Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (417)

Search Parameters:
Keywords = human gastrointestinal digestion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1024 KiB  
Review
The Impact of Environmental Factors on the Secretion of Gastrointestinal Hormones
by Joanna Smarkusz-Zarzecka, Lucyna Ostrowska and Marcelina Radziszewska
Nutrients 2025, 17(15), 2544; https://doi.org/10.3390/nu17152544 - 2 Aug 2025
Viewed by 252
Abstract
The enteroendocrine system of the gastrointestinal (GI) tract is the largest endocrine organ in the human body, playing a central role in the regulation of hunger, satiety, digestion, and energy homeostasis. Numerous factors—including dietary components, physical activity, and the gut microbiota—affect the secretion [...] Read more.
The enteroendocrine system of the gastrointestinal (GI) tract is the largest endocrine organ in the human body, playing a central role in the regulation of hunger, satiety, digestion, and energy homeostasis. Numerous factors—including dietary components, physical activity, and the gut microbiota—affect the secretion of GI hormones. This study aims to analyze how these factors modulate enteroendocrine function and influence systemic metabolic regulation. This review synthesizes the current scientific literature on the physiology and distribution of enteroendocrine cells and mechanisms of hormone secretion in response to macronutrients, physical activity, and microbial metabolites. Special attention is given to the interactions between gut-derived signals and central nervous system pathways involved in appetite control. Different GI hormones are secreted in specific regions of the digestive tract in response to meal composition and timing. Macronutrients, particularly during absorption, stimulate hormone release, while physical activity influences hormone concentrations, decreasing ghrelin and increasing GLP-1, PYY, and leptin levels. The gut microbiota, through fermentation and metabolite production (e.g., SCFAs and bile acids), modulates enteroendocrine activity. Species such as Akkermansia muciniphila are associated with improved gut barrier integrity and enhanced GLP-1 secretion. These combined effects contribute to appetite regulation and energy balance. Diet composition, physical activity, and gut microbiota are key modulators of gastrointestinal hormone secretion. Their interplay significantly affects appetite regulation and metabolic health. A better understanding of these relationships may support the development of personalized strategies for managing obesity and related disorders. Full article
(This article belongs to the Section Nutritional Immunology)
Show Figures

Graphical abstract

16 pages, 13113 KiB  
Article
Ambient Particulate Matter Exposure Impairs Gut Barrier Integrity and Disrupts Goblet Cell Function
by Wanhao Gao, Wang Lin, Miao Tian, Shilang Fan, Sabrina Edwards, Joanne Tran, Yuanjing Li and Xiaoquan Rao
Biomedicines 2025, 13(8), 1825; https://doi.org/10.3390/biomedicines13081825 - 25 Jul 2025
Viewed by 329
Abstract
Background: As a well-known environmental hazard, ambient fine particulate matter (PM2.5, aerodynamic diameter ≤ 2.5 µm) has been positively correlated with an increased risk of digestive system diseases, including appendicitis, inflammatory bowel disease, and gastrointestinal cancer. Additionally, PM2.5 exposure [...] Read more.
Background: As a well-known environmental hazard, ambient fine particulate matter (PM2.5, aerodynamic diameter ≤ 2.5 µm) has been positively correlated with an increased risk of digestive system diseases, including appendicitis, inflammatory bowel disease, and gastrointestinal cancer. Additionally, PM2.5 exposure has been shown to alter microbiota composition and diversity in human and animal models. However, its impact on goblet cells and gut mucus barrier integrity remains unclear. Methods: To address this, 8-week-old male and female interleukin-10 knockout (IL10−/−) mice, serving as a spontaneous colitis model, were exposed to concentrated ambient PM2.5 or filtered air (FA) in a whole-body exposure system for 17 weeks. Colon tissues from the PM2.5-exposed mice and LS174T goblet cells were analyzed using H&E staining, transmission electron microscopy (TEM), and transcriptomic profiling. Results: The average PM2.5 concentration in the exposure chamber was 100.20 ± 13.79 µg/m3. PM2.5 exposure in the IL10−/− mice led to pronounced colon shortening, increased inflammatory infiltration, ragged villi brush borders, dense goblet cells with sparse enterocytes, and lipid droplet accumulation in mitochondria. Similar ultrastructure changes were exhibited in the LS174T goblet cells after PM2.5 exposure. Transcriptomic analysis revealed a predominantly upregulated gene expression spectrum, indicating an overall enhancement rather than suppression of metabolic activity after PM2.5 exposure. Integrated enrichment analyses, including GO, KEGG, and GSEA, showed enrichment in pathways related to oxidative stress, xenobiotic (exogenous compound) metabolism, and energy metabolism. METAFlux, a metabolic activity analysis, further substantiated that PM2.5 exposure induces a shift in cellular energy metabolism preference and disrupts redox homeostasis. Conclusions: The findings of exacerbated gut barrier impairment and goblet cell dysfunction following PM2.5 exposure provide new evidence of environmental factors contributing to colitis, highlighting new perspectives on its role in the pathogenesis of colitis. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

16 pages, 1309 KiB  
Review
Microbial Peptidases: Key Players in Reducing Gluten Immunogenicity Through Peptide Degradation
by Africa Sanchiz, M. Isabel San-Martín, N. Navasa, Honorina Martínez-Blanco, Miguel Ángel Ferrero, Leandro Benito Rodríguez-Aparicio and Alejandro Chamizo-Ampudia
Appl. Sci. 2025, 15(14), 8111; https://doi.org/10.3390/app15148111 - 21 Jul 2025
Viewed by 271
Abstract
Gluten-related disorders, including celiac disease (CeD) and non-celiac gluten sensitivity (NCGS), are triggered by the immune response to gluten peptides that resist complete digestion by human gastrointestinal enzymes. Microbial peptidases have emerged as promising biocatalysts capable of degrading these immunogenic peptides, offering potential [...] Read more.
Gluten-related disorders, including celiac disease (CeD) and non-celiac gluten sensitivity (NCGS), are triggered by the immune response to gluten peptides that resist complete digestion by human gastrointestinal enzymes. Microbial peptidases have emerged as promising biocatalysts capable of degrading these immunogenic peptides, offering potential therapeutic and industrial applications. This review explores the role of microbial peptidases in gluten degradation, highlighting key enzyme families, their mechanisms of action, and their effectiveness in reducing gluten immunogenicity. Additionally, we discuss advances in enzymatic therapy, food processing applications, and the challenges associated with optimizing microbial enzymes for safe and efficient gluten detoxification. Understanding the potential of microbial peptidases in mitigating gluten-related disorders paves the way for novel dietary and therapeutic strategies. Full article
Show Figures

Figure 1

34 pages, 4518 KiB  
Article
Spent Hop (Humulus lupulus L.) Extract and Its Flaxseed Polysaccharide-Based Encapsulates Attenuate Inflammatory Bowel Diseases Through the Nuclear Factor-Kappa B, Extracellular Signal-Regulated Kinase, and Protein Kinase B Signalling Pathways
by Miłosz Caban, Katarzyna Owczarek, Justyna Rosicka-Kaczmarek, Karolina Miśkiewicz, Joanna Oracz, Wojciech Pawłowski, Karolina Niewinna and Urszula Lewandowska
Cells 2025, 14(14), 1099; https://doi.org/10.3390/cells14141099 - 17 Jul 2025
Viewed by 451
Abstract
The treatment of inflammatory bowel diseases (IBDs), particularly ulcerative colitis and Crohn’s disease, remains a challenge. As the available therapeutic options have limited efficacy and various side effect, there is a need to identify new inflammatory modulators that can influence IBD. Natural polyphenols [...] Read more.
The treatment of inflammatory bowel diseases (IBDs), particularly ulcerative colitis and Crohn’s disease, remains a challenge. As the available therapeutic options have limited efficacy and various side effect, there is a need to identify new inflammatory modulators that can influence IBD. Natural polyphenols and polyphenol-rich extracts have been found to have preventive and therapeutic potential, including various anti-inflammatory effects. In this study, the inhibition of the formation of mediators associated with intestinal inflammation, remodelling, and angiogenesis by the spent hop extract (SHE), a polyphenol-rich extract from Humulus lupulus L., and its flaxseed polysaccharide-based encapsulates was examined using tumour necrosis factor alpha (TNF-α)-stimulated human small intestinal epithelial (HIEC-6) and large intestinal epithelial (CCD841CoN) cells. Also, we assessed the activity of the tested agents after in the vitro-simulated gastrointestinal digestion process. SHE strongly inhibited the expression of pro-inflammatory cytokines, mainly IL-1β and TNF-α, as well as the expression and activity of type IV collagenases (MMP-2 and MMP-9); these effects resulted from the suppression of NF-κB, ERK and Akt signalling pathways. We also proved the protective effect of encapsulation process against the reduction in the bioaccessibility of SHE, observed under the influence of digestion process. Our results provide initial evidence on the potential utility of SHE and its encapsulates in IBD. Full article
(This article belongs to the Special Issue Natural Products and Their Derivatives Against Human Disease)
Show Figures

Graphical abstract

20 pages, 557 KiB  
Review
The Impact of A1- and A2 β-Casein on Health Outcomes: A Comprehensive Review of Evidence from Human Studies
by Nerea González-Rodríguez, Natalia Vázquez-Liz, Ana Rodríguez-Sampedro, Patricia Regal, Cristina Fente and Alexandre Lamas
Appl. Sci. 2025, 15(13), 7278; https://doi.org/10.3390/app15137278 - 27 Jun 2025
Viewed by 1221
Abstract
The digestion of A1 β-casein present in conventional milk releases β-casomorphin-7 (βCM-7), a bioactive peptide with potential implications for gastrointestinal and neurological health. A scoping review was performed to respond to the following research question: What are the health effects of consuming milk [...] Read more.
The digestion of A1 β-casein present in conventional milk releases β-casomorphin-7 (βCM-7), a bioactive peptide with potential implications for gastrointestinal and neurological health. A scoping review was performed to respond to the following research question: What are the health effects of consuming milk containing the A1 β-casein variant compared to the exclusive consumption of the A2 variant in humans? The evidence collected in this review of human studies with different populations (i.e., children, middle-aged adults, athletes) suggests that the consumption of milk containing A1 β-casein may negatively influence gut health by altering microbial composition, reducing intestinal motility, and increasing colonic fermentation, leading to elevated gas production and altered short-chain fatty acid (SCFA) profiles. The release of βCM-7 upon digestion can also compromise intestinal-barrier integrity, which may exacerbate symptoms of lactose intolerance, irritable bowel syndrome (IBS), or other allergy-related sensitivities. Its ability to cross the blood–brain barrier raises concerns about potential neurological effects. In contrast, milk containing exclusively A2 β-casein is associated with improved gastrointestinal outcomes, including the enhanced abundance of beneficial bacteria such as Bifidobacterium spp. and reduced inflammatory markers. Full article
(This article belongs to the Special Issue New Diagnostic and Therapeutic Approaches in Food Allergy)
Show Figures

Figure 1

15 pages, 1081 KiB  
Review
Age-Related Decline of Gastric Secretion: Facts and Controversies
by Francisco Vara-Luiz, Ivo Mendes, Carolina Palma, Paulo Mascarenhas, Gonçalo Nunes, Marta Patita and Jorge Fonseca
Biomedicines 2025, 13(7), 1546; https://doi.org/10.3390/biomedicines13071546 - 25 Jun 2025
Viewed by 708
Abstract
Aging is associated with structural and functional changes in the gastrointestinal tract; however, its impact on gastric secretion remains unclear. This scoping review examines whether gastric secretion declines with age and explores its clinical implications. Following the PRISMA guidelines, PubMed, Web of Science, [...] Read more.
Aging is associated with structural and functional changes in the gastrointestinal tract; however, its impact on gastric secretion remains unclear. This scoping review examines whether gastric secretion declines with age and explores its clinical implications. Following the PRISMA guidelines, PubMed, Web of Science, Embase, and Google Scholar were systematically searched from inception to December 2024. Fifteen studies (both animal and human) met the inclusion criteria: they were written in English, directly relevant to aging and gastric secretion, and had a clearly stated methodology. Evidence strength was assessed using the GRADE framework, revealing predominantly low to moderate certainty due to small sample sizes and observational study designs. Animal studies have demonstrated reduced acid secretion in older rats, which is attributed to mucosal atrophy and diminished responsiveness to gastrin. Recent human studies suggest that aging does not directly reduce acid output, as reduced acid secretion may result from a higher prevalence of atrophic gastritis, Helicobacter pylori infection, and the widespread use of proton pump inhibitors. Antisecretory therapy may lack benefits in older adult patients with hypochlorhydria/achlorhydria and increase the risk of adverse effects. Pepsin output declines with aging due to reduced chief cell function, although its clinical impact on digestion is unclear. Since intrinsic factor secretion far exceeds the amount necessary for its physiological function, even low amounts seem to be sufficient to prevent cobalamin deficiency. Age-related decline in gastric secretion is mostly attributed to age-associated disorders; however, impairment of secretory function in older people is frequent. Future research should prioritise longitudinal studies, larger cohorts, and histology-stratified analysis. Full article
(This article belongs to the Special Issue Feature Reviews in Gastrointestinal Diseases)
Show Figures

Figure 1

24 pages, 3770 KiB  
Article
Effects of Polypropylene and Polyethylene Terephthalate Microplastics on Trypsin Structure and Function
by Tamara Lujic, Nikola Gligorijevic, Dragana Stanic-Vucinic, Maja Krstic Ristivojevic, Tamara Mutic, Lukas Wimmer, Lea Ann Dailey and Tanja Cirkovic Velickovic
Int. J. Mol. Sci. 2025, 26(13), 5974; https://doi.org/10.3390/ijms26135974 - 21 Jun 2025
Viewed by 433
Abstract
Ingestion is one of the main exposure routes of humans and animals to microplastics (MPs). During digestion, MPs can interact with both gastrointestinal enzymes and food proteins. This study investigated the adsorption of trypsin onto polypropylene (PP) and polyethylene terephthalate (PET) MPs, the [...] Read more.
Ingestion is one of the main exposure routes of humans and animals to microplastics (MPs). During digestion, MPs can interact with both gastrointestinal enzymes and food proteins. This study investigated the adsorption of trypsin onto polypropylene (PP) and polyethylene terephthalate (PET) MPs, the influence of MPs on trypsin structure and activity, and the in vitro trypsin digestibility of bovine meat extract (BME) sarcoplasmic proteins and BME α-Gal-carrying allergens (α-GalA) in the presence of PP and PET MPs. Trypsin, BME and α-GalA proteins interact with MPs, resulting in the formation of a soft (SC) and hard (HC) corona. This interaction is dynamic, leading to the adsorption and desorption of protein through time. Trypsin adsorption onto MPs results in slight structural changes in the SC and bulk solution, while a trypsin fraction residing in the HC loses most of its specific activity. The presence of MPs slightly slows down the digestibility of proteins with a mass of 38 kDa, while it does not affect the digestion of α-GalA. According to our results, it is unlikely that realistic concentrations of MPs in the intestine would have significant effects on meat extract proteins’ and allergens’ digestibility by trypsin. We confirmed that during trypsin digestion, the corona on PP and PET MP is composed of BME sarcoplasmic proteins and allergenic α-Gal-carrying proteins. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

17 pages, 2015 KiB  
Article
Modulatory Effects of Tetraselmis chuii Gastrointestinal Digests on Human Colonic Microbiota
by Marta Majchrzak, Samuel Paterson, Javier Gutiérrez-Corral, Dulcenombre Gómez-Garre, Adriana Ortega-Hernández, Miguel Ángel de la Fuente, Blanca Hernández-Ledesma and Pilar Gómez-Cortés
Foods 2025, 14(12), 2106; https://doi.org/10.3390/foods14122106 - 16 Jun 2025
Viewed by 498
Abstract
Tetraselmis chuii is a microalga commercialized because of its richness in health-beneficial molecules. Previous studies have profusely demonstrated the biological properties of compounds isolated from T. chuii, but data are not yet available on the impact that gastrointestinal digestion could exert. This [...] Read more.
Tetraselmis chuii is a microalga commercialized because of its richness in health-beneficial molecules. Previous studies have profusely demonstrated the biological properties of compounds isolated from T. chuii, but data are not yet available on the impact that gastrointestinal digestion could exert. This article describes the passage of T. chuii through the gastrointestinal tract, combining the INFOGEST procedure and in vitro colonic fermentation to examine potential effects on the human colonic microflora composition and its metabolic activity. Microbial plate counting was conducted to determine the different groups of microorganisms. Amplification of the 16S ribosomal RNA gene was performed via polymerase chain reaction to examine in detail the main genera of bacteria, and its metabolic activity was evaluated by measuring of short-chain fatty acids (SCFAs) by gas chromatography. The presence of T. chuii modified the fecal microbiota. Although the evolution of lactic acid bacteria and Enterococcus spp. content during 72 h showed that the use of T. chuii, compared to fructopolysaccharides such as inulin, would not provide nutritional advantages, the microalgae extract contributed to a significant decrease in Clostridium, Staphylococcus, and Enterobacteriaceae. Furthermore, T. chuii increased the relative abundance of Akkermansia and Butyricimonas, genera considered highly beneficial. In correlation with the presence of these microorganisms, the results show that the presence of T. chuii favored the release of SCFA, such as acetic (20 mM), propionic (>5 mM), isovaleric (0.3 mM), isobutyric (0.15 mM), and, mainly, butyric (>2 mM), after 72 h colonic fermentation, being indicators of gut health. These findings suggest that T. chuii has potential as a functional ingredient for promoting health through its modulatory effects on the intestinal microbiota. Full article
Show Figures

Figure 1

25 pages, 4790 KiB  
Article
Roasting Improves the Bioaccessibility and Bioactivity of Polyphenols from Highland Barley with a Protective Effect in Oxidatively Damaged HepG2 Cells
by Nuo Chen, Shuyu Pang, Xingru Zao, Qin Luo, Lingyuan Luo, Wenming Dong and Yongqiang Li
Foods 2025, 14(12), 2095; https://doi.org/10.3390/foods14122095 - 14 Jun 2025
Viewed by 448
Abstract
This research is designed to explore the effect of roasting on the release, bioaccessibility, and bioactivity of polyphenols in highland barley (HB). The findings of in vitro digestion indicated that roasting significantly improved the bioaccessibility of polyphenols in HB flour (gastrointestinal digestion stage: [...] Read more.
This research is designed to explore the effect of roasting on the release, bioaccessibility, and bioactivity of polyphenols in highland barley (HB). The findings of in vitro digestion indicated that roasting significantly improved the bioaccessibility of polyphenols in HB flour (gastrointestinal digestion stage: raw HB: 187.28%, roasted HB: 285.65%; colonic fermentation stage: raw HB: 188.13%, roasted HB: 255.36%) and enhanced its antioxidant activity. Moreover, the inhibitory impacts of polyphenols on the activities of α -amylase, α-glucosidase, and lipase mainly occur in the small intestine. Roasting increased inhibitory activities of polyphenols on α-amylase, α-glucosidase, and lipase in the small intestine (p < 0.05), with IC50 values of 71.31 ± 1.35 μg FAE/mL, 60.44 ± 1.35 μg FAE/mL, and 52.94 ± 2.51 μg FAE/mL, respectively. HepG2 cells, a human hepatocellular carcinoma cell line, are commonly employed in oxidative stress and antioxidant studies due to their ability to mirror the protective effects of bioactive compounds against oxidative damage in liver cells. This study aimed to establish a model of H2O2-induced oxidative stress injury in HepG2 cells and to evaluate the protective effect of digested HB polyphenol extract against oxidative injury. It was found that the polyphenols extracted from roasted HB help reduce reactive oxygen species (ROS) and malondialdehyde (MDA) through increased activities of superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), glutathione peroxidase (GPx), and total antioxidant capacity (T-AOC), thereby providing enhanced defense against oxidative damage in HepG2 cells. The findings of this research pave the way for the development of new functional foods utilizing roasted HB. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

18 pages, 7396 KiB  
Article
Comparative Gastrointestinal Digestion Dynamics of Air-Dried and Freeze-Dried Yak Jerky: Insights from a Dynamic In Vitro Human Stomach–Intestine (DHSI-IV) System
by Bei Xue, Zhendong Liu, Yiling Wen, Yubing Lu, Yidan Zhang, Jingjing Wang, Xiao Dong Chen and Peng Wu
Foods 2025, 14(12), 2086; https://doi.org/10.3390/foods14122086 - 13 Jun 2025
Viewed by 689
Abstract
Yak meat jerky, a traditional high-protein food commonly consumed in high-altitude regions, is often produced via air-drying, which may adversely affect its nutritional quality and digestibility. This study systematically compared the gastrointestinal digestion profiles of air-dried yak meat (ADM) and vacuum freeze-dried yak [...] Read more.
Yak meat jerky, a traditional high-protein food commonly consumed in high-altitude regions, is often produced via air-drying, which may adversely affect its nutritional quality and digestibility. This study systematically compared the gastrointestinal digestion profiles of air-dried yak meat (ADM) and vacuum freeze-dried yak meat (VFDM) using a dynamic in vitro human stomach–intestine (DHSI-IV) system. Key digestive parameters, including gastric emptying kinetics, particle size distribution, and protein hydrolysis, were evaluated under physiologically relevant conditions. VFDM exhibited superior hydration capacity, contributing to delayed gastric emptying of the mixed solid–liquid phase (t1/2 = 85.1 ± 1.0 min) compared to ADM (t1/2 = 80.4 ± 1.2 min), indicating increased gastric satiety. Conversely, VFDM showed a faster solid-phase gastric emptying (t1/2 = 107.2 ± 0.8 min) relative to ADM (t1/2 = 113.1 ± 2.7 min), likely due to improved texture and rehydration. Both jerky types exhibited progressive particle disintegration; by 180 min, large particles (>2.0 mm) decreased to 16.88% ± 2.63% in ADM and 20.04% ± 0.64% in VFDM (p > 0.05). Protein digestibility, measured by SDS-PAGE and the degree of hydrolysis (DH), was significantly higher in VFDM (38.5 ± 3.6%) than in ADM (34.0 ± 0.1%, p < 0.05), with VFDM demonstrating more rapid and extensive protein degradation across gastric and intestinal phases. These improvements may be attributed to the porous microstructure and reduced processing-induced protein cross-linking in VFDM, facilitating enhanced enzyme access. Overall, vacuum freeze-drying substantially improved yak jerky protein digestibility, offering the potential for the development of meat-based functional foods targeted at individuals with compromised gastrointestinal function. Full article
(This article belongs to the Special Issue Meat Products: Processing and Storage)
Show Figures

Figure 1

30 pages, 2856 KiB  
Article
Comprehensive Risk Assessment of Metals and Minerals in Seafood Using Bioaccessibility Correction
by Ștefania-Adelina Milea, Ira-Adeline Simionov, Nina-Nicoleta Lazăr, Cătălina Iticescu, Mihaela Timofti, Puiu-Lucian Georgescu and Caterina Faggio
J. Xenobiot. 2025, 15(3), 92; https://doi.org/10.3390/jox15030092 - 12 Jun 2025
Viewed by 1855
Abstract
Evaluating the bioaccessibility and health risks of seafood is extremely important because, although it is a significant source of vital minerals, it may also contain potentially toxic elements. This study aimed to determine the content of metals and minerals in different seafood species [...] Read more.
Evaluating the bioaccessibility and health risks of seafood is extremely important because, although it is a significant source of vital minerals, it may also contain potentially toxic elements. This study aimed to determine the content of metals and minerals in different seafood species before and after thermal processing. Also, given the risk of overestimating the actual final concentration available in the body, a study was carried out to determine the bioaccessibility of these elements by simulating the digestion process in the gastrointestinal tract. Assessment of the potential toxic effects on consumer health in terms of exposure to heavy metals was carried out through risk analysis by Estimated Daily Intake, Hazard Index, and Cancer Risk parameters. Three bivalve mollusks, one gastropod mollusk, four cephalopod mollusks, and one crustacean species were analyzed in terms of minerals (P, S, K, Ca, and Se) and heavy metals (Cd, Pb, Ni, Cr, Fe, Zn, Co, Mn, and As) content. The lead (Pb) concentration recorded the strongest bioaccessibility increase, even reaching 100% in P. vannamei. Generally, the bioaccessibility of all metalloids dropped below 100%, which suggests that only a part of the amount of metal in the initially ingested sample can be absorbed by the human organism. Potassium and sulfur registered the greatest value, up to 23% for minerals’ bioaccessibility in the same samples. The highest intake rate of metals occurred after the consumption of M. gigas, which registered the highest Estimated Daily Intake for Cr (chromium) (0.321 mg kg−1 d−1), Cu (copper) (10.15 mg kg−1 d−1), and Zn (zinc) (12.67 mg kg−1 d−1). The Hazard Index values indicated no significant risk of poisoning. All calculated Cancer Risk scores remained below the acceptable threshold. Moreover, the Pearson coefficient revealed a positive correlation between the Hazard Index and the most abundant elements in the samples, Cr, Zn, and Cu. This study could provide a framework for evaluating both the nutritional benefits and toxicological concerns of seafood intake in public health applications. Full article
Show Figures

Graphical abstract

13 pages, 1529 KiB  
Article
Preliminary Study of CCR9 and MAdCAM-1 Upregulation and Immune Imbalance in Canine Chronic Enteropathy: Findings Based on Histopathological Analysis
by Macarena Pino, Galia Ramirez, Caroll Beltrán, Eduard Martinez, Ismael Pereira, Jaime Villegas, Federico Cifuentes and Daniela Siel
Animals 2025, 15(12), 1710; https://doi.org/10.3390/ani15121710 - 10 Jun 2025
Viewed by 545
Abstract
Canine chronic enteropathy (CE) is a gastrointestinal disorder characterized by persistent or recurrent digestive symptoms lasting more than three weeks. It shares similarities with human inflammatory bowel disease but its immunopathogenesis remains poorly characterized in dogs. The aim of this study was to [...] Read more.
Canine chronic enteropathy (CE) is a gastrointestinal disorder characterized by persistent or recurrent digestive symptoms lasting more than three weeks. It shares similarities with human inflammatory bowel disease but its immunopathogenesis remains poorly characterized in dogs. The aim of this study was to characterize the local and systemic immune profile of dogs with CE by assessing cytokine and chemokine expression in serum and intestinal tissue, as well as the mRNA expression of immune-related receptors such as integrins, chemokine receptors, and cytokines. Duodenal biopsies and blood samples were collected from five dogs diagnosed with a CE and five healthy controls. Serum concentrations of cytokines and chemokines were determined by multiplex ELISA, and mRNA expression in the intestinal mucosa was analyzed by quantitative PCR. Dogs with a CE showed increased expression of pro-inflammatory cytokines, including TNF-α and IFN-γ, and increased concentrations of chemokines such as CXCL10 and CCL2 in both serum and tissue samples. Increased mRNA expression of the chemokine receptor CCR9 and the adhesion molecule MAdCAM-1 were also observed in intestinal samples. These findings provide new insights into the immune response involved in CE and may aid the development of future diagnostic biomarkers and targeted therapies for canine chronic enteropathies. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Figure 1

20 pages, 6354 KiB  
Article
Exploring Gastrointestinal Health in Diabetic Cats: Insights from Owner Surveys, Ultrasound, and Histopathological Analysis
by Marisa Esteves-Monteiro, Cláudia S. Baptista, Diogo Cardoso-Coutinho, Clara Landolt, Patrícia Dias-Pereira and Margarida Duarte-Araújo
Vet. Sci. 2025, 12(6), 529; https://doi.org/10.3390/vetsci12060529 - 29 May 2025
Viewed by 707
Abstract
Diabetes is a metabolic disorder characterized by chronic hyperglycemia, affecting between 0.21% and 1.24% of cats. While gastrointestinal complications are well-documented in human diabetic patients—affecting up to 75%—similar data in cats remain scarce. This study explores gastrointestinal alterations in diabetic cats using ultrasound [...] Read more.
Diabetes is a metabolic disorder characterized by chronic hyperglycemia, affecting between 0.21% and 1.24% of cats. While gastrointestinal complications are well-documented in human diabetic patients—affecting up to 75%—similar data in cats remain scarce. This study explores gastrointestinal alterations in diabetic cats using ultrasound and histopathological evaluations, alongside assessing owners’ perceptions of digestive issues. A brief survey was conducted with the owners of diabetic cats to document diabetes symptoms and any gastrointestinal changes. Following the survey, each cat underwent abdominal US, focusing on the digestive tract including the stomach, duodenum, jejunum, ileum, and colon. Additionally, histopathological analysis was conducted on necropsied diabetic cats. Thirteen domestic spayed diabetic cats with no prior gastrointestinal disease were included, with 83% showing at least one gastrointestinal issue reported by owners. All cats exhibited increased gastric, duodenal, and jejunal wall thickness, while the ileum and colon showed normal thickness. Histopathological evaluation revealed increased thickness of the muscular layers, inflammatory infiltrate, and collagen deposits in the whole length of the gastrointestinal tract. These findings suggest that diabetic cats may experience gastrointestinal remodeling, a phenomenon that, while well recognized in human diabetes, has not been adequately studied in feline patients. Full article
Show Figures

Graphical abstract

14 pages, 515 KiB  
Article
Potential Use of Tropical and Subtropical Fruits By-Products in Pig Diet: In Vitro Two-Step Evaluation
by Dieu donné Kiatti, Francesco Serrapica, Nadia Musco, Rossella Di Palo and Serena Calabrò
Animals 2025, 15(10), 1454; https://doi.org/10.3390/ani15101454 - 17 May 2025
Viewed by 542
Abstract
Pineapple (Ananas comosus L.), cashew (Anacardium occidentale L.) and mango (Mangifera indica L.) are among the most cultivated plants in tropical and subtropical regions due to the high demand around the world. Following the harvesting and processing of pineapple, cashew [...] Read more.
Pineapple (Ananas comosus L.), cashew (Anacardium occidentale L.) and mango (Mangifera indica L.) are among the most cultivated plants in tropical and subtropical regions due to the high demand around the world. Following the harvesting and processing of pineapple, cashew and mango fruits, a huge amount of waste is generated, which is generally discarded into the environment, contributing to global pollution and water contamination. This study aims to propose alternative feeds for pigs by characterizing cashew, pineapple and mango fruit by-products through an in vitro two-step (gastro-intestinal and caecum) study to provide feeds not competing with humans and promoting eco-sustainable livestock. Ten by-products [i.e., pineapple peel and pomace; cashew nut testa, cashew (var. yellow) whole fruit and pomace; cashew (var. red) whole fruit and pomace; mango peel, kernel and testa] were sampled in Benin. The samples involved chemical analysis and an in vitro two-step digestion method (enzymatic + microbial digestibility). The results report a low dry matter (DM) content specifically in the pomace, peel and whole apple (13.0–27.2%), while higher lipids were observed for cashew nut testa and mango kernel (26.4 and 11.2% DM). The investigated by-products fall within the interval of referenced feeds for structural carbohydrates (NDF: 7.6–47.1% DM) and protein (6.21–51.2% DM), except mango by-products with a low content of protein (2.51–4.69% DM). The total dry matter digestibility, short-chain fatty acid and gas production were low for cashew by-products and stopped after 48 h of incubation. Pineapple pomace, cashew whole apple, pomace and testa can be considered as feedstuff in fattening pigs, presenting characteristics partly similar to beet pulp. Indeed, mango peel and kernel should be combined with a protein feed source to feed pigs. Presently, fruit by-products, such as those from cashew, pineapple and mango, are thrown into the environment, contributing to global warming and water pollution. These problems would be reduced by recycling these wastes in other fields, such as pig nutrition, creating a circular economy to provide feeds promoting eco-sustainable livestock. Indeed, in vivo studies are needed before proposing these by-products for pig diets. Full article
(This article belongs to the Collection Use of Agricultural By-Products in Animal Feeding)
Show Figures

Figure 1

20 pages, 337 KiB  
Review
Prebiotics and Probiotics Supplementation in Pigs as a Model for Human Gut Health and Disease
by Raffaella Rossi and Edda Mainardi
Biomolecules 2025, 15(5), 665; https://doi.org/10.3390/biom15050665 - 3 May 2025
Cited by 1 | Viewed by 989
Abstract
Animal models are an essential part of translational research for the purpose of improving human health. The pig is a potential human research model that can be used to assess the effects of dietary interventions, pathologies, and drugs on gut health and the [...] Read more.
Animal models are an essential part of translational research for the purpose of improving human health. The pig is a potential human research model that can be used to assess the effects of dietary interventions, pathologies, and drugs on gut health and the microbiome, due to its anatomical and physiological similarity to humans. It is recognised that a healthy gut is closely linked to the prevention of several chronic diseases, including obesity, diabetes, gastrointestinal inflammation, as well as neurological and cardiovascular diseases. The use of prebiotics and probiotics plays an important role in maintaining a healthy digestive system, which is responsible for modulating all other body functions. The present review focuses on the applications of prebiotics and probiotics in the pig as an animal model in healthy and diseased conditions, in order to highlight the efficacy of these molecules in the perspective of human health outcomes. The data support the use of prebiotics to improve intestinal health in both healthy and diseased states. In addition, the use of human microbiota-associated (HMA) gnotobiotic pigs provided a good model to study the intestinal and systemic immune response and microbiota composition following probiotic supplementation after a vaccine or virus challenge. Full article
Back to TopTop