Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (804)

Search Parameters:
Keywords = hydraulic structural design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 977 KiB  
Article
Physical-Hydric Properties of a Planosols Under Long-Term Integrated Crop–Livestock–Forest System in the Brazilian Semiarid
by Valter Silva Ferreira, Flávio Pereira de Oliveira, Pedro Luan Ferreira da Silva, Adriana Ferreira Martins, Walter Esfrain Pereira, Djail Santos, Tancredo Augusto Feitosa de Souza, Robson Vinício dos Santos and Milton César Costa Campos
Forests 2025, 16(8), 1261; https://doi.org/10.3390/f16081261 (registering DOI) - 2 Aug 2025
Abstract
The objective of this study was to evaluate the physical-hydric properties of a Planosol under an Integrated Crop–Livestock–Forest (ICLF) system in the Agreste region of Paraíba, Brazil, after eight years of implementation, and to compare them with areas under a conventional cropping system [...] Read more.
The objective of this study was to evaluate the physical-hydric properties of a Planosol under an Integrated Crop–Livestock–Forest (ICLF) system in the Agreste region of Paraíba, Brazil, after eight years of implementation, and to compare them with areas under a conventional cropping system and secondary native vegetation. The experiment was conducted at the experimental station located in Alagoinha, in the Agreste mesoregion of the State of Paraíba, Brazil. The experimental design adopted was a randomized block design (RBD) with five treatments and four replications (5 × 4 + 2). The treatments consisted of: (1) Gliricidia (Gliricidia sepium (Jacq.) Steud) + Signal grass (Urochloa decumbens) (GL+SG); (2) Sabiá (Mimosa caesalpiniaefolia Benth) + Signal grass (SB+SG); (3) Purple Ipê (Handroanthus avellanedae (Lorentz ex Griseb.) Mattos) + SG (I+SG); (4) annual crop + SG (C+SG); and (5) Signal grass (SG). Two additional treatments were included for statistical comparison: a conventional cropping system (CC) and a secondary native vegetation area (NV), both located near the experimental site. The CC treatment showed the lowest bulk density (1.23 g cm−3) and the lowest degree of compaction (66.3%) among the evaluated treatments, as well as a total porosity (TP) higher than 75% (0.75 m3 m−3). In the soil under the integration system, the lowest bulk density (1.38 g cm−3) and the highest total porosity (0.48 m3 m−3) were observed in the SG treatment at the 0.0–0.10 m depth. High S-index values (>0.035) and a low relative field capacity (RFc < 0.50) and Kθ indicate high structural quality and low soil water storage capacity. It was concluded that the SG, I+SG, SB+SG, and CC treatments presented the highest values of soil bulk and degree of compaction in the layers below 0.10 m. The I+SG and C+SG treatments showed the lowest hydraulic conductivities and macroaggregation. The SG and C+SG treatments had the lowest available water content and available water capacity across the three analyzed soil layers. Full article
(This article belongs to the Special Issue Forest Soil Physical, Chemical, and Biological Properties)
Show Figures

Graphical abstract

22 pages, 6482 KiB  
Article
Surface Damage Detection in Hydraulic Structures from UAV Images Using Lightweight Neural Networks
by Feng Han and Chongshi Gu
Remote Sens. 2025, 17(15), 2668; https://doi.org/10.3390/rs17152668 (registering DOI) - 1 Aug 2025
Abstract
Timely and accurate identification of surface damage in hydraulic structures is essential for maintaining structural integrity and ensuring operational safety. Traditional manual inspections are time-consuming, labor-intensive, and prone to subjectivity, especially for large-scale or inaccessible infrastructure. Leveraging advancements in aerial imaging, unmanned aerial [...] Read more.
Timely and accurate identification of surface damage in hydraulic structures is essential for maintaining structural integrity and ensuring operational safety. Traditional manual inspections are time-consuming, labor-intensive, and prone to subjectivity, especially for large-scale or inaccessible infrastructure. Leveraging advancements in aerial imaging, unmanned aerial vehicles (UAVs) enable efficient acquisition of high-resolution visual data across expansive hydraulic environments. However, existing deep learning (DL) models often lack architectural adaptations for the visual complexities of UAV imagery, including low-texture contrast, noise interference, and irregular crack patterns. To address these challenges, this study proposes a lightweight, robust, and high-precision segmentation framework, called LFPA-EAM-Fast-SCNN, specifically designed for pixel-level damage detection in UAV-captured images of hydraulic concrete surfaces. The developed DL-based model integrates an enhanced Fast-SCNN backbone for efficient feature extraction, a Lightweight Feature Pyramid Attention (LFPA) module for multi-scale context enhancement, and an Edge Attention Module (EAM) for refined boundary localization. The experimental results on a custom UAV-based dataset show that the proposed damage detection method achieves superior performance, with a precision of 0.949, a recall of 0.892, an F1 score of 0.906, and an IoU of 87.92%, outperforming U-Net, Attention U-Net, SegNet, DeepLab v3+, I-ST-UNet, and SegFormer. Additionally, it reaches a real-time inference speed of 56.31 FPS, significantly surpassing other models. The experimental results demonstrate the proposed framework’s strong generalization capability and robustness under varying noise levels and damage scenarios, underscoring its suitability for scalable, automated surface damage assessment in UAV-based remote sensing of civil infrastructure. Full article
Show Figures

Figure 1

26 pages, 3711 KiB  
Article
Probability Characteristics of High and Low Flows in Slovakia: A Comprehensive Hydrological Assessment
by Pavla Pekárová, Veronika Bačová Mitková and Dana Halmová
Hydrology 2025, 12(8), 199; https://doi.org/10.3390/hydrology12080199 - 31 Jul 2025
Viewed by 159
Abstract
Frequency analysis is essential for designing hydraulic structures and managing water resources, as it helps assess hydrological extremes. However, changes in river basins can impact their accuracy, complicating the link between discharge and return periods. This study aims to comprehensively assess the probability [...] Read more.
Frequency analysis is essential for designing hydraulic structures and managing water resources, as it helps assess hydrological extremes. However, changes in river basins can impact their accuracy, complicating the link between discharge and return periods. This study aims to comprehensively assess the probability characteristics of long-term M-day maximum/minimum discharges in the Carpathian region of Slovakia. We analyze the long-term data from 26 gauging stations covering 90 years of observation. Slovak rivers show considerable intra-annual variability, especially between the summer–autumn (SA) and winter–spring (WS) seasons. To allow consistent comparisons, we apply a uniform methodology to estimate T-year daily maximum and minimum specific discharges over durations of 1 and 7 days for both seasons. Our findings indicate that 1-day maximum specific discharges are generally higher during the SA season compared to the WS season. The 7-day minimum specific discharges are lower during the WS season compared to the SA season. Slovakia’s diverse orographic and climatic conditions cause significant spatial variability in extreme discharges. However, the estimated T-year 7-day minimum and 1-day maximum specific discharges, based on the mean specific discharge and the altitude of the water gauge, exhibit certain nonlinear dependences. These relationships could support the indirect estimation of T-year M-day discharges in regions with similar runoff characteristics. Full article
(This article belongs to the Section Water Resources and Risk Management)
Show Figures

Figure 1

25 pages, 1696 KiB  
Article
Dual-Level Electric Submersible Pump (ESP) Failure Classification: A Novel Comprehensive Classification Bridging Failure Modes and Root Cause Analysis
by Mostafa A. Sobhy, Gehad M. Hegazy and Ahmed H. El-Banbi
Energies 2025, 18(15), 3943; https://doi.org/10.3390/en18153943 - 24 Jul 2025
Viewed by 274
Abstract
Electric submersible pumps (ESPs) are critical for artificial lift operations; however, they are prone to frequent failures, often resulting in high operational costs and production downtime. Traditional ESP failure classifications are limited by lack of standardization and the conflation of failure modes with [...] Read more.
Electric submersible pumps (ESPs) are critical for artificial lift operations; however, they are prone to frequent failures, often resulting in high operational costs and production downtime. Traditional ESP failure classifications are limited by lack of standardization and the conflation of failure modes with root causes. To address these limitations, this study proposes a new two-step integrated failure modes and root cause (IFMRC) classification system. The new framework clearly distinguishes between failure modes and root causes, providing a systematic, structured approach that enhances fault diagnosis and failure analysis and can lead to better failure prevention strategies. This methodology was validated using a case study of over 4000 ESP installations. The data came from Egypt’s Western Desert, covering a decade of operational data. The sources included ESP databases, workover records, and detailed failure investigation (DIFA) reports. The failure modes were categorized into electrical, mechanical, hydraulic, chemical, and operational types, while root causes were linked to environmental, design, operational, and equipment factors. Statistical analysis, in this case study, revealed that motor short circuits, low flow conditions, and cable short circuits were the most frequent failure modes, with excessive heat, scale deposition, and electrical grounding faults being the dominant root causes. This study underscores the importance of accurate root cause failure classification, robust data acquisition, and expanded failure diagnostics to improve ESP reliability. The proposed IFMRC framework addresses limitations in conventional taxonomies and facilitates ongoing enhancement of ESP design, operation, and maintenance in complex field conditions. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

24 pages, 2469 KiB  
Article
A Study on the Optimization and Sensitivity Analysis of Cuttings Transport in Large-Diameter Boreholes
by Qing Wang, Li Liu, Jiawei Zhang, Jianhua Guo, Xiaoao Liu, Guodong Ji, Fei Zhou and Haonan Yang
Fluids 2025, 10(8), 187; https://doi.org/10.3390/fluids10080187 - 22 Jul 2025
Viewed by 187
Abstract
In the drilling process of ultra-deep wells with large-diameter boreholes, the transport and deposition behavior of cuttings plays a critical role in maintaining wellbore cleanliness and ensuring operational safety. Due to the geometry of enlarged boreholes and their complex annular flow characteristics, conventional [...] Read more.
In the drilling process of ultra-deep wells with large-diameter boreholes, the transport and deposition behavior of cuttings plays a critical role in maintaining wellbore cleanliness and ensuring operational safety. Due to the geometry of enlarged boreholes and their complex annular flow characteristics, conventional single-parameter control methods often fail to achieve effective cuttings transport. This study aims to identify the dominant influencing factors and optimize key parameters by focusing on the cuttings volume fraction as a primary evaluation metric. A numerical simulation approach is employed to systematically investigate the influence of stabilizer geometry and hydraulic parameters. Five variables—drilling fluid velocity, drill pipe rotational speed, number of stabilizers, flow area, and helical angle—are selected for analysis. An initial one-factor sensitivity analysis is conducted to evaluate local impacts and to establish relative sensitivity indices, thereby identifying key variables. A variance-based global sensitivity analysis is further applied to quantify first-order effects, full-order effects, and interaction contributions, revealing nonlinear coupling and synergistic mechanisms. The results indicate that drilling fluid velocity and rotation speed exhibit the most significant first-order influences, while stabilizer-related parameters show strong interaction effects that are often underestimated by traditional methods. Based on these findings, an optimized cuttings transport scheme for large-diameter boreholes is proposed. Additionally, a multi-parameter response model for the cuttings volume fraction is developed using sensitivity-weighted analysis, offering theoretical support and methodological reference for enhancing cuttings transport performance and structural design in large-diameter borehole drilling operations. Full article
(This article belongs to the Special Issue Digital Technologies for Oil Recovery and Sustainability)
Show Figures

Figure 1

11 pages, 332 KiB  
Proceeding Paper
Water-Level Forecasting Based on an Ensemble Kalman Filter with a NARX Neural Network Model
by Jackson B. Renteria-Mena, Douglas Plaza and Eduardo Giraldo
Eng. Proc. 2025, 101(1), 2; https://doi.org/10.3390/engproc2025101002 - 21 Jul 2025
Viewed by 138
Abstract
It is fundamental, yet challenging, to accurately predict water levels at hydrological stations located along the banks of an open channel river due to the complex interactions between different hydraulic structures. This paper presents a novel application for short-term multivariate prediction applied to [...] Read more.
It is fundamental, yet challenging, to accurately predict water levels at hydrological stations located along the banks of an open channel river due to the complex interactions between different hydraulic structures. This paper presents a novel application for short-term multivariate prediction applied to hydrological variables based on a multivariate NARX model coupled to a nonlinear recursive Ensemble Kalman Filter (EnKF). The proposed approach is designed for two hydrological stations of the Atrato river in Colombia, where the variables, water level, water flow, and water precipitation, are correlated using a NARX model based on neural networks. The NARX model is designed to consider the complex dynamics of the hydrological variables and their corresponding cross-correlations. The short-term two-day water-level forecast is designed with a fourth-order NARX model. It is observed that the NARX model coupled with EnKF improves the robustness of the proposed approach in terms of external disturbances. Furthermore, the proposed approach is validated by subjecting the NARX–EnKF coupled model to five levels of additive white noise. The proposed approach employs metric regressions to evaluate the proposed model by means of the Root Mean Squared Error (RMSE) and the Nash–Sutcliffe model efficiency (NSE) coefficient. Full article
Show Figures

Figure 1

18 pages, 11176 KiB  
Article
Impact Mechanical Properties of Magnesium Alloy Structures with Annularly Distributed Multi-Sphere Point Contacts
by Xiaoting Sun, Guibo Yu, Qiao Ma, Yi Wang and Wei Wang
Crystals 2025, 15(7), 665; https://doi.org/10.3390/cryst15070665 - 21 Jul 2025
Viewed by 224
Abstract
When a high-speed rotating projectile faces high impact loads, the sensitive parts of the control system can get damaged, resulting in operational failure. It is crucial to develop a unique buffer structure that offers impact resistance and has a small contact area. An [...] Read more.
When a high-speed rotating projectile faces high impact loads, the sensitive parts of the control system can get damaged, resulting in operational failure. It is crucial to develop a unique buffer structure that offers impact resistance and has a small contact area. An annularly distributed multi-sphere point contact structure was designed and fabricated on a magnesium alloy substrate based on the Hertz contact theory. The accuracy of the finite element numerical model, constructed using Abaqus/Explicit, was verified through hydraulic impact tests. The impact mechanical properties of the structure were studied by analyzing the influence of the number, diameter, and cavity radius of hemispheres using an experimentally verified finite element model. The axial and radial deformations of the structure were compared and analyzed. The research findings indicate that the deformation and impact resistance of the structure can be greatly influenced by increasing the number of hemispheres, enlarging the hemisphere diameter, and incorporating internal cavities. Specifically, with 6 hemispheres, each with a diameter of Φ 6 mm and a cavity radius of R1.5 mm, the axial and radial deformations are only 1.03 mm and 3.02 mm, respectively. The contact area of a single hemisphere is 7.16 mm2. The study offers new perspectives on choosing buffer structures in high-impact environments. Full article
Show Figures

Figure 1

21 pages, 12252 KiB  
Article
Changes in Intra-Annual River Runoff in the Ile and Zhetysu Alatau Mountains Under Climate Change Conditions
by Rustam G. Abdrakhimov, Victor P. Blagovechshenskiy, Sandugash U. Ranova, Aigul N. Akzharkynova, Sezar Gülbaz, Ulzhan R. Aldabergen and Aidana N. Kamalbekova
Water 2025, 17(14), 2165; https://doi.org/10.3390/w17142165 - 21 Jul 2025
Viewed by 304
Abstract
This paper presents the results of studies on intra-annual runoff changes in the Ile River basin based on data from gauging stations up to 2021. Changes in climatic characteristics that determine runoff formation in the mountainous and foothill areas of the river catchment [...] Read more.
This paper presents the results of studies on intra-annual runoff changes in the Ile River basin based on data from gauging stations up to 2021. Changes in climatic characteristics that determine runoff formation in the mountainous and foothill areas of the river catchment have led to alterations in the water regime of the watercourses. The analysis of the temporal and spatial patterns of river flow formation in the basin, as well as its distribution by seasons and months, is essential for solving applied water management problems and assessing the risks of hazardous hydrological phenomena, such as high floods and low water levels. The statistical analysis of annual and monthly river runoff fluctuations enabled the identification of relatively homogeneous estimation periods during stationary observations under varying climatic conditions. The obtained characteristics of annual and intra-annual river runoff in the Ile River basin for the modern period provide insights into changes in average monthly water discharge and, more broadly, runoff volume during different phases of the water regime. In the future, these characteristics are expected to guide the design of hydraulic structures and the rational use of surface runoff in this intensively developing region of Kazakhstan. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

27 pages, 15704 KiB  
Article
Study on Mechanical Properties of Composite Basalt Fiber 3D-Printed Concrete Based on 3D Meso-Structure
by Shengxuan Ding, Jiren Li and Mingqiang Wang
Materials 2025, 18(14), 3379; https://doi.org/10.3390/ma18143379 - 18 Jul 2025
Viewed by 403
Abstract
As 3D concrete printing emerges as a transformative construction method, its structural safety remains hindered by unresolved issues of mechanical anisotropy and interlayer defects. To address this, we systematically investigate the failure mechanisms and mechanical performance of basalt fiber-reinforced 3D-printed magnesite concrete. A [...] Read more.
As 3D concrete printing emerges as a transformative construction method, its structural safety remains hindered by unresolved issues of mechanical anisotropy and interlayer defects. To address this, we systematically investigate the failure mechanisms and mechanical performance of basalt fiber-reinforced 3D-printed magnesite concrete. A total of 30 cube specimens (50 mm × 50 mm × 50 mm)—comprising three types (Corner, Stripe, and R-a-p)—were fabricated and tested under compressive and splitting tensile loading along three orthogonal directions using a 2000 kN electro-hydraulic testing machine. The results indicate that 3D-printed concrete exhibits significantly lower strength than cast-in-place concrete, which is attributed to weak interfacial bonds and interlayer pores. Notably, the R-a-p specimen’s Z-direction compressive strength is 38.7% lower than its Y-direction counterpart. To complement the mechanical tests, DIC, CT scanning, and SEM analyses were conducted to explore crack development, internal defect morphology, and microstructure. A finite element model based on the experimental data successfully reproduced the observed failure processes. This study not only enhances our understanding of anisotropic behavior in 3D-printed concrete but also offers practical insights for print-path optimization and sustainable structural design. Full article
(This article belongs to the Special Issue 3D Printing Materials in Civil Engineering)
Show Figures

Figure 1

14 pages, 2394 KiB  
Article
Digital-Twin-Based Structural Health Monitoring of Dikes
by Marike Bornholdt, Martin Herbrand, Kay Smarsly and Gerhard Zehetmaier
CivilEng 2025, 6(3), 39; https://doi.org/10.3390/civileng6030039 - 18 Jul 2025
Viewed by 372
Abstract
Earthen flood protection structures are planned and constructed with an expected service life of several decades while being exposed to environmental impacts that may lead to structural or hydraulic failure. Current maintenance procedures involve only repairing external damage, leaving internal processes contributing to [...] Read more.
Earthen flood protection structures are planned and constructed with an expected service life of several decades while being exposed to environmental impacts that may lead to structural or hydraulic failure. Current maintenance procedures involve only repairing external damage, leaving internal processes contributing to structural damage often undetected. Through structural health monitoring (SHM), structural deficits can be detected before visible damage occurs. To improve maintenance workflows and support predictive maintenance of dikes, this paper reports on the integration of digital twin concepts with SHM strategies, referred to as “digital-twin-based SHM”. A digital twin concept, including a standard-compliant building information model, is proposed and implemented in terms of a digital twin environment. For integrating monitoring and sensor data into the digital twin environment, a customized webform is designed. A communication protocol links preprocessed sensor data stored on a server with the digital twin environment, enabling model-based visualization and contextualization of the sensor data. As will be shown in this paper, a digital twin environment is set up and managed in the context of SHM in compliance with technical standards and using well-established software tools. In conclusion, digital-twin-based SHM, as proposed in this paper, has proven to advance predictive maintenance of dikes, contributing to the resilience of critical infrastructure against environmental impacts. Full article
(This article belongs to the Section Water Resources and Coastal Engineering)
Show Figures

Figure 1

18 pages, 6970 KiB  
Article
Study on Lateral Erosion Failure Behavior of Reinforced Fine-Grained Tailings Dam Due to Overtopping Breach
by Yun Luo, Mingjun Zhou, Menglai Wang, Yan Feng, Hongwei Luo, Jian Ou, Shangwei Wu and Xiaofei Jing
Water 2025, 17(14), 2088; https://doi.org/10.3390/w17142088 - 12 Jul 2025
Viewed by 326
Abstract
The overtopping-induced lateral erosion breaching of tailings dams represents a critical disaster mechanism threatening structural safety, particularly in reinforced fine-grained tailings dams where erosion behaviors demonstrate pronounced water–soil coupling characteristics and material anisotropy. Through physical model tests and numerical simulations, this study systematically [...] Read more.
The overtopping-induced lateral erosion breaching of tailings dams represents a critical disaster mechanism threatening structural safety, particularly in reinforced fine-grained tailings dams where erosion behaviors demonstrate pronounced water–soil coupling characteristics and material anisotropy. Through physical model tests and numerical simulations, this study systematically investigates lateral erosion failure patterns of reinforced fine-grained tailings under overtopping flow conditions. Utilizing a self-developed hydraulic initiation test apparatus, with aperture sizes of reinforced geogrids (2–3 mm) and flow rates (4–16 cm/s) as key control variables, the research elucidates the interaction mechanisms of “hydraulic scouring-particle migration-geogrid anti-sliding” during lateral erosion processes. The study revealed that compared to unreinforced specimens, reinforced specimens with varying aperture sizes (2–3 mm) demonstrated systematic reductions in final lateral erosion depths across flow rates (4–16 cm/s): 3.3–5.8 mm (15.6−27.4% reduction), 3.1–7.2 mm (12.8–29.6% reduction), 2.3–11 mm (6.9–32.8% reduction), and 2.5–11.4 mm (6.2–28.2% reduction). Smaller-aperture geogrids (2 mm × 2 mm) significantly enhanced anti-erosion performance through superior particle migration inhibition. Concurrently, a pronounced positive correlation between flow rate and lateral erosion depth was confirmed, where increased flow rates weakened particle erosion resistance and exacerbated lateral erosion severity. The numerical simulation results are in basic agreement with the lateral erosion failure process observed in model tests, revealing the dynamic process of lateral erosion in the overtopping breach of a reinforced tailings dam. These findings provide critical theoretical foundations for optimizing reinforced tailings dam design, construction quality control, and operational maintenance, while offering substantial engineering applications for advancing green mine construction. Full article
Show Figures

Figure 1

23 pages, 10392 KiB  
Article
Dual-Branch Luminance–Chrominance Attention Network for Hydraulic Concrete Image Enhancement
by Zhangjun Peng, Li Li, Chuanhao Chang, Rong Tang, Guoqiang Zheng, Mingfei Wan, Juanping Jiang, Shuai Zhou, Zhenggang Tian and Zhigui Liu
Appl. Sci. 2025, 15(14), 7762; https://doi.org/10.3390/app15147762 - 10 Jul 2025
Viewed by 253
Abstract
Hydraulic concrete is a critical infrastructure material, with its surface condition playing a vital role in quality assessments for water conservancy and hydropower projects. However, images taken in complex hydraulic environments often suffer from degraded quality due to low lighting, shadows, and noise, [...] Read more.
Hydraulic concrete is a critical infrastructure material, with its surface condition playing a vital role in quality assessments for water conservancy and hydropower projects. However, images taken in complex hydraulic environments often suffer from degraded quality due to low lighting, shadows, and noise, making it difficult to distinguish defects from the background and thereby hindering accurate defect detection and damage evaluation. In this study, following systematic analyses of hydraulic concrete color space characteristics, we propose a Dual-Branch Luminance–Chrominance Attention Network (DBLCANet-HCIE) specifically designed for low-light hydraulic concrete image enhancement. Inspired by human visual perception, the network simultaneously improves global contrast and preserves fine-grained defect textures, which are essential for structural analysis. The proposed architecture consists of a Luminance Adjustment Branch (LAB) and a Chroma Restoration Branch (CRB). The LAB incorporates a Luminance-Aware Hybrid Attention Block (LAHAB) to capture both the global luminance distribution and local texture details, enabling adaptive illumination correction through comprehensive scene understanding. The CRB integrates a Channel Denoiser Block (CDB) for channel-specific noise suppression and a Frequency-Domain Detail Enhancement Block (FDDEB) to refine chrominance information and enhance subtle defect textures. A feature fusion block is designed to fuse and learn the features of the outputs from the two branches, resulting in images with enhanced luminance, reduced noise, and preserved surface anomalies. To validate the proposed approach, we construct a dedicated low-light hydraulic concrete image dataset (LLHCID). Extensive experiments conducted on both LOLv1 and LLHCID benchmarks demonstrate that the proposed method significantly enhances the visual interpretability of hydraulic concrete surfaces while effectively addressing low-light degradation challenges. Full article
Show Figures

Figure 1

38 pages, 15198 KiB  
Article
Analysis the Composition of Hydraulic Radial Force on Centrifugal Pump Impeller: A Data-Centric Approach Based on CFD Datasets
by Hehui Zhang, Kang Li, Ting Liu, Yichu Liu, Jianxin Hu, Qingsong Zuo and Liangxing Jiang
Appl. Sci. 2025, 15(13), 7597; https://doi.org/10.3390/app15137597 - 7 Jul 2025
Viewed by 303
Abstract
Centrifugal pumps are essential in various industries, where their operational stability and efficiency are crucial. This study aims to analyze the composition and variation characteristics of the hydraulic radial force on the impeller using a data-centric approach based on computational fluid dynamics (CFD) [...] Read more.
Centrifugal pumps are essential in various industries, where their operational stability and efficiency are crucial. This study aims to analyze the composition and variation characteristics of the hydraulic radial force on the impeller using a data-centric approach based on computational fluid dynamics (CFD) datasets, providing guidance for optimizing impeller design. A high-precision CFD simulation on a six-blade end-suction centrifugal pump generated a comprehensive hydraulic load dataset. Data analysis methods included exploratory data analysis (EDA) to uncover patterns and trigonometric function fitting to model force variations accurately. Results revealed that the hydraulic radial force exhibits periodic behavior with a dominant blade passing frequency (BPF), showing minimal fluctuations at the rated flow rate and increased fluctuations as flow deviates. Each blade’s force could be approximated by sine curves with equal amplitudes and frequencies but successive phase changes, achieving high fitting quality (R2 ≥ 0.96). The force on the impeller can be decomposed into the contributions of each blade, with symmetric blades canceling out the main harmonics, leaving only constant terms and residuals. This study provides insights into force suppression mechanisms, enhancing pump stability and efficiency, and offers a robust framework for future research on fluid–structure interactions and pump design. Full article
(This article belongs to the Special Issue Text Mining and Data Mining)
Show Figures

Figure 1

28 pages, 12839 KiB  
Systematic Review
A Review of Flood Mitigation Performance and Numerical Representation of Leaky Barriers
by Wuyi Zhuang, Jun Ma, Rupal Mandania and Jack Chen
Water 2025, 17(13), 2023; https://doi.org/10.3390/w17132023 - 5 Jul 2025
Viewed by 493
Abstract
Leaky barriers mimic the natural accumulation of large wood in watercourses to effectively slow and store runoff and flow. Their role in flood management has attracted increasing attention due to their potential to reduce downstream risk. Numerous field studies have demonstrated the effectiveness [...] Read more.
Leaky barriers mimic the natural accumulation of large wood in watercourses to effectively slow and store runoff and flow. Their role in flood management has attracted increasing attention due to their potential to reduce downstream risk. Numerous field studies have demonstrated the effectiveness of leaky barriers in retaining flood water in upstream catchment. However, their hydraulic behaviour remains poorly quantified due to limited empirical data and the modelling challenges. This review systematically investigates and synthesises research conducted over the past five years on the hydraulic behaviour and numerical representation of leaky barriers, while also drawing on earlier relevant studies to provide broader context. Additionally, it summarizes key hydraulic parameters, empirical equations, and modelling approaches that are used to characterise these structures. Furthermore, this review highlights the challenges of modelling individual leaky barriers in the field, which complicate their structural design and implementation. Future research should investigate the long-term performance of leaky barriers and explore optimal placement strategies to enhance flood mitigation within a catchment. Full article
Show Figures

Figure 1

23 pages, 4667 KiB  
Article
An Experimental Study on the Charging Effects and Atomization Characteristics of a Two-Stage Induction-Type Electrostatic Spraying System for Aerial Plant Protection
by Yufei Li, Qingda Li, Jun Hu, Changxi Liu, Shengxue Zhao, Wei Zhang and Yafei Wang
Agronomy 2025, 15(7), 1641; https://doi.org/10.3390/agronomy15071641 - 5 Jul 2025
Viewed by 330
Abstract
To address the technical problems of broad droplet size spectrum, insufficient atomization uniformity, and spray drift in plant protection unmanned aerial vehicle (UAV) applications, this study developed a novel two-stage aerial electrostatic spraying device based on the coupled mechanisms of hydraulic atomization and [...] Read more.
To address the technical problems of broad droplet size spectrum, insufficient atomization uniformity, and spray drift in plant protection unmanned aerial vehicle (UAV) applications, this study developed a novel two-stage aerial electrostatic spraying device based on the coupled mechanisms of hydraulic atomization and electrostatic induction, and, through the integration of three-dimensional numerical simulation and additive manufacturing technology, a new two-stage inductive charging device was designed on the basis of the traditional hydrodynamic nozzle structure, and a synergistic optimization study of the charging effect and atomization characteristics was carried out systematically. With the help of a charge ratio detection system and Malvern laser particle sizer, spray pressure (0.25–0.35 MPa), charging voltage (0–16 kV), and spray height (100–1000 mm) were selected as the key parameters, and the interaction mechanism of each parameter on the droplet charge ratio (C/m) and the particle size distribution (Dv50) was analyzed through the Box–Behnken response surface experimental design. The experimental data showed that when the charge voltage was increased to 12 kV, the droplet charge-to-mass ratio reached a peak value of 1.62 mC/kg (p < 0.01), which was 83.6% higher than that of the base condition; the concentration of the particle size distribution of the charged droplets was significantly improved; charged droplets exhibited a 23.6% reduction in Dv50 (p < 0.05) within the 0–200 mm core atomization zone below the nozzle, with the coefficient of variation of volume median diameter decreasing from 28.4% to 16.7%. This study confirms that the two-stage induction structure can effectively break through the charge saturation threshold of traditional electrostatic spraying, which provides a theoretical basis and technical support for the optimal design of electrostatic spraying systems for plant protection UAVs. This technology holds broad application prospects in agricultural settings such as orchards and farmlands. It can significantly enhance the targeted deposition efficiency of pesticides, reducing drift losses and chemical usage, thereby enabling agricultural enterprises to achieve practical economic benefits, including reduced operational costs, improved pest control efficacy, and minimized environmental pollution, while generating environmental benefits. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

Back to TopTop