
Compressor ** | 2 Nm3/h | 40,000 € | * | 4%CAPEX/y | [54] | |
Storage (Compressed H2) | 150 kg H2 | 77,000 € | * | 2%CAPEX/y | [10] | |
Storage (Metal Hydride) | 150 kg H2 | 300,000 € | * | - | ||
Measurement and Control | - | 9800 € | * | - | ||
Safety | - | 7000 € | * | - | ||
Hydrogen Accessory, Work | - | 17,000 € | * | - | ||
Regulatory Submission | - | 30,000 € | * | - | ||
Battery | Battery Storage | 20 kWh | 10,000 € | * | 10 €/kWh/y | [10] |
PV | Modules | 10 kWp | 2500 € | * | 24 €/kW/y | [10] |
PV Accessory, Work | - | 7800 € | * | - | ||
Wind | Wind Turbine | 5 kW | 18,000 € | * | 3%CAPEX/y | [10] |
Wind Accessory, Work | - | 14,500 € | * | - | ||
Water | Rainwater Treatment | - | 10,400 € | * | - | |
System | Integration | - | 7500 € | * | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fritscher, G.; Steindl, C.; Helnwein, J.; Heger, J. Hydrogen-Enabled Microgrids for Railway Applications: A Seasonal Energy Storage Solution for Switch-Point Heating. Sustainability 2025, 17, 8664. https://doi.org/10.3390/su17198664
Fritscher G, Steindl C, Helnwein J, Heger J. Hydrogen-Enabled Microgrids for Railway Applications: A Seasonal Energy Storage Solution for Switch-Point Heating. Sustainability. 2025; 17(19):8664. https://doi.org/10.3390/su17198664
Chicago/Turabian StyleFritscher, Gerhard, Christoph Steindl, Jasmin Helnwein, and Julian Heger. 2025. "Hydrogen-Enabled Microgrids for Railway Applications: A Seasonal Energy Storage Solution for Switch-Point Heating" Sustainability 17, no. 19: 8664. https://doi.org/10.3390/su17198664
APA StyleFritscher, G., Steindl, C., Helnwein, J., & Heger, J. (2025). Hydrogen-Enabled Microgrids for Railway Applications: A Seasonal Energy Storage Solution for Switch-Point Heating. Sustainability, 17(19), 8664. https://doi.org/10.3390/su17198664