Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (761)

Search Parameters:
Keywords = human ovarian cancer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2759 KiB  
Article
A Novel Serum-Based Bioassay for Quantification of Cancer-Associated Transformation Activity: A Case–Control and Animal Study
by Aye Aye Khine, Hsuan-Shun Huang, Pao-Chu Chen, Chun-Shuo Hsu, Ying-Hsi Chen, Sung-Chao Chu and Tang-Yuan Chu
Diagnostics 2025, 15(15), 1975; https://doi.org/10.3390/diagnostics15151975 - 6 Aug 2025
Abstract
Background/Objectives: The detection of ovarian cancer remains challenging due to the lack of reliable serum biomarkers that reflect malignant transformation rather than mere tumor presence. We developed a novel biotest using an immortalized human fallopian tube epithelial cell line (TY), which exhibits [...] Read more.
Background/Objectives: The detection of ovarian cancer remains challenging due to the lack of reliable serum biomarkers that reflect malignant transformation rather than mere tumor presence. We developed a novel biotest using an immortalized human fallopian tube epithelial cell line (TY), which exhibits anchorage-independent growth (AIG) in response to cancer-associated serum factors. Methods: Sera from ovarian and breast cancer patients, non-cancer controls, and ID8 ovarian cancer-bearing mice were tested for AIG-promoting activity in TY cells. Results: TY cells (passage 96) effectively distinguished cancer sera from controls (68.50 ± 2.12 vs. 17.50 ± 3.54 colonies, p < 0.01) and correlated with serum CA125 levels (r = 0.73, p = 0.03) in ovarian cancer patients. Receiver operating characteristic (ROC) analysis showed high diagnostic accuracy (AUC = 0.85, cutoff: 23.75 colonies). The AIG-promoting activity was mediated by HGF/c-MET and IGF/IGF-1R signaling, as inhibition of these pathways reduced phosphorylation and AIG. In an ID8 mouse ovarian cancer model, TY-AIG colonies strongly correlated with tumor burden (r = 0.95, p < 0.01). Conclusions: Our findings demonstrate that the TY cell-based AIG assay is a sensitive and specific biotest for detecting ovarian cancer and potentially other malignancies, leveraging the fundamental hallmark of malignant transformation. Full article
(This article belongs to the Special Issue New Insights into the Diagnosis of Gynecological Diseases)
Show Figures

Figure 1

18 pages, 1263 KiB  
Review
Fertility Protection in Female Cancer Patients: From Molecular Mechanisms of Gonadotoxic Therapies to Pharmacotherapeutic Possibilities
by Weronika Zajączkowska, Maria Buda, Witold Kędzia and Karina Kapczuk
Int. J. Mol. Sci. 2025, 26(15), 7314; https://doi.org/10.3390/ijms26157314 - 29 Jul 2025
Viewed by 365
Abstract
Chemotherapeutic agents and radiotherapy are highly effective in treating malignancies. However, they carry a significant risk of harming the gonads and may lead to endocrine dysfunction and reproductive issues. This review outlines the molecular mechanisms of gonadotoxic therapies, focusing on radiation, alkylating agents, [...] Read more.
Chemotherapeutic agents and radiotherapy are highly effective in treating malignancies. However, they carry a significant risk of harming the gonads and may lead to endocrine dysfunction and reproductive issues. This review outlines the molecular mechanisms of gonadotoxic therapies, focusing on radiation, alkylating agents, and platinum compounds. It discusses the loss of PMFs due to gonadotoxic exposure, including DNA double-strand breaks, oxidative stress, and dysregulated signaling pathways like PI3K/PTEN/Akt/mTOR and TAp63-mediated apoptosis. Furthermore, it explores strategies to mitigate gonadal damage, including GnRH agonists, AMH, imatinib, melatonin, sphingolipid metabolites, G-CSF, mTOR inhibitors, AS101, and LH. These therapies, paired with existing fertility preservation methods, could safeguard reproductive and hormonal functions and improve the quality of life for young cancer patients. Despite the progress made in recent years in understanding gonadotoxic mechanisms, gaps remain due to questionable reliance on mouse models and the lack of models replicating human ovarian dynamics. Long-term studies are vital for wider analyses and exploration of protective strategies based on various animal models and clinical trials. It is essential to verify that these substances do not hinder the anti-cancer effectiveness of treatments or cause lasting DNA changes in granulosa cells, raising the risk of miscarriages and infertility. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

18 pages, 2125 KiB  
Article
A Replication-Defective Myxoma Virus Inducing Pro-Inflammatory Responses as Monotherapy and an Adjuvant to Chemo- and DC Immuno-Therapy for Ovarian Cancer
by Martin J. Cannon and Jia Liu
Viruses 2025, 17(8), 1058; https://doi.org/10.3390/v17081058 - 29 Jul 2025
Viewed by 368
Abstract
Myxoma virus (MYXV), a rabbit-specific poxvirus and non-pathogenic in humans and mice, is an excellent candidate oncolytic virus for cancer therapy. MYXV also has immunotherapeutic benefits. In ovarian cancer (OC), immunosuppressive tumor-associated macrophages (TAMs) are key to inhibiting antitumor immunity while hindering therapeutic [...] Read more.
Myxoma virus (MYXV), a rabbit-specific poxvirus and non-pathogenic in humans and mice, is an excellent candidate oncolytic virus for cancer therapy. MYXV also has immunotherapeutic benefits. In ovarian cancer (OC), immunosuppressive tumor-associated macrophages (TAMs) are key to inhibiting antitumor immunity while hindering therapeutic benefit by chemotherapy and dendritic cell (DC) vaccine. Because MYXV favors binding/entry of macrophages/monocytes, we examined the therapeutic potential of MYXV against TAMs. We found previously that a replication-defective MYXV with targeted deletion of an essential gene, M062R, designated ΔM062R MYXV, activated both the host DNA sensing pathway and the SAMD9 pathway. Treatment with ΔM062R confers therapeutic benefit comparable to that of wild-type replicating MYXV in preclinical models. Here we found that ΔM062R MYXV, when integrated with cisplatin and DC immunotherapy, further improved treatment benefit, likely through promoting tumor antigen-specific T cell function. Moreover, we also tested ΔM062R MYXV in targeting human immunosuppressive TAMs from OC patient ascites in a co-culture system. We found that ΔM062R treatment subverted the immunosuppressive properties of TAMs and elevated the avidity of cytokine production in tumor antigen-specific CD4+ T cells. Overall, ΔM062R presents a promising immunotherapeutic platform as a beneficial adjuvant to chemotherapy and DC vaccine. Full article
(This article belongs to the Special Issue Women in Virology 2025)
Show Figures

Figure 1

19 pages, 1941 KiB  
Article
Structural, Quantum Chemical, and Cytotoxicity Analysis of Acetylplatinum(II) Complexes with PASO2 and DAPTA Ligands
by Stefan Richter, Dušan Dimić, Milena R. Kaluđerović, Fabian Mohr and Goran N. Kaluđerović
Inorganics 2025, 13(8), 253; https://doi.org/10.3390/inorganics13080253 - 27 Jul 2025
Viewed by 428
Abstract
The development of novel platinum-based anticancer agents remains a critical objective in medicinal inorganic chemistry, particularly in light of resistance and toxicity limitations associated with cisplatin. In this study, the synthesis, structural characterization, quantum chemical analysis, and cytotoxic evaluation of four new acetylplatinum(II) [...] Read more.
The development of novel platinum-based anticancer agents remains a critical objective in medicinal inorganic chemistry, particularly in light of resistance and toxicity limitations associated with cisplatin. In this study, the synthesis, structural characterization, quantum chemical analysis, and cytotoxic evaluation of four new acetylplatinum(II) complexes (cis-[Pt(COMe)2(PASO2)2], cis-[Pt(COMe)2(DAPTA)2], trans-[Pt(COMe)Cl(DAPTA)2], and trans-[Pt(COMe)Cl(PASO2)]: 14, respectively) bearing cage phosphine ligands PASO2 (2-thia-1,3,5-triaza-phosphaadamantane 2,2-dioxide) and DAPTA (3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane) are presented. The coordination geometries and NMR spectral features of the cis/trans isomers were elucidated through multinuclear NMR and DFT calculations at the B3LYP/6-311++G(d,p)/LanL2DZ level, with strong agreement between experimental and theoretical data. Quantum Theory of Atoms in Molecules (QTAIM) analysis was applied to investigate bonding interactions and assess the covalent character of Pt–ligand bonds. Cytotoxicity was evaluated against five human cancer cell lines. The PASO2-containing complex in cis-configuration, 1, demonstrated superior activity against thyroid (8505C) and head and neck (A253) cancer cells, with potency surpassing that of cisplatin. The DAPTA complex 2 showed enhanced activity toward ovarian (A2780) cancer cells. These findings highlight the influence of ligand structure and isomerism on biological activity, supporting the rational design of phosphine-based Pt(II) anticancer drugs. Full article
Show Figures

Figure 1

19 pages, 2093 KiB  
Review
PHF20L1: An Epigenetic Regulator in Cancer and Beyond
by Yishan Wang, Qin Hu, Haixia Zhao, Lulu Zeng, Zhongwei Zhao, Xia Li, Qiaoyou Weng, Yang Yang, Minjiang Chen, Jiansong Ji and Rongfang Qiu
Biomolecules 2025, 15(7), 1048; https://doi.org/10.3390/biom15071048 - 18 Jul 2025
Viewed by 341
Abstract
Plant homeodomain (PHD) finger protein 20-like 1 (PHF20L1) is a novel epigenetic “reader” that specifically recognises histone post-translational modifications (PTMs) via its Tudor and PHD finger domains, thereby regulating chromatin remodelling, DNA damage repair, and oncogene transcriptional activation. This review comprehensively summarises the [...] Read more.
Plant homeodomain (PHD) finger protein 20-like 1 (PHF20L1) is a novel epigenetic “reader” that specifically recognises histone post-translational modifications (PTMs) via its Tudor and PHD finger domains, thereby regulating chromatin remodelling, DNA damage repair, and oncogene transcriptional activation. This review comprehensively summarises the role of PHF20L1 in various cancers, including breast, ovarian, and colorectal cancers, as well as retinoblastomas, and elucidates its molecular mechanisms of action in cancer pathogenesis. Accumulating evidence indicates that PHF20L1 is upregulated in these malignancies and drives tumour progression by promoting proliferation, metastasis, and immune evasion. Furthermore, PHF20L1 orchestrates tumour-related gene expression by interacting with key epigenetic complexes. Given its unique structural features, we propose novel strategies for developing small-molecule inhibitors and combinatorial therapies, providing a theoretical basis for targeted epigenetic regulation for precision treatment. Future research should further investigate the molecular regulatory networks of PHF20L1 in different cancers and other human diseases and focus on developing specific small-molecule inhibitors to enable precision-targeted therapies. Full article
(This article belongs to the Special Issue Tumor Genomics and Liquid Biopsy in Cancer Biology)
Show Figures

Figure 1

20 pages, 3793 KiB  
Article
Chemoresistance Evolution in Ovarian Cancer Delineated by Single-Cell RNA Sequencing
by Yuanmei Wang, Zongfu Tang, Haoyu Li, Run Zhou, Hao Wu, Xiaoping Cen, Yi Zhang, Wei Dong and Huanming Yang
Int. J. Mol. Sci. 2025, 26(14), 6760; https://doi.org/10.3390/ijms26146760 - 15 Jul 2025
Viewed by 399
Abstract
High-grade serous ovarian cancer (HGSOC) is an aggressive gynecological malignancy characterized by intraperitoneal spread and chemotherapy resistance. Chemotherapies have demonstrated limited effectiveness in HGSOC, underscoring the urgent need to evaluate how the tumor microenvironment (TME) was reshaped by chemotherapy in different sites of [...] Read more.
High-grade serous ovarian cancer (HGSOC) is an aggressive gynecological malignancy characterized by intraperitoneal spread and chemotherapy resistance. Chemotherapies have demonstrated limited effectiveness in HGSOC, underscoring the urgent need to evaluate how the tumor microenvironment (TME) was reshaped by chemotherapy in different sites of tumor foci. In this study, we performed single-cell transcriptomic analysis to explore the TME in samples obtained from various sites of tumor foci, with or without the history of Neoadjuvant chemotherapy (NACT). We discovered that chemotherapy reshaped the tumor immune microenvironment, evident through the reduction in human leukocyte antigen (HLA) diversity and the increase in PDCD1/CD274 in CD8_ANXA1, LAMP3+ dendritic cell (DC_LAMP3), and EREG+ monocytes (mono_EREG). Moreover, cancer.cell.2, cancer-associated C3+ fibroblasts (CAF_C3), and Fibrocyte_CD34, which are prone to accumulate in the metastatic site and post-NACT group, harbored poor clinical outcome, reflected in the immune exclusion and tumor progression signaling. Cell–cell communication identified a stronger interaction between cancer.cell.2 and CAF_C3, as well as Fibrocyte_CD34, in post-NACT samples, indicating that chemotherapy reshapes pre-existing cell clusters in a site-dependent manner. Our findings suggest that chemotherapy and sites of foci were critical for the transcriptional reprogramming of pre-existed cell clusters. Our study offers a single-cell phenotype data substrate from which to develop a personalized combination of chemotherapy and immunotherapy. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

26 pages, 1735 KiB  
Perspective
Optimizing Adjuvant Care in Early Breast Cancer: Multidisciplinary Strategies and Innovative Models from Canadian Centers
by Angela Chan, Nancy Nixon, Muna Al-Khaifi, Alain Bestavros, Christine Blyth, Winson Y. Cheung, Caroline Hamm, Thomas Joly-Mischlich, Mita Manna, Tom McFarlane, Laura V. Minard, Sarah Naujokaitis, Christine Peragine, Cindy Railton and Scott Edwards
Curr. Oncol. 2025, 32(7), 402; https://doi.org/10.3390/curroncol32070402 - 14 Jul 2025
Viewed by 654
Abstract
The adjuvant treatment landscape for hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2–) early breast cancer (EBC) is rapidly evolving, with a diverse range of therapeutic options—including endocrine therapies, bisphosphonates, ovarian function suppression, olaparib, CDK4/6 inhibitors, and emerging agents such as [...] Read more.
The adjuvant treatment landscape for hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2–) early breast cancer (EBC) is rapidly evolving, with a diverse range of therapeutic options—including endocrine therapies, bisphosphonates, ovarian function suppression, olaparib, CDK4/6 inhibitors, and emerging agents such as immunotherapy. While these advances have markedly improved patient outcomes, they also introduce challenges related to implementation, monitoring, and resource allocation. Notably, therapies like CDK4/6 inhibitors require particularly close monitoring, creating logistical and capacity challenges for medical oncologists, whose workloads are already stretched due to rising cancer incidence and treatment complexities. These challenges underscore the need for innovative care delivery solutions to ensure patients with EBC continue to receive optimal care. This paper offers a comprehensive guide—a playbook—of multidisciplinary-team-based care models designed to optimize adjuvant treatment delivery in EBC. Drawing on real-world evidence and successful applications across Canadian centers, we explore models led by nurses, nurse practitioners (NPs), general practitioners in oncology (GPO), and pharmacists. Each model leverages the unique expertise of its team to manage treatment toxicities, facilitate adherence, and enhance patient education, thereby promoting effective and sustainable care delivery. Importantly, these models are not intended to compete with one another, but rather to serve as a flexible recipe book from which breast cancer care teams can draw strategies tailored to their local resources and patient needs. By detailing implementation strategies, benefits, and challenges—in many instances supported by quantitative metrics and economic evaluations—this work aims to inspire care teams nationwide to optimize the adjuvant management of patients with HR+, HER2– EBC. Full article
(This article belongs to the Section Breast Cancer)
Show Figures

Figure 1

21 pages, 1590 KiB  
Review
Oxidative Stress, Parity History, and Remnant Follicles in the Aged Ovary: Insights on Ovarian Cancer Risk and Protection
by Ulises Urzúa, Arnaldo Marín and Enrique A. Castellón
Antioxidants 2025, 14(7), 759; https://doi.org/10.3390/antiox14070759 - 20 Jun 2025
Viewed by 701
Abstract
Ovarian cancer (OC) is the most lethal gynecological cancer globally. Its incidence and mortality consistently rise after menopause. While parity reduces the risk of OC, nulliparity during a woman’s fertile years increases it. Although the association between reproductive history and OC risk is [...] Read more.
Ovarian cancer (OC) is the most lethal gynecological cancer globally. Its incidence and mortality consistently rise after menopause. While parity reduces the risk of OC, nulliparity during a woman’s fertile years increases it. Although the association between reproductive history and OC risk is well-established, the long-term impact of pregnancy on the postmenopausal human ovary has received little to no attention. Parity apparently delays the natural decline of the ovarian reserve, but this association also remains unexplored to date. Based on data from cellular, biochemical, and histological markers, as well as epidemiological studies, transcriptomic analyses, and gene knockout mouse models, we review compelling evidence suggesting a critical intraovarian interplay between the residual ovarian reserve and the ovarian surface epithelium (OSE) in the aged ovary. This interaction appears to be a key factor underlying the protective effect of parity on ovarian cancer (OC) risk. We propose that functional FSHR signaling in the remnant follicles of the aged multiparous ovary somehow counteracts the oxidative stress and subsequent chronic inflammation typically observed in the senescent ovary. This mechanism would minimize DNA damage, thereby lowering the probability of neoplastic transformation in the aged mammalian ovary. The precise mechanism by which pregnancy imprints such a long-term follicle–OSE crosstalk warrants further investigation. Full article
(This article belongs to the Special Issue Oxidative Stress and Inflammation in Cancer Biology)
Show Figures

Graphical abstract

21 pages, 2324 KiB  
Review
Human Papillomaviruses and Malignant Neoplasms of the Female Upper Reproductive Tract: A Comprehensive Review of the Literature
by Charalampos Karachalios, Ilias Liapis, Stamatios Petousis, Emmanouela-Aliki Almperi, Chrysoula Margioula-Siarkou, Georgia Margioula-Siarkou, Stefanos Flindris, Evangelos Karamitrousis and Konstantinos Dinas
Cancers 2025, 17(12), 1995; https://doi.org/10.3390/cancers17121995 - 15 Jun 2025
Viewed by 579
Abstract
Malignancies of the female upper reproductive tract, especially endometrial and ovarian cancers, generate a significant burden for women worldwide. The possible etiopathogenetic role of chronic human papillomavirus (HPV) infection in the carcinogenesis of the female upper genital tract is neither clearly established not [...] Read more.
Malignancies of the female upper reproductive tract, especially endometrial and ovarian cancers, generate a significant burden for women worldwide. The possible etiopathogenetic role of chronic human papillomavirus (HPV) infection in the carcinogenesis of the female upper genital tract is neither clearly established not completely understood. Therefore, we performed a literature review, using the PubMed and SCOPUS electronic databases, of the prevalence of HPV DNA in endometrial, primary fallopian tube, ovarian, and primary peritoneal cancers, as well as uterine sarcomas. The present investigation covered 35 studies from different countries on various continents. Overall, the prevalence of HPV was approximately 15% in all the above cancers. HPV DNA was isolated from 11%, 0%, 0%, and 14% of endometrial carcinomas, uterine sarcomas, primary fallopian tube cancers, and ovarian malignant neoplasms, respectively. No relevant studies on primary peritoneal cancers were retrieved. The predominant HPV strain from tumors of the upper female reproductive tract, regardless of the tumor site, was HPV-16, followed by HPV-18. The HPV DNA identified was exclusively from subtypes HPV-6, HPV-11, HPV-16, HPV-18, and HPV-33, which are responsible for the development of not only cervical cancer, but also condylomata acuminata. The findings of the present review indicate that HPV vaccination might prove to be a useful strategy in the prevention of HPV-related carcinomas of the upper genital tract in women. Full article
(This article belongs to the Special Issue Human Papillomavirus (HPV)-Associated Cancers)
Show Figures

Figure 1

18 pages, 5811 KiB  
Article
Investigating the Effects of ONC206 Alone and in Combination with Cisplatin on Ovarian Cancer Cell Models
by Sara Mikhael, Rona Fayyad, Leen Abi Harfouch, Varun Vijay Prabhu, Hisham F. Bahmad, Wassim Abou-Kheir and Georges Daoud
Curr. Issues Mol. Biol. 2025, 47(6), 451; https://doi.org/10.3390/cimb47060451 - 12 Jun 2025
Viewed by 498
Abstract
Ovarian cancer (OC) is the most lethal gynecologic malignancy worldwide, with high rates of disease relapse posing a significant therapeutic challenge. Consequently, there is an urgent need to develop novel treatments for OC. This study aims to evaluate the effects of the novel [...] Read more.
Ovarian cancer (OC) is the most lethal gynecologic malignancy worldwide, with high rates of disease relapse posing a significant therapeutic challenge. Consequently, there is an urgent need to develop novel treatments for OC. This study aims to evaluate the effects of the novel imipridone, ONC206, both as a monotherapy and in combination with the standard of care chemotherapy drug, cisplatin (CDDP), on human OC cell lines. In order to study the effect of ONC206 and CDDP on ovarian cancer, two cell lines, OVCAR-420 and SKOV-3, were used in this study. Cell proliferation was assessed using MTT assay while cell viability was evaluated using the trypan blue exclusion assay. Cell migration was examined using the wound healing assay. To investigate the effects of both treatments, alone or in combination on the stem-cell-like population of OC cells, the sphere-forming assay was employed. Our results revealed that ONC206, alone or in combination with CDDP, exerts a potent anti-proliferative effect on both OVCAR-420 and SKOV-3 cells, as shown in the MTT and trypan blue exclusion assays. Interestingly, a synergistic effect was observed when ONC206 was combined with CDDP, enhancing the overall anti-cancer efficacy. Additionally, ONC206 alone or in combination with CDDP inhibited the migratory ability of the ovarian cancer cells. Furthermore, the activity of ovarian cancer stem cells was inhibited when cells were treated with ONC206 alone or in combination with CDDP, as shown in the significant decrease in both the size and the sphere-forming ability of ovarian cancer stem cells in the 3D culture model. Our results highly suggest the potential of imipridones as a new class of therapeutics in ovarian cancer management. Among these, ONC206 shows nanomolar potency, highlighting its potential as a standalone therapy or in combination with existing treatment regimens. Full article
Show Figures

Figure 1

18 pages, 1035 KiB  
Review
CA125 as a Potential Biomarker in Non-Malignant Serous Effusions: Diagnostic and Prognostic Considerations
by Lavinia Alice Bălăceanu, Cristiana Grigore, Ion Dina, Cristian-Dorin Gurău, Mara Mădălina Mihai and Beatrice Bălăceanu-Gurău
J. Clin. Med. 2025, 14(12), 4152; https://doi.org/10.3390/jcm14124152 - 11 Jun 2025
Viewed by 1167
Abstract
Background/Objectives: Carbohydrate antigen 125 (CA125) is a glycoprotein commonly overexpressed in epithelial ovarian cancer and widely recognized as a tumor marker. However, elevated CA125 levels are also observed in various non-malignant conditions, including diseases affecting mucosal surfaces, pleural or peritoneal effusions, cirrhosis (with [...] Read more.
Background/Objectives: Carbohydrate antigen 125 (CA125) is a glycoprotein commonly overexpressed in epithelial ovarian cancer and widely recognized as a tumor marker. However, elevated CA125 levels are also observed in various non-malignant conditions, including diseases affecting mucosal surfaces, pleural or peritoneal effusions, cirrhosis (with or without ascites), endometriosis, uterine fibroids, adenomyosis, pelvic inflammatory disease, and pregnancy. This review aims to explore the role of CA125 in non-malignant serous effusions, highlighting its diagnostic and prognostic potential beyond the realm of oncology. Methods: A comprehensive literature search was conducted across multiple databases and clinical trial registries. Eligible studies included full-text original research articles, reviews, and case reports published in English over the past 10 years. Inclusion criteria were limited to studies involving human subjects and focused on the role of CA125 in non-malignant serous effusions. Results: CA125 is produced by coelomic epithelial cells lining the ovary, pleura, pericardium, and peritoneum. Its serum concentration is not significantly influenced by age, body weight, or renal function, even in the advanced stages of the disease. In peritoneal conditions, CA125 is synthesized by mesothelial cells and serves as a potential marker of peritoneal involvement. The prevailing pathophysiological mechanism suggests that mechanical stretching of mesothelial cells due to ascitic pressure stimulates CA125 release. Similarly, in heart failure, mesothelial cells of the pericardium produce CA125, which correlates with congestion severity, supports risk stratification, and may inform diuretic therapy. Conclusions: While a threshold of 35 U/mL is established for malignancy, no standardized cutoff exists for CA125 in non-malignant conditions. The utility of CA125 measurement in peritoneal, pleural, or pericardial effusions—and cardiovascular diseases such as acute heart failure—for purposes of differential diagnosis, treatment guidance, or prognostication warrants further investigation through prospective clinical trials. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

31 pages, 5466 KiB  
Article
Truncated DAPK Variants Restore Tumor Suppressor Activity and Synergize with Standard Therapies in High-Grade Serous Ovarian Cancer
by Monika Raab, Khayal Gasimli, Balázs Győrffy, Samuel Peña-Llopis, Sven Becker, Mourad Sanhaji and Klaus Strebhardt
Cancers 2025, 17(12), 1910; https://doi.org/10.3390/cancers17121910 - 8 Jun 2025
Viewed by 898
Abstract
Background/Objectives: Death-associated protein kinase 1 (DAPK1) is a serine/threonine kinase that plays a crucial role in cancer by regulating apoptosis through interactions with TP53. Aberrant expression of DAPK1 was shown in certain types of human cancer contributing to tumor progression and chemoresistance. This [...] Read more.
Background/Objectives: Death-associated protein kinase 1 (DAPK1) is a serine/threonine kinase that plays a crucial role in cancer by regulating apoptosis through interactions with TP53. Aberrant expression of DAPK1 was shown in certain types of human cancer contributing to tumor progression and chemoresistance. This study aimed to investigate the role of DAPK1 in high-grade serous ovarian cancer (HGSOC) and to evaluate the therapeutic potential of restoring its kinase activity, including the use of truncated DAPK1 variants, to overcome chemoresistance and enhance tumor suppression. Methods: Gene expression analysis was performed on ovarian cancer tissues compared to benign controls to assess DAPK1 downregulation and its epigenetic regulation. Prognostic relevance was evaluated in a cohort of 1436 HGSOC patient samples. Functional restoration of DAPK1 was conducted in HGSOC cell lines and patient-derived primary tumor cells using vector-based expression or in vitro-transcribed (IVT) DAPK1 mRNA, including the application of truncated DAPK1 (ΔDAPK1) forms. To assess apoptosis, Caspase activation assays, 2D-colony formation assays, and cell survival assays were performed. To analyze the reactivation of DAPK1 downstream signaling, phosphorylation of p53 at Ser20 and the expression of p53 target proteins were examined. Chemosensitivity to Paclitaxel and Cisplatin was quantified by changes in IC50 values. Results: DAPK1 expression was significantly downregulated in ovarian cancer compared to benign tissue, correlating with epigenetic silencing, and showed prognostic value in early-stage HGSOC. Restoration of DAPK1 activity, including ΔDAPK1 variants, led to phosphorylation of p53 Ser20, increased expression of p53 target proteins, and Caspase-dependent apoptosis. Reactivation of DAPK1 sensitized both established HGSOC cell lines and patient-derived ascites cells to Paclitaxel and Cisplatin. These effects occurred through both p53-dependent and p53-independent pathways, enabling robust tumor suppression even in p53-mutant contexts. Conclusions: Reactivation of DAPK1, particularly through truncated variants, represents a promising therapeutic strategy to overcome chemoresistance in HGSOC. The dual mechanisms of tumor suppression provide a strong rationale for developing DAPK1-based therapies to enhance the efficacy of standard chemotherapy, especially in patients with chemoresistant or p53-deficient tumors. Future work should focus on optimizing delivery approaches for DAPK1 variants and assessing their synergistic potential with emerging targeted treatments in clinical settings. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

23 pages, 1347 KiB  
Article
Araçá-Boi Extract and Gallic Acid Reduce Cell Viability and Modify the Expression of Tumor Suppressor Genes and Genes Involved in Epigenetic Processes in Ovarian Cancer
by Felipe Tecchio Borsoi, Henrique Silvano Arruda, Amanda Cristina Andrade, Mônica Pezenatto dos Santos, Isabelle Nogueira da Silva, Leonardo Augusto Marson, Ana Sofia Martelli Chaib Saliba, Severino Matias de Alencar, Murilo Vieira Geraldo, Iramaia Angélica Neri Numa and Glaucia Maria Pastore
Plants 2025, 14(11), 1671; https://doi.org/10.3390/plants14111671 - 30 May 2025
Viewed by 619
Abstract
In the present study, we characterized and investigated the effect of the araçá-boi extract on antioxidant activity, cell viability, and the regulation of genes related to tumor suppression and epigenetic mechanisms in ovarian cancer cells. The results showed that araçá-boi extract revealed a [...] Read more.
In the present study, we characterized and investigated the effect of the araçá-boi extract on antioxidant activity, cell viability, and the regulation of genes related to tumor suppression and epigenetic mechanisms in ovarian cancer cells. The results showed that araçá-boi extract revealed a remarkable diversity of phytochemicals (organic acids, phenolic acids, and flavonoids), significant antioxidant potential, and efficient scavenging of reactive oxygen species, particularly hydroxyl and peroxyl radicals. Gallic acid, one of the phenolic acids present in the extract, was used alone to verify its contribution to cytotoxic activities. Exposure of human ovarian cancer cells (NCI/ADR-RES and OVCAR3) to the extract (0.15–150 μg/mL) and gallic acid (6–48 μg/mL) resulted in a significant reduction in cell viability, particularly after 48 h of treatment. Both treatments modulated genes involved in DNA repair, tumor suppression, and epigenetic regulation. However, no changes were observed in the methylation status of the BRCA1 gene promoter region with either araçá-boi extract or gallic acid. These findings reinforce the therapeutic potential of araçá-boi extract and its phenolic compounds against ovarian cancer and point to the need for further studies to better elucidate the molecular pathways involved and validate these effects in vivo. Full article
Show Figures

Graphical abstract

29 pages, 3643 KiB  
Article
Transcriptomic Analyses of Ovarian Clear Cell Carcinoma Spheroids Reveal Distinct Proliferative Phenotypes and Therapeutic Vulnerabilities
by Bart Kolendowski, Sylvia Cheng, Yudith Ramos Valdes, Trevor G. Shepherd and Gabriel E. DiMattia
Cells 2025, 14(11), 785; https://doi.org/10.3390/cells14110785 - 27 May 2025
Cited by 1 | Viewed by 817
Abstract
Cancer cell spheroids autonomously form in the ascites fluid and are considered a conduit for epithelial ovarian cancer metastasis within the peritoneal cavity. Spheroids are homotypic, avascular 3D structures that acquire resistance to anoikis to remain viable after cellular detachment. We used in [...] Read more.
Cancer cell spheroids autonomously form in the ascites fluid and are considered a conduit for epithelial ovarian cancer metastasis within the peritoneal cavity. Spheroids are homotypic, avascular 3D structures that acquire resistance to anoikis to remain viable after cellular detachment. We used in vitro spheroid model systems to interrogate pathways critical for spheroid cell proliferation, distinct from those driving monolayer cancer cell proliferation. Using the 105C and KOC-7c human ovarian clear cell carcinoma (OCCC) cell lines, which have distinct proliferative phenotypes as spheroids but the same prototypical OCCC gene mutation profile of constitutively activated AKT signaling with the loss of ARID1A, we revealed therapeutic targets that efficiently kill cells in spheroids. RNA-seq analyses compared the transcriptome of 3-day monolayer and spheroid cells from these lines and identified the characteristics of dormant spheroid cell survival, which included the G2/M checkpoint, autophagy, and other stress pathways induced in 105C spheroids, in sharp contrast to the proliferating spheroid cells of the KOC-7c cell line. Next, we assessed levels of various G2/M checkpoint regulators and found a consistent reduction in steady-state levels of checkpoint regulators in dormant spheroid cells, but not proliferative spheroids. Our studies showed that proliferative spheroid cells were sensitive to Wee1 inhibition by AZD1775, but the dormant spheroid cells showed a degree of resistance to AZD1775, both in terms of EC50 values and spheroid reattachment abilities. Thus, we identified biomarkers of dormant spheroids, including the G2/M checkpoint regulators Wee1, Cdc25c, and PLK1, and showed that, when compared to proliferating spheroid cells, the transcriptome of dormant OCCC spheroids is a source of therapeutic targets. Full article
Show Figures

Graphical abstract

1 pages, 127 KiB  
Expression of Concern
Expression of Concern: Abou-ElNaga et al. Novel Nano-Therapeutic Approach Actively Targets Human Ovarian Cancer Stem Cells After Xenograft into Nude Mice. Int. J. Mol. Sci. 2017, 18, 813
by International Journal of Molecular Sciences Editorial Office
Int. J. Mol. Sci. 2025, 26(11), 5020; https://doi.org/10.3390/ijms26115020 - 23 May 2025
Viewed by 312
Abstract
With this notice, the IJMS Editorial Office alerts readers to concerns related to this article [...] Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Back to TopTop