Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (197)

Search Parameters:
Keywords = hybrid shielding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3473 KB  
Article
Hybrid Phy-X/PSD–Geant4 Assessment of Gamma and Neutron Shielding in Lead-Free HDPE Composites Reinforced with High-Z Oxides
by Ahmed Alharbi, Nassar N. Asemi and Hamed Alnagran
Polymers 2026, 18(2), 179; https://doi.org/10.3390/polym18020179 - 9 Jan 2026
Viewed by 369
Abstract
This study evaluates lead-free high-density polyethylene (HDPE) composites reinforced with high-Z oxides (Bi2O3, WO3, Gd2O3, TeO2, and a Bi2O3/WO3 hybrid) as lightweight materials for gamma-ray and [...] Read more.
This study evaluates lead-free high-density polyethylene (HDPE) composites reinforced with high-Z oxides (Bi2O3, WO3, Gd2O3, TeO2, and a Bi2O3/WO3 hybrid) as lightweight materials for gamma-ray and fast-neutron shielding. A hybrid computational framework combining Phy-X/PSD with Geant4 Monte Carlo simulations was used to obtain key shielding parameters, including the linear and mass attenuation coefficients (μ, μ/ρ), half-value layer (HVL), mean free path (MFP), effective atomic number (Zeff), effective electron density (Neff), exposure and energy-absorption buildup factors (EBF, EABF), and fast-neutron removal cross section (ΣR). The incorporation of heavy oxides produced a pronounced improvement in gamma-ray attenuation, particularly at low energies, where the linear attenuation coefficient increased from below 1 cm−1 for neat HDPE to values exceeding 130–150 cm−1 for Bi- and W-rich composites. In the intermediate Compton-scattering region (≈0.3–1 MeV), all oxide-reinforced systems maintained a clear attenuation advantage, with μ values around 0.12–0.13 cm−1 compared with ≈0.07 cm−1 for pure HDPE. At higher photon energies, the dense composites continued to outperform the polymer matrix, yielding μ values of approximately 0.07–0.09 cm−1 versus ≈0.02 cm−1 for HDPE due to enhanced pair-production interactions. The Bi2O3/WO3 hybrid composite exhibited attenuation behavior comparable, and in some regions slightly exceeding, that of the single-oxide systems, indicating that mixed fillers can effectively balance density and shielding efficiency. Oxide addition significantly reduced exposure and energy-absorption buildup factors below 1 MeV, with a moderate increase at higher energies associated with secondary radiation processes. Fast-neutron removal cross sections were also modestly enhanced, with Gd2O3-containing composites showing the highest values due to the combined effects of hydrogen moderation and neutron capture. The close agreement between Phy-X/PSD and Geant4 results confirms the reliability of the dual-method approach. Overall, HDPE composites containing about 60 wt.% oxide filler offer a practical compromise between shielding performance, manufacturability, and environmental safety, making them promising candidates for medical, nuclear, and aerospace radiation-protection applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

16 pages, 2799 KB  
Article
Coupling Effect of the Bottom Type-Depth Configuration on the Sonar Detection Range in Seamount Environments
by Xiaofang Sun, Shisong Zhang, Feiyu Chen and Pingbo Wang
J. Mar. Sci. Eng. 2026, 14(1), 89; https://doi.org/10.3390/jmse14010089 - 2 Jan 2026
Viewed by 269
Abstract
Seabed topography exerts a profound influence on underwater acoustic propagation, and the coupling effect between bottom acoustic properties and the source–receiver geometric configuration remains insufficiently quantified, particularly in seamount shielding scenarios. To address this gap, in this study, the BELLHOP ray model was [...] Read more.
Seabed topography exerts a profound influence on underwater acoustic propagation, and the coupling effect between bottom acoustic properties and the source–receiver geometric configuration remains insufficiently quantified, particularly in seamount shielding scenarios. To address this gap, in this study, the BELLHOP ray model was integrated with Earth topography 1 (ETOPO1) topographic data and Hybrid Coordinate Ocean Model (HYCOM) hydrological data for seamounts east of Taiwan. Transmission loss (TL) of 300 Hz sound waves was simulated across four typical bottom types (rock, coarse sand, silt, and clay) under varying source depths (50–1000 m) and receiver depths (50–500 m). The maximum sonar detection range was delineated using an 80 dB TL threshold as the criterion for effective detection. The key findings reveal that the bottom properties are the primary factors that reduce the detection range: the maximum detection range over rock bottom exceeds that over clay by more than 8-fold. Notably, a shallow source–shallow receiver configuration mitigates the acoustic shadow effect induced by seamounts, whereas deep receiver deployment (≥500 m) diminishes the discriminative impact of bottom types on the propagation behavior. Furthermore, a segmented empirical prediction formula was established, which reconciles both the physical mechanisms (e.g., bottom reflection-absorption and seamount shielding) and engineering applicability. This formula provides a robust theoretical basis for evaluating sonar performance in complex seabed topography settings, thereby facilitating optimized underwater detection strategies in seamount-dominated marine environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 2941 KB  
Article
Shield Thrust Time-Series Prediction Based on BiLSTM with Intelligent Hyperparameter Optimization
by Lingbin Yao, Wei Yin, Fanchao Kong and Junqi Wang
Appl. Sci. 2026, 16(1), 325; https://doi.org/10.3390/app16010325 - 28 Dec 2025
Viewed by 215
Abstract
Shield thrust is a key control parameter for ensuring the safety and efficiency of tunnel construction. Under complex geological conditions and strong data nonlinearity, conventional prediction methods often fail to achieve sufficient accuracy. This study proposes a hybrid prediction model in which a [...] Read more.
Shield thrust is a key control parameter for ensuring the safety and efficiency of tunnel construction. Under complex geological conditions and strong data nonlinearity, conventional prediction methods often fail to achieve sufficient accuracy. This study proposes a hybrid prediction model in which a bidirectional long short-term memory (BiLSTM) network is optimized by intelligent algorithms. A multidimensional input dataset comprising tunnel geometry, geomechanical parameters and tunnelling parameters is constructed, and BiLSTM is used to capture bidirectional temporal dependencies in the tunnelling data. To adaptively determine key BiLSTM hyperparameters (number of neurons, dropout rate and learning rate), four intelligent optimization algorithms—genetic algorithm (GA), particle swarm optimization (PSO), sparrow search algorithm (SSA) and Hunger Games Search (HGS)—are employed for hyperparameter tuning, using the root-mean-square error (RMSE) between predicted and measured values as the fitness function. Four hybrid models, GA–BiLSTM, PSO–BiLSTM, SSA–BiLSTM and HGS–BiLSTM, are validated using real engineering data from Beijing Metro Line 22, Guanzhuang–Yongshun shield-driven section. The results show that HGS–BiLSTM outperforms the other models in terms of RMSE, mean absolute error (MAE), mean absolute percentage error (MAPE) and coefficient of determination (R2) and exhibits faster convergence, supporting real-time prediction and decision-making in shield thrust control. Full article
Show Figures

Figure 1

27 pages, 4782 KB  
Review
Recent Advances in Hybrid Non-Conventional Assisted Ultra-High-Precision Single-Point Diamond Turning
by Shahrokh Hatefi, Yimesker Yihun and Farouk Smith
Processes 2026, 14(1), 84; https://doi.org/10.3390/pr14010084 - 26 Dec 2025
Viewed by 710
Abstract
Ultra-precision single-point diamond turning (SPDT) remains the core process for fabricating optical-grade surfaces with nanometric roughness and sub-micrometer form accuracy. However, machining hard-to-cut or brittle materials such as high-entropy alloys, metals, ceramics, and semiconductors is limited by severe tool wear, high cutting forces, [...] Read more.
Ultra-precision single-point diamond turning (SPDT) remains the core process for fabricating optical-grade surfaces with nanometric roughness and sub-micrometer form accuracy. However, machining hard-to-cut or brittle materials such as high-entropy alloys, metals, ceramics, and semiconductors is limited by severe tool wear, high cutting forces, and brittle fracture. To overcome these challenges, a new generation of non-conventional assisted and hybrid SPDT platforms has emerged, integrating multiple physical fields, including mechanical, thermal, magnetic, chemical, or cryogenic methods, into the cutting zone. This review comprehensively summarizes recent advances in hybrid non-conventional assisted SPDT platforms that combine two or more assistive techniques such as ultrasonic vibration, laser heating, magnetic fields, plasma or gas shielding, ion implantation, and cryogenic cooling. The synergistic effects of these dual-field platforms markedly enhance machinability, suppress tool wear, and extend ductile-mode cutting windows, enabling direct ultra-precision machining of previously intractable materials. Recent key case studies are analyzed in terms of material response, surface integrity, tool life, and implementation complexity. Comparative analysis shows that hybrid SPDT can significantly reduce surface roughness, extend diamond tool life, and yield optical-quality finishes on hard-to-cut materials, including ferrous alloys, composites, and crystals. This review concludes by identifying major technical challenges and outlining future directions toward optimal hybrid SPDT platforms for next-generation ultra-precision manufacturing. Full article
Show Figures

Figure 1

16 pages, 4356 KB  
Article
Effects of Shielding Gas Composition on Process Stability and Arc Behavior of Laser-Cable-Type Welding Wire Arc Hybrid Welding
by Zhidong Yang, Kun Wang, Yang He, Yinhui Rao, Xiaojie Yang, Peng Zhao, Chenfu Fang and Yuntao Chen
Metals 2026, 16(1), 20; https://doi.org/10.3390/met16010020 - 25 Dec 2025
Viewed by 311
Abstract
This study systematically investigates the behavior of droplet transfer and the characteristics of weld morphology in laser-cable-type welding wire (CWW) arc hybrid welding under varying Ar-CO2 shielding gas compositions, utilizing AH36 shipbuilding steel. During the hybrid welding process, a comparative analysis was [...] Read more.
This study systematically investigates the behavior of droplet transfer and the characteristics of weld morphology in laser-cable-type welding wire (CWW) arc hybrid welding under varying Ar-CO2 shielding gas compositions, utilizing AH36 shipbuilding steel. During the hybrid welding process, a comparative analysis was conducted on the welding process and weld formation using a high-speed camera system and a current–voltage waveform acquisition system. The experimental findings indicated that the arc width exhibited an upward trend, while the arc height demonstrated a decline as the CO2 content increased. Additionally, the welding current experienced a decrease. Furthermore, the arc became more regular with an increase in the top arc width, which enhanced process stability. The peak intensity of the curve for 90% Ar + 10% CO2 was the largest, and the peak range was the narrowest, indicating that the current was more stable compared to the other two shielding gas compositions. The droplet transfer frequency exhibited a decreasing trend with the increase in CO2, while the diameter initially decreased and then increased. As the CO2 content increased, the droplet transfer mode transitioned from a mixed mode involving both globular transfer and short circuits to predominantly globular transfer. The increase in CO2 promoted weld penetration while reducing its width, with the penetration depth of the weld increasing by 12.3% when the CO2 content rose to 18%. Full article
(This article belongs to the Section Welding and Joining)
Show Figures

Figure 1

42 pages, 26296 KB  
Article
Gamma Radiation Shielding Efficiency of Cross-Linked Polystyrene-b-Polyethyleneglycol Block Copolymer Nanocomposites Doped Arsenic (III) Oxide and Boron Nitride Nanoparticles
by Bülend Ortaç, Taylan Baskan, Saliha Mutlu, Sevil Savaskan Yilmaz and Ahmet Hakan Yilmaz
Polymers 2025, 17(24), 3330; https://doi.org/10.3390/polym17243330 - 17 Dec 2025
Viewed by 444
Abstract
In recent years, polymer-based hybrid nanocomposites have emerged as promising alternatives to traditional heavy metal shields due to their low density, flexibility, and environmental safety. In this study, the synthesis of PS-PEG copolymers and the gamma radiation-shielding properties of PS-PEG/As2O3 [...] Read more.
In recent years, polymer-based hybrid nanocomposites have emerged as promising alternatives to traditional heavy metal shields due to their low density, flexibility, and environmental safety. In this study, the synthesis of PS-PEG copolymers and the gamma radiation-shielding properties of PS-PEG/As2O3, PS-PEG/BN, and PS-PEG/As2O3/BN nanocomposites with different compositions are investigated. The goal is to find the optimal nanocomposite composition for gamma radiation shielding and dosimetry. Therefore, the mass attenuation coefficient (MAC), linear attenuation coefficient (LAC), half-value layer (HVL), tenth-value layer (TVL), effective atomic number, mean free path (MFP), radiation shielding efficiency (RPE), electron density, and specific gamma-ray constant were presented. Gamma rays emitted by the Eu source were detected by a high-purity germanium (HPGe) detector device. GammaVision was used to analyze the given data. Photon energy was in the vicinity of 121.8–1408.0 keV. The MAC values in XCOM simulation tools were used to compute. Gamma-shielding efficiency was increased by an increased number of NPs at a smaller photon energy. At 121.8 keV, the HVL of a composite with 70 wt% As2O3 NPs is 2.00 cm, which is comparable to the HVL of lead (0.56 cm) at the same energy level. Due to the increasing need for lightweight, flexible, and lead-free shielding materials, PS-b-PEG copolymer-based nanocomposites reinforced with arsenic oxide and BN NPs will be materials of significant interest for next-generation radiation protection applications. Full article
(This article belongs to the Special Issue Recent Advances and Applications of Polymer Nanocomposites)
Show Figures

Graphical abstract

15 pages, 1324 KB  
Article
Analysis of Passive Shielding Performance Stability in Hybrid Magnetic Shielding Devices
by Shicheng Yu, Jinji Sun, Haifeng Zhang, Bangcheng Han and Zhouqiang Yang
Appl. Sci. 2025, 15(24), 13173; https://doi.org/10.3390/app152413173 - 16 Dec 2025
Cited by 1 | Viewed by 325
Abstract
In hybrid active–passive magnetic shielding systems, active compensation coils are used to suppress residual magnetic fields inside the shield. However, due to the intrinsic hysteresis of high-permeability materials, the compensation fields inevitably magnetize the passive layers. This process introduces new and unpredictable remanent [...] Read more.
In hybrid active–passive magnetic shielding systems, active compensation coils are used to suppress residual magnetic fields inside the shield. However, due to the intrinsic hysteresis of high-permeability materials, the compensation fields inevitably magnetize the passive layers. This process introduces new and unpredictable remanent magnetization, paradoxically worsening the remanence stability during active compensation. This study systematically investigates and quantifies how the number of passive shielding layers affects remanence instability. A combined approach of theoretical analysis, finite-element simulations, and experimental validation is employed. The results reveal a key counter-intuitive finding: although adding more shielding layers enhances the static attenuation of external fields, it markedly amplifies the remanence instability induced by active compensation. Specifically, multi-layer shields exhibit larger remanence changes under identical compensation-field excitations. This finding reveals a previously overlooked performance trade-off and provides new design insights for ultra-high-precision shielding systems. These findings provide essential guidance for optimizing the design and operation of next-generation ultra-high-precision magnetic shielding devices and their applications in frontier areas such as fundamental physics and biomedicine. Full article
Show Figures

Figure 1

16 pages, 2233 KB  
Article
Formation AgI and ZnI2 Nanocrystals in AgI-ZnI2-SiO2 Hybrid Powders
by Anastasiia Averkina, Igor Valtsifer, Vladimir Strelnikov, Natalia Kondrashova and Viktor Valtsifer
Nanomaterials 2025, 15(24), 1875; https://doi.org/10.3390/nano15241875 - 13 Dec 2025
Viewed by 386
Abstract
AgI and ZnI2 nanocrystals are key components for AgI-ZnI2-SiO2 hybrid powders (HPs), which could be potentially important for atmospheric artificial precipitation technology. HPs were created by the “Hydrothermal template cocondensation” method (“HTC” method). Mesoporous silica dioxide (MCM48, MCM41, SBA15, [...] Read more.
AgI and ZnI2 nanocrystals are key components for AgI-ZnI2-SiO2 hybrid powders (HPs), which could be potentially important for atmospheric artificial precipitation technology. HPs were created by the “Hydrothermal template cocondensation” method (“HTC” method). Mesoporous silica dioxide (MCM48, MCM41, SBA15, SBA16), silver iodides, and zinc iodides were simultaneously grown under specific conditions. The influence of silica dioxide on AgI and ZnI2 nanocrystals characteristics (phase, size, and thermal stability) were studied using various physicochemical analysis methods. In addition to crystal features, some structural and textural properties of the AgI-ZnI2-SiO2 hybrid as an individual agglomerate and its morphology were determined. This showed that nanocrystal features were dependent on synthesis condition. The influence of the nature of the reagent, which is pH-forming, was manifested at the initial stage of the process, and the morphology of the silica dioxide matrix controlled the crystal properties during the post-synthesis phase. It was established that the thermal stability of AgI and ZnI2 nanocrystals increased due to the protective shielding function of that SiO2 matrix. Full article
Show Figures

Graphical abstract

19 pages, 9701 KB  
Article
Analytical, Numerical, and Experimental Investigation of an Eccentric Double-Ring Microwave Resonator for Electromagnetic Shielding Applications
by Slavko Rupčić, Vanja Mandrić and Ismail Baxhaku
Appl. Sci. 2025, 15(24), 12928; https://doi.org/10.3390/app152412928 - 8 Dec 2025
Viewed by 278
Abstract
This study presents an in-depth investigation of an eccentric double-ring microwave resonator comprising two asymmetrically coupled conductive loops connected at a single point. The configuration was systematically analyzed using analytical modeling, full-wave electromagnetic simulations (Ansys HFSS), and experimental characterization. Analytical formulations based on [...] Read more.
This study presents an in-depth investigation of an eccentric double-ring microwave resonator comprising two asymmetrically coupled conductive loops connected at a single point. The configuration was systematically analyzed using analytical modeling, full-wave electromagnetic simulations (Ansys HFSS), and experimental characterization. Analytical formulations based on the resonant condition of thin conductive rings provided theoretical estimates of the fundamental and higher-order eigenmodes, while simulations yielded accurate resonance frequencies, transmission responses, and electric field distributions. The transmission coefficient (S21) exhibited two distinct resonance dips at 436 MHz and 708 MHz, confirming strong inter-ring coupling and hybrid mode formation. Electric field mapping revealed pronounced confinement within the resonator region (E > 170 V/m) and substantial attenuation of the transmitted field (E < 13 V/m), demonstrating efficient electromagnetic energy suppression. Experimental results showed excellent consistency with theoretical predictions. This paper aims to establish a compact, low-cost, and tunable resonant structure capable of frequency-selective attenuation and field confinement without using lossy materials. Unlike conventional symmetric resonators, the eccentric configuration enables enhanced coupling control and modal diversity, making it highly relevant for the design of next-generation electromagnetic shielding, filtering, and sensing systems. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

24 pages, 6846 KB  
Article
Comparative Role of rGO, AgNWs, and rGO–AgNWs Hybrid Structure in the EMI Shielding Performance of Polyaniline/PCL-Based Flexible Films
by Brankica Gajić, Marija Radoičić, Muhammad Yasir, Warda Saeed, Silvester Bolka, Blaž Nardin, Jelena Potočnik, Gordana Ćirić-Marjanović, Zoran Šaponjić and Svetlana Jovanović
Molecules 2025, 30(24), 4693; https://doi.org/10.3390/molecules30244693 - 8 Dec 2025
Viewed by 501
Abstract
The present study explores the comparative influence of reduced graphene oxide (rGO), silver nanowires (AgNWs), and their hybrid rGO–AgNWs on the electromagnetic interference (EMI) shielding performance of polyaniline (PANI)-based flexible films prepared using a polycaprolactone (PCL) matrix. The nanocomposites were synthesized through in [...] Read more.
The present study explores the comparative influence of reduced graphene oxide (rGO), silver nanowires (AgNWs), and their hybrid rGO–AgNWs on the electromagnetic interference (EMI) shielding performance of polyaniline (PANI)-based flexible films prepared using a polycaprolactone (PCL) matrix. The nanocomposites were synthesized through in situ oxidative polymerization of aniline in the presence of individual or hybrid fillers, followed by their dispersion in the PCL matrix and casting of the corresponding films. Morphological and structural characterization (SEM, Raman, and FTIR spectroscopy) confirmed a uniform PANI coating on both rGO sheets and AgNWs, forming hierarchical 3D conductive networks. Thermal (TGA) and thermomechanical (TMA) analyses revealed enhanced thermal stability and stiffness across all composite systems, driven by strong interfacial interactions and restricted polymer chain mobility. Tmax increased from 437.9 °C for neat PCL to 487.9 °C for PANI/PCL, 480.6 °C for PANI/rGO/PCL, 499.4 °C for PANI/AgNWs/PCL and 495.0 °C for the hybrid PANI/rGO–AgNWs/PCL film. The gradual decrease in contact angle following the order PANI/AgNWs/PCL < PANI/rGO–AgNWs/PCL < PANI/rGO/PCL < PANI/PCL < PCL clearly indicates a systematic increase in surface polarity and surface energy with the incorporation of conductive nanofillers. Electrical conductivity reached 60.8 S cm−1 for PANI/rGO/PCL, gradually decreasing to 27.4 S cm−1 for PANI/AgNWs/PCL and 22.1 S cm−1 for the quaternary hybrid film. The EMI shielding effectiveness (SET) measurements in the X-band (8–12 GHz) demonstrated that the PANI/rGO/PCL film exhibited the highest attenuation (~7.2 dB). In contrast, the incorporation of AgNWs partially disrupted the conductive network, reducing SE to ~5–6 dB. The findings highlight the distinct and synergistic roles of 1D and 2D fillers in modulating the electrical, thermal, and mechanical properties of biodegradable polymer films, offering a sustainable route toward lightweight, flexible EMI shielding materials. Full article
Show Figures

Figure 1

33 pages, 1512 KB  
Review
Pineapple-Derived Nanocellulose for Nanocomposites: Extraction, Processing, and Properties
by Marianelly Esquivel-Alfaro, Oscar Rojas-Carrillo, Belkis Sulbarán-Rangel, Lilliana Rodríguez-Barquero, Hasbleidy Palacios-Hinestroza and Orlando J. Rojas
J. Compos. Sci. 2025, 9(12), 652; https://doi.org/10.3390/jcs9120652 - 1 Dec 2025
Viewed by 1316
Abstract
Pineapple waste is an underexplored source for producing nanocomposites, from which nanocellulose, namely cellulose nanocrystals (CNCs) or cellulose nanofibers (CNFs), can be produced. This review summarizes extraction methods from different pineapple residues (leaves, crown leaves, stem, peel, pulp, and pomace), covering top-down processes [...] Read more.
Pineapple waste is an underexplored source for producing nanocomposites, from which nanocellulose, namely cellulose nanocrystals (CNCs) or cellulose nanofibers (CNFs), can be produced. This review summarizes extraction methods from different pineapple residues (leaves, crown leaves, stem, peel, pulp, and pomace), covering top-down processes (hydrolysis, oxidation, carboxymethylation, and mechanical fibrillation) and bottom-up strategies (ionic liquids and deep eutectic solvents). The review examines the influence of the morphology and crystallinity of nanocellulose on the functional performance of the nanocomposites. Strategies for processing pineapple-derived nanocellulose composites are analyzed by technique (solution casting, film stacking, and melt blending/extrusion) and polymer matrices (starch, PVA, chitosan, PLA, PHBV, PBAT, proteins, and polysaccharides), including typical loading levels for most polymer-reinforced systems (0.5–5 wt.%), while higher levels (15–50 wt.%) are used in particular cases such as PVA, CMC, and cellulosic matrices. The impact on mechanical strength, barrier behavior, UV shielding, and optical properties is summarized, along with reports of self-reinforced and hybrid cellulose-derived matrices. A benchmarking section was prepared to show nanocellulose loading ranges, trends in properties, and processing-relevant information categorized by type of matrix. Finally, the review describes the potential roles of pineapple waste within a bioeconomy context and identifies some extraction by-products that could be incorporated into diverse value chains. Full article
(This article belongs to the Section Nanocomposites)
Show Figures

Graphical abstract

14 pages, 2595 KB  
Article
New Electromagnetic Shielding Materials Based on Viscose/Maghemite/Goethite/Polysiloxane
by Razvan Rotaru, Elena Ungureanu, Bogdan M. Tofănică, Ovidiu C. Ungureanu and Maria E. Fortună
Inorganics 2025, 13(12), 388; https://doi.org/10.3390/inorganics13120388 - 26 Nov 2025
Viewed by 609
Abstract
In this study, we present a convenient approach for the preparation of viscose, maghemite, goethite, and poly(methylhydro-dimethyl)siloxane hybrid materials possessing electromagnetic shielding properties, thermal stability, strong magnetization, and very good hydrophobicity. The chemical compositions, morphologies, thermal properties, magnetic measurements, wettability, and dielectric properties [...] Read more.
In this study, we present a convenient approach for the preparation of viscose, maghemite, goethite, and poly(methylhydro-dimethyl)siloxane hybrid materials possessing electromagnetic shielding properties, thermal stability, strong magnetization, and very good hydrophobicity. The chemical compositions, morphologies, thermal properties, magnetic measurements, wettability, and dielectric properties of the prepared composites and pristine precursors were thoroughly investigated by Fourier transform infrared spectroscopy (FTIR), scanning and transmission electron microscopy (SEM and TEM), thermal degradation (TG, DTG, and DTA), magnetic measurements (magnetization, thermomagnetic curves, relative magnetic permeability), and dielectric spectrometry. Moreover, the electromagnetic shielding properties of pristine viscose and the final composite were assessed. Full article
Show Figures

Figure 1

22 pages, 3978 KB  
Article
A Novel Hybrid Deep Learning for Attitude Prediction in Sustainable Application of Shield Machine
by Manman Dong, Cheng Chen, Fanwei Zhong and Pengjiao Jia
Sustainability 2025, 17(23), 10604; https://doi.org/10.3390/su172310604 - 26 Nov 2025
Viewed by 372
Abstract
Accurate prediction of the shield attitude is critical for controlling the excavation direction, ensuring construction safety, and advancing the sustainability of shield tunneling by reducing energy and environmental disturbance. Traditional prediction methods for the shield attitude have a certain lag and low prediction [...] Read more.
Accurate prediction of the shield attitude is critical for controlling the excavation direction, ensuring construction safety, and advancing the sustainability of shield tunneling by reducing energy and environmental disturbance. Traditional prediction methods for the shield attitude have a certain lag and low prediction accuracy, and existing machine learning methods lack research on the varying importance of different parameters affecting the shield attitude, while also ignoring the global information characteristics of the data. To accurately predict the shield attitude and support sustainability-oriented operations, this study proposes a novel prediction model based on a project in Shenyang, China. The model utilizes a channel domain attention mechanism to learn the importance of various influencing parameters and extracts spatial features via a convolutional neural network. Additionally, it captures long-range dependency and local temporal features using a transformer augmented with a bidirectional long short-term memory network. Experimental results show that the proposed model achieves lower MAE and RMSE and higher R2 compared with baseline and sub-models. Its generalization and reliability are further validated using data from another shield tunnel section. From a sustainability perspective, timely and high-fidelity predictions enable proactive steering that reduces unnecessary corrective actions and extreme operating states (e.g., thrust/torque spikes), which are associated with higher energy use, accelerated consumable wear, over-grouting, and potential surface disturbance. Finally, integrating the model’s predictions with onsite adjustment measures effectively mitigates alignment deviations, contributing to more energy-efficient, resource-conscious, and low-disturbance trajectory control. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

20 pages, 3230 KB  
Article
Synergistic Effects in Hybrid Buckypapers of Graphene Nanoplatelets and Carbon Nanotubes: Processing and Performance
by Thais da Silva, Thiély da Silva, Rieyssa Corrêa, Rui Ribeiro, Guilherme Morgado, Larissa Montagna, Braian Uribe, Maraisa Goncalves, Michelle Costa, Fabio Passador, Maria Conceição Paiva and Edson Botelho
C 2025, 11(4), 85; https://doi.org/10.3390/c11040085 - 19 Nov 2025
Viewed by 1112
Abstract
Hybrid buckypapers (BPs) composed of graphene nanoplatelets (GNPs) and carbon nanotubes (CNTs) hold great potential for applications in flexible electronics, electromagnetic shielding, and energy storage. In this study, hybrid BPs were fabricated and characterized to evaluate their structural, thermal, and electrical properties. Hybrid [...] Read more.
Hybrid buckypapers (BPs) composed of graphene nanoplatelets (GNPs) and carbon nanotubes (CNTs) hold great potential for applications in flexible electronics, electromagnetic shielding, and energy storage. In this study, hybrid BPs were fabricated and characterized to evaluate their structural, thermal, and electrical properties. Hybrid BPs with varying GNP/CNT mass ratios (0/100, 25/75, 50/50, 75/25, 85/15, 90/10, and 95/5 wt%) were prepared via vacuum-assisted filtration of well-dispersed aqueous suspensions stabilized by surfactants. The resulting hybrid GNP/CNT BPs were dried and subjected to post-treatment processes to enhance structural integrity and electrical performance. Characterization techniques included scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Raman spectroscopy, thermogravimetric analysis (TGA), nitrogen adsorption/desorption isotherms, and impedance spectroscopy (IS). The hybrid GNP/CNT BPs exhibited electrical conductivities comparable to conventional CNT-based BPs. At GNP concentrations of 25 to 50 wt%, electrical conductivity values approached those of CNT-based BPs, while at GNP concentrations between 75 and 90 wt%, a slight increase in conductivity was observed (171%). These results highlight a synergistic effect at lower CNT concentrations, where the combination of CNTs and GNPs enhances conductivity. The findings suggest that optimal conductivity is achieved through a balanced incorporation of both materials, offering promising prospects for advanced BP applications. Full article
(This article belongs to the Section Carbon Materials and Carbon Allotropes)
Show Figures

Graphical abstract

25 pages, 2987 KB  
Review
Polyhedral Oligomeric Silsesquioxanes (POSS) for Transparent Coatings: Material Properties and Applications
by Yujia Chen, Zhiwei Bian, Yunhao Wei, Xiaojie He, Xuemin Lu and Qinghua Lu
Polymers 2025, 17(22), 3050; https://doi.org/10.3390/polym17223050 - 18 Nov 2025
Viewed by 1565
Abstract
Polyhedral oligomeric silsesquioxanes (POSS) harness their molecularly precise organic–inorganic hybrid cage architecture to deliver hardness, scratch resistance, and programmable functionality for next-generation transparent coatings. Tailoring of solubility, thermal stability, mechanical robustness, electronic characteristics, and interfacial properties is achieved through strategic peripheral modifications enabled [...] Read more.
Polyhedral oligomeric silsesquioxanes (POSS) harness their molecularly precise organic–inorganic hybrid cage architecture to deliver hardness, scratch resistance, and programmable functionality for next-generation transparent coatings. Tailoring of solubility, thermal stability, mechanical robustness, electronic characteristics, and interfacial properties is achieved through strategic peripheral modifications enabled by versatile synthetic methodologies—spanning metal catalysis, metal-free routes, and selective bond activation. Advanced integration techniques, including covalent grafting, chemical crosslinking, UV–thermal dual curing, and in situ polymerization, ensure uniform dispersion while optimizing coating–substrate adhesion and network integrity. The resultant coatings exhibit exceptional optical transparency, mechanical durability, tunable electrical performance, thermal endurance, and engineered surface hydrophobicity. These synergistic attributes underpin transformative applications across critical domains: atomic-oxygen-resistant spacecraft shielding, UV-managing agricultural films, flame-retardant architectural claddings, mechanically adaptive foldable displays, and efficiency-enhanced energy devices. Future progress will prioritize sustainable synthesis pathways, emergent asymmetric cage architectures, and multifunctional designs targeting extreme-environment resilience, thereby expanding the frontier of high-performance transparent protective technologies. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

Back to TopTop