PHF20L1: An Epigenetic Regulator in Cancer and Beyond
Abstract
1. Introduction
2. Overview of PHF20L1
3. The Role of PHF20L1 in Cancer
4. Targeting PHF20L1’s Epigenetic Domains to Develop Cancer Therapeutics
5. Exploring PHF20L1 in Other Disease Contexts
6. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACC | Adrenocortical carcinoma |
BLCA | Bladder urothelial carcinoma |
BRCA | Breast invasive carcinoma |
CESC | Cervical squamous cell carcinoma |
CRC | Colorectal cancer |
CHOL | Cholangiocarcinoma |
COAD | Colon adenocarcinoma |
CW | Colourless non-pigmented |
DNMT1 | DNA methyltransferase-1 |
EMT | Epithelial–mesenchymal transition |
ESCA | Esophageal carcinoma |
ESCs | Embryonic stem cells |
EZH2 | Enhancer of Zeste Homologue 2 |
FOXK2 | Fork head box protein K2 |
GBM | Glioblastoma multiforme |
HAT | Histone acetyltransferase activity |
HDACs | Histone deacetylases |
HMTs | Histone methyltransferases |
HIC1 | Hypermethylated in Cancer 1 |
H3K4me3 | Trimethylation of lysine 27 on histone H3 |
H3K27me2 | Di-methylation of lysine 27 on histone H3 |
H3K27me3 | Tri-methylation of lysine 27 on histone H3 |
H4K16ac | H4 “Lys-16” acetylation |
HNSC | Head and neck squamous cell carcinoma |
IHC | Immunohistochemical |
JMJD3 | Jumonate Domain-Containing 3 |
KICH | Kidney chromophobe |
KIRC | Kidney renal clear cell carcinoma |
KIRP | Kidney renal papillary cell carcinoma |
LAML | Acute myeloid leukaemialeukemia |
LGG | Brain lower grade glioma |
LIHC | Liver hepatocellular carcinoma |
LSD1 | Lysine-specific demethylase 1 |
LUAD | Lung adenocarcinoma |
LUSC | Lung squamous cell carcinoma |
MBT | Malignant brain tumour |
MESO | Mesothelioma |
MOF | Males absent on the first |
MTA1 | Methylthiotransferase 1 |
MYC | MYC Proto-Oncogene |
NMR | Nuclear magnetic resonance |
NSCLC | Non-small cell lung cancer |
NuRD | NucleCome Remodelling and Deacetylase complex |
NSL | Non-specific lethal |
OS | Overall survival |
OV | Ovarian serous cystadenocarcinoma |
PAAD | Prostate adenocarcinoma |
PAX2 | Paired Box Gene 2 |
PWWP | Proline–tryptophan–-tryptophan–-proline |
PHD | Plant homeodomain |
PHF20 | PHD finger protein 20 |
PHF20L1 | PHD finger protein 20-like protein 1 |
PRAD | Prostate adenocarcinoma |
PRC2 | Polycomb Repressive Complex 2 |
PTMs | Post-translational modifications |
READ | Rectum adenocarcinoma |
SARC | Sarcoma |
SET7 | SET Domain Containing 7 |
SKCM | Skin cutaneous melanoma |
STAD | Stomach adenocarcinoma |
TCGA | The Cancer Genome Atlas |
TGCT | Testicular germ cell tumours |
THCA | Thyroid carcinoma |
THYM | Thymoma |
TME | Tumour microenvironment |
UCEC | Uterine corpus endometrial carcinoma |
UCS | Uterine carcinosarcoma |
UTX | Ubiquitously Transcribed Tetratricopeptide Repeat X-linked protein |
UVM | Uveal melanoma |
References
- Gibson, F.; Hanly, A.; Grbic, N.; Grunberg, N.; Wu, M.; Collard, M.; Alani, R.M. Epigenetic Dysregulation in Autoimmune and Inflammatory Skin Diseases. Clin. Rev. Allergy Immunol. 2022, 63, 447–471. [Google Scholar] [CrossRef] [PubMed]
- Zaib, S.; Rana, N.; Khan, I. Histone Modifications and Their Role in Epigenetics of Cancer. Curr. Med. Chem. 2022, 29, 2399–2411. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Xing, Z.; Qiao, L.; Qin, S.; Zhao, X.; Gong, Y.; Li, X. The Role of Histone Post-Translational Modifications in Cancer and Cancer Immunity: Functions, Mechanisms and Therapeutic Implications. Front. Immunol. 2024, 15, 1495221. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Rao, C.M. Epigenetic Tools (The Writers, The Readers and The Erasers) and Their Implications in Cancer Therapy. Eur. J. Pharmacol. 2018, 837, 8–24. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, R.; Zhou, M.M. The PHD Finger: A Versatile Epigenome Reader. Trends Biochem. Sci. 2011, 36, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Lukauskas, S.; Tvardovskiy, A.; Nguyen, N.V.; Stadler, M.; Faull, P.; Ravnsborg, T.; Özdemir Aygenli, B.; Dornauer, S.; Flynn, H.; Lindeboom, R.G.H.; et al. Decoding Chromatin States by Proteomic Profiling of Nucleosome Readers. Nature 2024, 627, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Donati, B.; Lorenzini, E.; Ciarrocchi, A. BRD4 and Cancer: Going beyond Transcriptional Regulation. Mol. Cancer 2018, 17, 164. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Liu, W.; Yi, X.; Yang, Y.; Su, D.; Huang, W.; Yu, H.; Teng, X.; Yang, Y.; Feng, W.; et al. PHF20L1 as a H3K27me2 Reader Coordinates with Transcriptional Repressors to Promote Breast Tumorigenesis. Sci. Adv. 2020, 6, eaaz0356. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yu, M.; Ma, Y.; Zhang, X.; Zhang, H.; Li, S.; Lan, R.; Lu, F. PHF20L1 Antagonizes SOX2 Proteolysis Triggered by the MLL1/WDR5 Complexes. Lab Invest. 2018, 98, 1627–1641. [Google Scholar] [CrossRef] [PubMed]
- Sierra-Ramirez, J.A.; Seseña-Mendez, E.; Godinez-Victoria, M.; Hernandez-Caballero, M.E. An Insight into the Promoter Methylation of PHF20L1 and the Gene Association with Metastasis in Breast Cancer. Adv. Clin. Exp. Med. 2021, 30, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Alberto-Aguilar, D.R.; Hernández-Ramírez, V.I.; Osorio-Trujillo, J.C.; Gallardo-Rincón, D.; Toledo-Leyva, A.; Talamás-Rohana, P. PHD Finger Protein 20-like Protein 1 (PHF20L1) in Ovarian Cancer: From Its Overexpression in Tissue to Its Upregulation by the Ascites Microenvironment. Cancer Cell Int. 2022, 22, 6. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.-C.; Sun, J.-H.; Liang, M.-J.; Zhang, Z.-Y.; Xia, Y. PHF20L1 Mediates PAX2 Expression to Promote Angiogenesis and Liver Metastasis in Colorectal Cancer through Regulating HIC1. Biol. Chem. 2022, 403, 917–928. [Google Scholar] [CrossRef] [PubMed]
- Klein, B.J.; Wang, X.; Cui, G.; Yuan, C.; Botuyan, M.V.; Lin, K.; Lu, Y.; Wang, X.; Zhao, Y.; Bruns, C.J.; et al. PHF20 Readers Link Methylation of Histone H3K4 and P53 with H4K16 Acetylation. Cell Rep. 2016, 17, 1158–1170. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Wang, F.; Cai, Y.; Jin, J. The Functional Analysis of Histone Acetyltransferase MOF in Tumorigenesis. Int. J. Mol. Sci. 2016, 17, 99. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Jin, J.; Swanson, S.K.; Cole, M.D.; Choi, S.H.; Florens, L.; Washburn, M.P.; Conaway, J.W.; Conaway, R.C. Subunit Composition and Substrate Specificity of a MOF-Containing Histone Acetyltransferase Distinct from the Male-Specific Lethal (MSL) Complex. J. Biol. Chem. 2010, 285, 4268–4272. [Google Scholar] [CrossRef] [PubMed]
- Van, H.T.; Harkins, P.R.; Patel, A.; Jain, A.K.; Lu, Y.; Bedford, M.T.; Santos, M.A. Methyl-Lysine Readers PHF20 and PHF20L1 Define Two Distinct Gene Expression–Regulating NSL Complexes. J. Biol. Chem. 2022, 298, 101588. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Liu, L.; Shan, W.; Yang, Z.-Q. An Integrated Genomic Analysis of Tudor Domain-Containing Proteins Identifies PHD Finger Protein 20-like 1 (PHF20L1) as a Candidate Oncogene in Breast Cancer. Mol. Oncol. 2016, 10, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Carr, S.M.; Munro, S.; Sagum, C.A.; Fedorov, O.; Bedford, M.T.; La Thangue, N.B. Tudor-Domain Protein PHF20L1 Reads Lysine Methylated Retinoblastoma Tumour Suppressor Protein. Cell Death Differ. 2017, 24, 2139–2149. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Gonzales, N.R.; Gwadz, M.; Lu, S.; Marchler, G.H.; Song, J.S.; Thanki, N.; Yamashita, R.A.; et al. The Conserved Domain Database in 2023. Nucleic Acids Res. 2022, 51, D384–D388. [Google Scholar] [CrossRef] [PubMed]
- Lv, M.; Gao, J.; Li, M.; Ma, R.; Li, F.; Liu, Y.; Liu, M.; Zhang, J.; Yao, X.; Wu, J.; et al. Conformational Selection in Ligand Recognition by the First Tudor Domain of PHF20L1. J. Phys. Chem. Lett. 2020, 11, 7932–7938. [Google Scholar] [CrossRef] [PubMed]
- Estève, P.-O.; Terragni, J.; Deepti, K.; Chin, H.G.; Dai, N.; Espejo, A.; Corrêa, I.R.; Bedford, M.T.; Pradhan, S. Methyllysine Reader Plant Homeodomain (PHD) Finger Protein 20-like 1 (PHF20L1) Antagonizes DNA (Cytosine-5) Methyltransferase 1 (DNMT1) Proteasomal Degradation. J. Biol. Chem. 2014, 289, 8277–8287. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, H. Many Keys to Push: Diversifying the ‘Readership’ of Plant Homeodomain Fingers. Acta Biochim. Biophys. Sin. 2012, 44, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Musselman, C.A.; Kutateladze, T.G. PHD Fingers: Epigenetic Effectors and Potential Drug Targets. Mol. Interv. 2009, 9, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Black, J.C.; Kutateladze, T.G. Atypical Histone Targets of PHD Fingers. J. Biol. Chem. 2023, 299, 104601. [Google Scholar] [CrossRef] [PubMed]
- Badeaux, A.I.; Yang, Y.; Cardenas, K.; Vemulapalli, V.; Chen, K.; Kusewitt, D.; Richie, E.; Li, W.; Bedford, M.T. Loss of the Methyl Lysine Effector Protein PHF20 Impacts the Expression of Genes Regulated by the Lysine Acetyltransferase MOF. J. Biol. Chem. 2012, 287, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Musselman, C.A.; Khorasanizadeh, S.; Kutateladze, T.G. Towards Understanding Methyllysine Readout. Biochim. Biophys. Acta 2014, 1839, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Gayatri, S.; Bedford, M.T. Readers of Histone Methylarginine Marks. Biochim. Biophys. Acta 2014, 1839, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Musselman, C.A.; Lalonde, M.-E.; Côté, J.; Kutateladze, T.G. Perceiving the Epigenetic Landscape through Histone Readers. Nat. Struct. Mol. Biol. 2012, 19, 1218–1227. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Wang, G.G. Tudor: A Versatile Family of Histone Methylation ‘Readers’. Trends Biochem. Sci. 2013, 38, 546–555. [Google Scholar]
- Ferrari, K.J.; Scelfo, A.; Jammula, S.; Cuomo, A.; Barozzi, I.; Stützer, A.; Fischle, W.; Bonaldi, T.; Pasini, D. Polycomb-Dependent H3K27me1 and H3K27me2 Regulate Active Transcription and Enhancer Fidelity. Mol. Cell 2014, 53, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Francois, A.K.; Rohani, A.; Loftus, M.; Dochnal, S.; Hrit, J.; McFarlane, S.; Whitford, A.; Lewis, A.; Krakowiak, P.; Boutell, C.; et al. Single-Genome Analysis Reveals a Heterogeneous Association of the Herpes Simplex Virus Genome with H3K27me2 and the Reader PHF20L1 Following Infection of Human Fibroblasts. mBio 2024, 15, e0327823. [Google Scholar] [CrossRef] [PubMed]
- Siddaway, R.; Milos, S.; Coyaud, É.; Yun, H.Y.; Morcos, S.M.; Pajovic, S.; Campos, E.I.; Raught, B.; Hawkins, C. The in Vivo Interaction Landscape of Histones H3.1 and H3.3. Mol. Cell. Proteom. 2022, 21, 100411. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.G.; So, S.; Gupta, A.; Kumar, R.; Cayrou, C.; Avvakumov, N.; Bhadra, U.; Pandita, R.K.; Porteus, M.H.; Chen, D.J.; et al. MOF and Histone H4 Acetylation at Lysine 16 Are Critical for DNA Damage Response and Double-Strand Break Repair. Mol. Cell. Biol. 2010, 30, 3582–3595. [Google Scholar] [CrossRef] [PubMed]
- Füllgrabe, J.; Lynch-Day, M.A.; Heldring, N.; Li, W.; Struijk, R.B.; Ma, Q.; Hermanson, O.; Rosenfeld, M.G.; Klionsky, D.J.; Joseph, B. The Histone H4 Lysine 16 Acetyltransferase hMOF Regulates the Outcome of Autophagy. Nature 2013, 500, 468–471. [Google Scholar] [CrossRef] [PubMed]
- Marcon, E.; Ni, Z.; Pu, S.; Turinsky, A.L.; Trimble, S.S.; Olsen, J.B.; Silverman-Gavrila, R.; Silverman-Gavrila, L.; Phanse, S.; Guo, H.; et al. Human-Chromatin-Related Protein Interactions Identify a Demethylase Complex Required for Chromosome Segregation. Cell Rep. 2014, 8, 297–310. [Google Scholar] [CrossRef] [PubMed]
- Huttlin, E.L.; Bruckner, R.J.; Navarrete-Perea, J.; Cannon, J.R.; Baltier, K.; Gebreab, F.; Gygi, M.P.; Thornock, A.; Zar-raga, G.; Tam, S.; et al. Dual Proteome-Scale Networks Reveal Cell-Specific Remodeling of the Human Interactome. Cell 2021, 184, 3022–3040. [Google Scholar] [CrossRef] [PubMed]
- Estève, P.-O.; Chin, H.G.; Benner, J.; Feehery, G.R.; Samaranayake, M.; Horwitz, G.A.; Jacobsen, S.E.; Pradhan, S. Regulation of DNMT1 Stability through SET7-Mediated Lysine Methylation in Mammalian Cells. Proc. Natl. Acad. Sci. USA 2009, 106, 5076–5081. [Google Scholar] [CrossRef] [PubMed]
- Leng, F.; Yu, J.; Zhang, C.; Alejo, S.; Hoang, N.; Sun, H.; Lu, F.; Zhang, H. Methylated DNMT1 and E2F1 Are Targeted for Proteolysis by L3MBTL3 and CRL4DCAF5 Ubiquitin Ligase. Nat. Commun. 2018, 9, 1641. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhang, H. Lysine Methylation-Dependent Proteolysis by the Malignant Brain Tumor (MBT) Domain Proteins. Int. J. Mol. Sci. 2024, 25, 2248. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Hochedlinger, K. The Sox Family of Transcription Factors: Versatile Regulators of Stem and Progenitor Cell Fate. Cell Stem Cell 2013, 12, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Xie, D.; Yu, S.C.; Yang, X.J.; He, L.R.; Yang, J.; Ping, Y.F.; Wang, B.; Yang, L.; Xu, S.L.; et al. β-Catenin/POU5F1/SOX2 Transcription Factor Complex Mediates IGF-I Receptor Signaling and Predicts Poor Prognosis in Lung Adenocarcinoma. Cancer Res. 2013, 73, 3181–3189. [Google Scholar] [CrossRef] [PubMed]
- Girouard, S.D.; Laga, A.C.; Mihm, M.C.; Scolyer, R.A.; Thompson, J.F.; Zhan, Q.; Widlund, H.R.; Lee, C.-W.; Murphy, G.F. SOX2 Contributes to Melanoma Cell Invasion. Lab. Investig. 2012, 92, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Weina, K.; Utikal, J. SOX2 and Cancer: Current Research and Its Implications in the Clinic. Clin. Transl. Med. 2014, 3, 19. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Leng, F.; Saxena, L.; Hoang, N.; Yu, J.; Alejo, S.; Lee, L.; Qi, D.; Lu, F.; Sun, H.; et al. Proteolysis of Methylated SOX2 Protein Is Regulated by L3MBTL3 and CRL4DCAF5 Ubiquitin Ligase. J. Biol. Chem. 2019, 294, 476–489. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Hoang, N.; Leng, F.; Saxena, L.; Lee, L.; Alejo, S.; Qi, D.; Khal, A.; Sun, H.; Lu, F.; et al. LSD1 Demethylase and the Methyl-Binding Protein PHF20L1 Prevent SET7 Methyltransferase-Dependent Proteolysis of the Stem-Cell Protein SOX2. J. Biol. Chem. 2018, 293, 3663–3674. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, N.; Salmon-Divon, M.; Dvinge, H.; Hynes-Allen, A.; Balasooriya, G.; Leaford, D.; Behrens, A.; Bertone, P.; Hendrich, B. NuRD-Mediated Deacetylation of H3K27 Facilitates Recruitment of Polycomb Repressive Complex 2 to Direct Gene Repression: NuRD and PRC2 Interact to Control Gene Expression. EMBO J. 2012, 31, 593–605. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, M.; Zhang, C.; Méar, L.; Zhong, W.; Digre, A.; Katona, B.; Sjöstedt, E.; Butler, L.; Odeberg, J.; Dusart, P.; et al. A Single-Cell Type Transcriptomics Map of Human Tissues. Sci. Adv. 2021, 7, eabh2169. [Google Scholar] [CrossRef] [PubMed]
- Digre, A.; Lindskog, C. The Human Protein Atlas—Spatial Localization of the Human Proteome in Health and Disease. Protein Sci. 2021, 30, 218–233. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Kang, B.; Li, C.; Chen, T.; Zhang, Z. GEPIA2: An Enhanced Web Server for Large-Scale Expression Profiling and Interactive Analysis. Nucleic Acids Res. 2019, 47, W556–W560. [Google Scholar] [CrossRef] [PubMed]
- de Bruijn, I.; Kundra, R.; Mastrogiacomo, B.; Tran, T.N.; Sikina, L.; Mazor, T.; Li, X.; Ochoa, A.; Zhao, G.; Lai, B.; et al. Analysis and Visualization of Longitudinal Genomic and Clinical Data from the AACR Project GENIE Biopharma Collaborative in cBioPortal. Cancer Res. 2023, 83, 3861–3867. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zeng, Z.; Wang, J.; Wu, Y.; Chen, W.; Zheng, L.; Xi, T.; Wang, A.; Lu, Y. MicroRNA-9 and Breast Cancer. Biomed. Pharmacother. 2020, 122, 109687. [Google Scholar] [CrossRef] [PubMed]
- Matte, I.; Lane, D.; Bachvarov, D.; Rancourt, C.; Piché, A. Role of Malignant Ascites on Human Mesothelial Cells and Their Gene Expression Profiles. BMC Cancer 2014, 14, 288. [Google Scholar] [CrossRef] [PubMed]
- Badgwell, D.; Bast, R.C. Early Detection of Ovarian Cancer. Dis. Markers 2007, 23, 397–410. [Google Scholar] [CrossRef] [PubMed]
- Toledo-Leyva, A.; Villegas-Pineda, J.C.; Encarnación-Guevara, S.; Gallardo-Rincón, D.; Talamás-Rohana, P. Effect of Ovarian Cancer Ascites on SKOV-3 Cells Proteome: New Proteins Associated with Aggressive Phenotype in Epithelial Ovarian Cancer. Proteome Sci. 2018, 16, 3. [Google Scholar] [CrossRef] [PubMed]
- Alberto-Aguilar, D.R.; Hernández-Ramírez, V.I.; Osorio-Trujillo, J.C.; Gallardo-Rincón, D.; Toledo-Leyva, A.; Talamás-Rohana, P. Ascites from Ovarian Cancer Induces Novel Fucosylated Proteins. Cancer Microenviron. 2019, 12, 181–195. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; He, T.; Huang, L.; Ouyang, Y.; Li, J.; Huang, Y.; Wang, P.; Ding, J. Two Precision Medicine Predictive Tools for Six Malignant Solid Tumors: From Gene-Based Research to Clinical Application. J. Transl. Med. 2019, 17, 405. [Google Scholar] [CrossRef] [PubMed]
- Bae, N.; Viviano, M.; Su, X.; Lv, J.; Cheng, D.; Sagum, C.; Castellano, S.; Bai, X.; Johnson, C.; Khalil, M.I.; et al. Developing Spindlin1 Small-Molecule Inhibitors by Using Protein Microarrays. Nat. Chem. Biol. 2017, 13, 750–756. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Jiang, N.; Zheng, J.; Zhang, S.; Zhang, J.; Zhou, J. Epigenetic Therapy: Research Progress of Decitabine in the Treatment of Solid Tumors. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2024, 1879, 189066. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Guo, H.; Li, X.; Zong, L.; Wei, J.; Li, Z.; Luo, C.; Yang, X.; Fang, H.; Kong, X.; et al. Development of a First-in-Class DNMT1/HDAC Inhibitor with Improved Therapeutic Potential and Potentiated Antitumor Immunity. J. Med. Chem. 2024, 67, 16480–16504. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.M.; Giltnane, J.M.; Balko, J.M.; Schwarz, L.J.; Guerrero-Zotano, A.L.; Hutchinson, K.E.; Nixon, M.J.; Estrada, M.V.; Sánchez, V.; Sanders, M.E.; et al. MYC and MCL1 Cooperatively Promote Chemotherapy-Resistant Breast Cancer Stem Cells via Regulation of Mitochondrial Oxidative Phosphorylation. Cell Metab. 2017, 26, 633–647.e7. [Google Scholar] [CrossRef] [PubMed]
- Ghaffarnia, R.; Nasrollahzadeh, A.; Bashash, D.; Nasrollahzadeh, N.; Mousavi, S.A.; Ghaffari, S.H. Inhibition of C-Myc Using 10058-F4 Induces Anti-Tumor Effects in Ovarian Cancer Cells via Regulation of FOXO Target Genes. Eur. J. Pharmacol. 2021, 908, 174345. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Wu, X.; Han, J. KIF20A Promotes CRC Progression and the Warburg Effect through theC-Myc/HIF-1α Axis. Protein Pept. Lett. 2024, 31, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Seto, E. HDACs and HDAC Inhibitors in Cancer Development and Therapy. Cold Spring Harb. Perspect. Med. 2016, 6, a026831. [Google Scholar] [CrossRef] [PubMed]
- Pu, J.; Liu, T.; Wang, X.; Sharma, A.; Schmidt-Wolf, I.G.H.; Jiang, L.; Hou, J. Exploring the Role of Histone Deacetylase and Histone Deacetylase Inhibitors in the Context of Multiple Myeloma: Mechanisms, Therapeutic Implications, and Future Perspectives. Exp. Hematol. Oncol. 2024, 13, 45. [Google Scholar] [CrossRef] [PubMed]
- Ding, P.; Ma, Z.; Liu, D.; Pan, M.; Li, H.; Feng, Y.; Zhang, Y.; Shao, C.; Jiang, M.; Lu, D.; et al. Lysine Acetylation/Deacetylation Modification of Immune-Related Molecules in Cancer Immunotherapy. Front. Immunol. 2022, 13, 865975. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhou, J.; Chen, Z.; Cheng, A.S. Understanding the Epigenetic Regulation of Tumours and Their Microenvironments: Opportunities and Problems for Epigenetic Therapy. J. Pathol. 2017, 241, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yi, T.; Meng, S.; Zhao, X.; Chen, X.; Zhang, Y. Trichostatin A-Modified Vaccine Provides Superior Protection against Ovarian Cancer Formation and Development. Braz. J. Med. Biol. Res. 2024, 57, e12874. [Google Scholar] [CrossRef] [PubMed]
- Syreeni, A.; Sandholm, N.; Sidore, C.; Cucca, F.; Haukka, J.; Harjutsalo, V.; Groop, P.H. FinnDiane Study Group Genome-Wide Search for Genes Affecting the Age at Diagnosis of Type 1 Diabetes. J. Intern. Med. 2021, 289, 662–674. [Google Scholar] [CrossRef] [PubMed]
- Piñero, J.; Saüch, J.; Sanz, F.; Furlong, L.I. The DisGeNET Cytoscape App: Exploring and Visualizing Disease Genomics Data. Comput. Struct. Biotechnol. J. 2021, 19, 2960–2967. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Guo, X.; Yun, Y.; Lu, L.; Huang, X.; Jia, S. DisGeNet: A Disease-Centric Interaction Database among Diseases and Various Associated Genes. Database 2025, 2025, baae122. [Google Scholar] [CrossRef] [PubMed]
- Giaquinto, A.N.; Sung, H.; Newman, L.A.; Freedman, R.A.; Smith, R.A.; Star, J.; Jemal, A.; Siegel, R.L. Breast Cancer Statistics 2024. CA Cancer J. Clin. 2024, 74, 477–495. [Google Scholar] [CrossRef] [PubMed]
- Buch, A.; Khan, U.; Rathod, H.; Jain, K.; Dwivedi, A.; Rajesh, A. Tumor Budding in Breast Carcinoma: A Systematic Review and Meta-Analysis. J. Cancer Res. Ther. 2023, 19, 1697–1713. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wang, C.; Zhou, S. Artificial Intelligence-Based Risk Stratification, Accurate Diagnosis and Treatment Prediction in Gynecologic Oncology. Semin. Cancer Biol. 2023, 96, 82–99. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, C.; Tripathi, D.; Bosch, J. Preventing the Progression of Cirrhosis to Decompensation and Death. Nat. Rev. Gastroenterol. Hepatol. 2025, 22, 265–280. [Google Scholar] [CrossRef] [PubMed]
- Lan, T.; Chen, M.; Tang, C.; Deltenre, P. Recent Developments in the Management of Ascites in Cirrhosis. United Eur. Gastroenterol. J. 2024, 12, 261–272. [Google Scholar] [CrossRef] [PubMed]
- US Preventive Services Task Force; Nicholson, W.K.; Silverstein, M.; Wong, J.B.; Barry, M.J.; Chelmow, D.; Coker, T.R.; Davis, E.M.; Jaén, C.R.; Krousel-Wood, M.; et al. Screening for Breast Cancer: US Preventive Services Task Force Recommendation Statement. JAMA 2024, 331, 1918–1930. [Google Scholar] [PubMed]
- Bhardwaj, P.V.; Gupta, S.; Elyash, A.; Teplinsky, E. Male Breast Cancer: A Review on Diagnosis, Treatment, and Survivorship. Curr. Oncol. Rep. 2024, 26, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shi, Y.X.; Wang, T.T.; Chen, K.X.; Shang, S.M. Breast Cancer-Related Lymphoedema and Resistance Exercise: An Evidence-Based Review of Guidelines, Consensus Statements and Systematic Reviews. J. Clin. Nurs. 2023, 32, 2208–2227. [Google Scholar] [CrossRef] [PubMed]
- Ficarra, S.; Thomas, E.; Bianco, A.; Gentile, A.; Thaller, P.; Grassadonio, F.; Papakonstantinou, S.; Schulz, T.; Olson, N.; Martin, A.; et al. Impact of Exercise Interventions on Physical Fitness in Breast Cancer Patients and Survivors: A Systematic Review. Breast Cancer 2022, 29, 402–418. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Harper, A.; McCormack, V.; Sung, H.; Houssami, N.; Morgan, E.; Mutebi, M.; Garvey, G.; Soerjomataram, I.; Fidler-Benaoudia, M.M. Global Patterns and Trends in Breast Cancer Incidence and Mortality across 185 Countries. Nat. Med. 2025, 31, 1154–1162. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer Statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Kavanagh, P.L.; Fasipe, T.A.; Wun, T. Sickle Cell Disease: A Review. JAMA 2022, 328, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ramadori, P.; Pfister, D.; Seehawer, M.; Zender, L.; Heikenwalder, M. The Immunological and Metabolic Landscape in Primary and Metastatic Liver Cancer. Nat. Rev. Cancer 2021, 21, 541–557. [Google Scholar] [CrossRef] [PubMed]
- Bonney, G.K.; Chew, C.A.; Lodge, P.; Hubbard, J.; Halazun, K.J.; Trunecka, P.; Muiesan, P.; Mirza, D.F.; Isaac, J.; Laing, R.W.; et al. Liver Transplantation for Non-Resectable Colorectal Liver Metastases: The International Hepato-Pancreato-Biliary Association Consensus Guidelines. Lancet Gastroenterol. Hepatol. 2021, 6, 933–946. [Google Scholar] [CrossRef] [PubMed]
- Rashidian, N.; Alseidi, A.; Kirks, R.C. Cancers Metastatic to the Liver. Surg. Clin. 2020, 100, 551–563. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Reyes, I.; Chandel, N.S. Cancer Metabolism: Looking Forward. Nat. Rev. Cancer 2021, 21, 669–680. [Google Scholar] [CrossRef] [PubMed]
- Halle, M.; Schoenberg, M.H. Physical Activity in the Prevention and Treatment of Colorectal Carcinoma. Dtsch. Ärzteblatt Int. 2009, 106, 722–727. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, V.A.; Gheorghe, G.; Bacalbasa, N.; Chiotoroiu, A.L.; Diaconu, C. Colorectal Cancer: From Risk Factors to Oncogenesis. Medicina 2023, 59, 1646. [Google Scholar] [CrossRef] [PubMed]
- Webb, P.M.; Jordan, S.J. Global Epidemiology of Epithelial Ovarian Cancer. Nat. Rev. Clin. Oncol. 2024, 21, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Sideris, M.; Menon, U.; Manchanda, R. Screening and Prevention of Ovarian Cancer. Med. J. Aust. 2024, 220, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Cervantes, A.; Adam, R.; Roselló, S.; Arnold, D.; Normanno, N.; Taïeb, J.; Seligmann, J.; De Baere, T.; Osterlund, P.; Yoshino, T.; et al. Metastatic Colorectal Cancer: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2023, 34, 10–32. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.C.; Ashley, D.M.; López, G.Y.; Malinzak, M.; Friedman, H.S.; Khasraw, M. Management of Glioblastoma: State of the Art and Future Directions. CA Cancer J. Clin. 2020, 70, 299–312. [Google Scholar] [CrossRef] [PubMed]
- Czarnywojtek, A.; Borowska, M.; Dyrka, K.; Van Gool, S.; Sawicka-Gutaj, N.; Moskal, J.; Kościński, J.; Graczyk, P.; Hałas, T.; Lewandowska, A.M.; et al. Glioblastoma Multiforme: The Latest Diagnostics and Treatment Techniques. Pharmacology 2023, 108, 423–431. [Google Scholar] [CrossRef] [PubMed]
- McKinnon, C.; Nandhabalan, M.; Murray, S.A.; Plaha, P. Glioblastoma: Clinical Presentation, Diagnosis, and Management. BMJ 2021, 374, n1560. [Google Scholar] [CrossRef] [PubMed]
- Lammers, S.W.M.; Geurts, S.M.E.; Hermans, K.E.P.E.; Kooreman, L.F.S.; Swinkels, A.C.P.; Smorenburg, C.H.; van der Sangen, M.J.C.; Kroep, J.R.; Honkoop, A.H.; van den Berkmortel, F.W.P.J.; et al. The Prognostic and Predictive Value of the Luminal-like Subtype in Hormone Receptor-Positive Breast Cancer: An Analysis of the DATA Trial. ESMO Open 2025, 10, 104154. [Google Scholar] [CrossRef] [PubMed]
- Corso, G.; Fusco, N.; Guerini-Rocco, E.; Leonardi, M.C.; Criscitiello, C.; Zagami, P.; Nicolò, E.; Mazzarol, G.; La Vecchia, C.; Pesapane, F.; et al. Invasive Lobular Breast Cancer: Focus on Prevention, Genetics, Diagnosis, and Treatment. Semin. Oncol. 2024, 51, 106–122. [Google Scholar] [CrossRef] [PubMed]
- Wolf, D.M.; Yau, C.; Wulfkuhle, J.; Brown-Swigart, L.; Gallagher, R.I.; Lee, P.R.E.; Zhu, Z.; Magbanua, M.J.; Sayaman, R.; O’Grady, N.; et al. Redefining Breast Cancer Subtypes to Guide Treatment Prioritization and Maximize Response: Predictive Biomarkers across 10 Cancer Therapies. Cancer Cell 2022, 40, 609–623.e6. [Google Scholar] [CrossRef] [PubMed]
- Thi, H.V.; Ngo, A.D.; Chu, D.T. Epigenetic Regulation in Ovarian Cancer. Int. Rev. Cell Mol. Biol. 2024, 387, 77–98. [Google Scholar] [PubMed]
- Skeide, M.A.; Wehrmann, K.; Emami, Z.; Kirsten, H.; Hartmann, A.M.; Rujescu, D. Legascreen Consortium Neurobiological Origins of Individual Differences in Mathematical Ability. PLoS Biol. 2020, 18, e3000871. [Google Scholar] [CrossRef] [PubMed]
- Sakers, A.; De Siqueira, M.K.; Seale, P.; Villanueva, C.J. Adipose-Tissue Plasticity in Health and Disease. Cell 2022, 185, 419–446. [Google Scholar] [CrossRef] [PubMed]
- Ng, W.H.; Abu Zaid, Z.; Mohd Yusof, B.N.; Amin Nordin, S.; Lim, P.Y. Association between Dietary Inflammatory Index and Body Fat Percentage among Newly Diagnosed Breast Cancer Patients. Ann. Med. 2023, 55, 2303399. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Pearce, E.N. Hyperthyroidism: A Review. JAMA 2023, 330, 1472–1483. [Google Scholar] [CrossRef] [PubMed]
- Freire, M.B.O.; Slater, R.; Santos, T.M.; da Silva, B.G.C.; Baxter, L.; Menezes, A.M.B. Head Circumference and Intelligence, Schooling, Employment, and Income: A Systematic Review. BMC Pediatr. 2024, 24, 709. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, V.P.; Mimidis, K. Corrected QT Interval in Cirrhosis: A Systematic Review and Meta-Analysis. World J. Hepatol. 2023, 15, 1060–1083. [Google Scholar] [CrossRef] [PubMed]
- Cheung, M.S.; Cole, T.J.; Arundel, P.; Bridges, N.; Burren, C.P.; Cole, T.; Davies, J.H.; Hagenäs, L.; Högler, W.; Hulse, A.; et al. Growth Reference Charts for Children with Hypochondroplasia. Am. J. Med. Genet. Part A 2024, 194, 243–252. [Google Scholar] [CrossRef] [PubMed]
NO | Disease | Disease Class | Semantic Type | References |
---|---|---|---|---|
1 | Carcinoma of Breast | Neoplasms, Skin and Connective Tissue Diseases | Neoplastic Process | [71,72,73] |
2 | Ascites | Pathological Conditions, Signs and Symptoms | Disease or Syndrome | [74,75] |
3 | Breast Neoplasms | Skin and Connective Tissue Diseases, Neoplasms | Neoplastic Process | [76,77,78,79] |
4 | Cancer, Breast | Skin and Connective Tissue Diseases, Neoplasms | Neoplastic Process | [80] |
5 | Colorectal Neoplasm | Digestive System Diseases, Neoplasms | Neoplastic Process | [81] |
6 | Anaemia, Sickle Cell | Congenital, Hereditary, and Neonatal Diseases and Abnormalities, Hemic and Lymphatic Diseases | Disease or Syndrome | [82] |
7 | Secondary malignancy of liver | Neoplasms, Digestive System Diseases | Neoplastic Process | [83,84,85] |
8 | Carcinogenesis | Neoplasms, Pathological Conditions, Signs and Symptoms | Neoplastic Process | [86] |
9 | CRC | Digestive System Diseases, Neoplasms | Neoplastic Process | [87,88] |
10 | Cancer, Ovarian | Urogenital Diseases, Neoplasms, Endocrine System Diseases | Neoplastic Process | [89,90] |
11 | Colorectal Cancer | Neoplastic Process | [91] | |
12 | Malignant Neoplasm of Brain | Neoplasms, Nervous System Diseases | Neoplastic Process | [92,93,94] |
13 | Luminal B Breast Carcinoma | Neoplastic Process | [95,96,97] | |
14 | Neoplasm, Ovarian | Urogenital Diseases, Neoplasms, Endocrine System Diseases | Neoplastic Process | [89,98] |
15 | Mathematical ability | Psychological Phenomena | Mental Process | [99] |
16 | Percentage of body fat | Finding | [100,101] | |
17 | Goitre | Endocrine System Diseases | Disease or Syndrome | [102] |
18 | Educational Achievements | Finding | [103] | |
19 | Q-T interval, NOS | Clinical Attribute | [104] | |
20 | Body Height | Organism Attribute | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Hu, Q.; Zhao, H.; Zeng, L.; Zhao, Z.; Li, X.; Weng, Q.; Yang, Y.; Chen, M.; Ji, J.; et al. PHF20L1: An Epigenetic Regulator in Cancer and Beyond. Biomolecules 2025, 15, 1048. https://doi.org/10.3390/biom15071048
Wang Y, Hu Q, Zhao H, Zeng L, Zhao Z, Li X, Weng Q, Yang Y, Chen M, Ji J, et al. PHF20L1: An Epigenetic Regulator in Cancer and Beyond. Biomolecules. 2025; 15(7):1048. https://doi.org/10.3390/biom15071048
Chicago/Turabian StyleWang, Yishan, Qin Hu, Haixia Zhao, Lulu Zeng, Zhongwei Zhao, Xia Li, Qiaoyou Weng, Yang Yang, Minjiang Chen, Jiansong Ji, and et al. 2025. "PHF20L1: An Epigenetic Regulator in Cancer and Beyond" Biomolecules 15, no. 7: 1048. https://doi.org/10.3390/biom15071048
APA StyleWang, Y., Hu, Q., Zhao, H., Zeng, L., Zhao, Z., Li, X., Weng, Q., Yang, Y., Chen, M., Ji, J., & Qiu, R. (2025). PHF20L1: An Epigenetic Regulator in Cancer and Beyond. Biomolecules, 15(7), 1048. https://doi.org/10.3390/biom15071048