Comparative Gastrointestinal Digestion Dynamics of Air-Dried and Freeze-Dried Yak Jerky: Insights from a Dynamic In Vitro Human Stomach–Intestine (DHSI-IV) System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Samples Preparation
2.1.1. Materials
2.1.2. Preparation of Yak Jerky
2.2. Chemicals and Preparation of Simulated Digestive Fluids
2.2.1. Chemicals
2.2.2. Preparation of Simulated Digestive Fluids
2.3. Measurement of Water Absorption Capacity of Yak Jerky
2.4. In Vitro Dynamic Digestion Using the DHSI-IV System
2.5. Measurement of Particle Size Distribution of Gastric Digesta
2.6. Determination of Gastric Emptying Rate
2.7. Analysis of Protein Hydrolysis During Simulated Dynamic Digestion
2.8. SDS-PAGE Analysis of Digestion Products
2.9. Statistical Analysis
3. Results and Discussion
3.1. Water Absorption During Static Soaking
3.2. Apparent Morphology During Dynamic Digestion
3.3. Gastric pH
3.4. Particle Size Distribution
3.5. Gastric Emptying Rate
3.6. Degree of Hydrolysis During Dynamic Gastrointestinal Digestion
3.7. SDS-PAGE
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Mei, Y.; Du, R.; Zhang, S.; Wang, Q.; Dao, X.; Li, N.; Wang, L.; Wang, L.; He, H. Arginine as a Regulator of Antioxidant and Gel Formation in Yak Myofibrillar Proteins: Efficacy and Mechanistic Insights. Food Chem. X 2024, 24, 101839. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Zhao, X.; Laghi, L.; Jiang, X.; Tang, J.; Du, X.; Zhu, C.; Picone, G. Insights into the Flavor Profile of Yak Jerky from Different Muscles Based on Electronic Nose, Electronic Tongue, Gas Chromatography–Mass Spectrometry and Gas Chromatography–Ion Mobility Spectrometry. Foods 2024, 13, 2911. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tian, X.; Liu, X.; Zhang, Y.; Zhao, K.; Zhang, K.; Wang, W. Effects of Different Cooking Methods on Physicochemical, Textural Properties of Yak Meat and Its Changes with Intramuscular Connective Tissue during in Vitro Digestion. Food Chem. 2023, 422, 136188. [Google Scholar] [CrossRef]
- Wen, R.; Lv, Y.; Li, X.; Chen, Q.; Kong, B. High-Throughput Sequencing Approach to Reveal the Bacterial Diversity of Traditional Yak Jerky from the Tibetan Regions. Meat Sci. 2021, 172, 108348. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tang, S.; Mo, R.; Li, J.; Chen, L. Effects of NaCl Curing and Subsequent Fermentation with Lactobacillus sakei or Lactobacillus plantarum on Protein Hydrolysis and Oxidation in Yak Jerky. LWT 2023, 173, 114298. [Google Scholar] [CrossRef]
- Fan, Y.; Guo, C.; Zhu, Y.; Liu, D.; Liu, Y. Effects of Different Drying Methods on Physicochemical, Textural, Flavor, and Sensory Characteristics of Yak Jerky. Meat Sci. 2024, 216, 109570. [Google Scholar] [CrossRef]
- Guo, Z.; Ge, X.; Yang, L.; Ma, G.; Ma, J.; Yu, Q.; Han, L. Ultrasound-Assisted Thawing of Frozen White Yak Meat: Effects on Thawing Rate, Meat Quality, Nutrients, and Microstructure. Ultrason. Sonochem. 2021, 70, 105345. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Zhao, L. Effects of Thermal Processing and Temperature on the Quality, Protein Oxidation, and Structural Characteristics of Yak Meat. J. Texture Stud. 2023, 54, 659–670. [Google Scholar] [CrossRef]
- Zhang, W.; Xiao, S.; Ahn, D.U. Protein Oxidation: Basic Principles and Implications for Meat Quality. Crit. Rev. Food Sci. Nutr. 2013, 53, 1191–1201. [Google Scholar] [CrossRef]
- Ma, J.; Wang, X.; Li, Q.; Zhang, L.; Wang, Z.; Han, L.; Yu, Q. Oxidation of Myofibrillar Protein and Crosslinking Behavior during Processing of Traditional Air-Dried Yak (Bos grunniens) Meat in Relation to Digestibility. LWT 2021, 142, 110984. [Google Scholar] [CrossRef]
- Deng, Y.; Luo, Y.; Wang, Y.; Zhao, Y. Effect of Different Drying Methods on the Myosin Structure, Amino Acid Composition, Protein Digestibility and Volatile Profile of Squid Fillets. Food Chem. 2015, 171, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Antal, T. Comparative Study of Three Drying Methods: Freeze, Hot Airassisted Freeze and Infrared-Assisted Freeze Modes. Agron. Res. 2015, 13, 863–878. [Google Scholar]
- Lee, S.; Han, S.; Jo, K.; Jung, S. The Impacts of Freeze-Drying-Induced Stresses on the Quality of Meat and Aquatic Products: Mechanisms and Potential Solutions to Acquire High-Quality Products. Food Chem. 2024, 459, 140437. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Woo, M.W.; Quek, S.Y. The Physicochemical Properties, Functionality, and Digestibility of Hempseed Protein Isolate as Impacted by Spray Drying and Freeze Drying. Food Chem. 2024, 433, 137310. [Google Scholar] [CrossRef]
- Kim, B.-S.; Oh, B.-J.; Lee, J.-H.; Yoon, Y.S.; Lee, H.-I. Effects of Various Drying Methods on Physicochemical Characteristics and Textural Features of Yellow Croaker (Larimichthys polyactis). Foods 2020, 9, 196. [Google Scholar] [CrossRef]
- Coria-Hernández, J.; Meléndez-Pérez, R. Effect of the Freeze-Drying Preservation Process on Some Quality Attributes of Pork Meat (Longissimus Thoracis). Food Sci. Nutr. 2024, 12, 10424–10432. [Google Scholar] [CrossRef]
- Li, S.; Ye, S.; Jin, H.; Shang, L.; Li, J.; Liang, H.; Li, B. Sodium Caseinate Enhances the Effect of Konjac Flour on Delaying Gastric Emptying Based on a Dynamic In Vitro Human STOMACH-IV (DIVHS-IV) System. J. Sci. Food Agric. 2022, 102, 5849–5857. [Google Scholar] [CrossRef]
- Yang, X.; Bu, X.; Li, Y.; Shen, R.; Duan, Y.; Shi, H.; Kong, X.; Zhang, L. Differential Regulation of Physicochemical Properties and Myofibrillar Protein Degradation of Yak Meat by Interactions between Reactive Oxygen Species and Reactive Nitrogen Species during Postmortem Aging. J. Sci. Food Agric. 2024, 105, 954–966. [Google Scholar] [CrossRef]
- Bohn, T.; Carriere, F.; Day, L.; Deglaire, A.; Egger, L.; Freitas, D.; Golding, M.; Le Feunteun, S.; Macierzanka, A.; Menard, O.; et al. Correlation between in Vitro and in Vivo Data on Food Digestion. What Can We Predict with Static in Vitro Digestion Models? Crit. Rev. Food Sci. Nutr. 2018, 58, 2239–2261. [Google Scholar] [CrossRef]
- Li, W.; Dong, W.; Tian, C.; Zhao, Y.; Li, Y. Evaluation of Gastric Digestion Behavior of Protein Sports Supplements by In Vitro Dynamic Gastrointestinal Digestion Model. Preprints 2024. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST Static in Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Baima, C.; Jiang, J.; Liu, Z.; Wang, J.; Chen, X.D.; Wu, P. In Vitro Gastric Digestion and Emptying of Tsampa under Simulated Elderly and Young Adult Digestive Conditions Using a Dynamic Stomach System. J. Food Eng. 2022, 327, 111054. [Google Scholar] [CrossRef]
- Zhou, Z.; Luo, S.; Jin, Y.; Wu, X.; Liu, X.; Chen, J. Comparative Efficacy of Amino Acid Availability and Peptidomic Analysis of Alternative Proteins from Different Sources under Dynamic in Vitro Protein Digestion. Food Hydrocoll. 2025, 159, 110665. [Google Scholar] [CrossRef]
- Zang, Y.; Wang, S.; Gao, Y.; Sun, C.; Zhao, Y.; Cao, Y.; Lu, W.; Zhang, Y.; Fang, Y. High Moisture Extrusion of Pulse Proteins: Texture, Structure, and in Vitro Digestion Characteristics of Extrudates. Food Hydrocoll. 2025, 159, 110676. [Google Scholar] [CrossRef]
- Wang, J.; Wu, P.; Liu, M.; Liao, Z.; Wang, Y.; Dong, Z.; Chen, X.D. An Advanced near Real Dynamic in Vitro Human Stomach System to Study Gastric Digestion and Emptying of Beef Stew and Cooked Rice. Food Funct. 2019, 10, 2914–2925. [Google Scholar] [CrossRef]
- Malagelada, J.-R.; Longstreth, G.F.; Summerskill, W.H.J.; Go, V.L.W. Measurement of Gastric Functions During Digestion of Ordinary Solid Meals in Man. Gastroenterology 1976, 70, 203–210. [Google Scholar] [CrossRef]
- Mulet-Cabero, A.-I.; Egger, L.; Portmann, R.; Ménard, O.; Marze, S.; Minekus, M.; Le Feunteun, S.; Sarkar, A.; Grundy, M.M.-L.; Carrière, F.; et al. A Standardised Semi-Dynamic in Vitro Digestion Method Suitable for Food—An International Consensus. Food Funct. 2020, 11, 1702–1720. [Google Scholar] [CrossRef]
- Minekus, M.; Marteau, P.; Havenaar, R.; Veld, J.H.J.H.I. A Multicompartmental Dynamic Computer-Controlled Model Simulating the Stomach and Small Intestine. Altern. Lab. Anim. 1995, 23, 197–209. [Google Scholar] [CrossRef]
- Jalabert-Malbos, M.-L.; Mishellany-Dutour, A.; Woda, A.; Peyron, M.-A. Particle Size Distribution in the Food Bolus after Mastication of Natural Foods. Food Qual. Prefer. 2007, 18, 803–812. [Google Scholar] [CrossRef]
- Zhang, P.; Iqbal, S.; Deng, R.; Duan, X.; Han, H.; Dong Chen, X.; Wu, P. Impact of Elderly Gastrointestinal Alterations on Gastric Emptying and Enzymatic Hydrolysis of Skim Milk: An in Vitro Study Using a Dynamic Stomach System. Food Chem. 2023, 402, 134365. [Google Scholar] [CrossRef]
- Siegel, J.A.; Urbain, J.L.; Adler, L.P.; Charkes, N.D.; Maurer, A.H.; Krevsky, B.; Knight, L.C.; Fisher, R.S.; Malmud, L.S. Biphasic Nature of Gastric Emptying. Gut 1988, 29, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, P.M.; Petersen, D.; Dambmann, C. Improved Method for Determining Food Protein Degree of Hydrolysis. J. Food Sci. 2001, 66, 642–646. [Google Scholar] [CrossRef]
- Hu, Z.; Wu, P.; Wang, L.; Wu, Z.; Chen, X.D. Exploring in Vitro Release and Digestion of Commercial DHA Microcapsules from Algae Oil and Tuna Oil with Whey Protein and Casein as Wall Materials. Food Funct. 2022, 13, 978–989. [Google Scholar] [CrossRef] [PubMed]
- Jobling, S.; Westcott, R.; Tayal, A.; Jeffcoat, R.; Schwall, G. Production of a Freeze-Thaw-Stable Potato Starch by Antisense Inhibition of Three Starch Synthase Genes. Nat. Biotechnol. 2002, 20, 295–299. [Google Scholar] [CrossRef]
- Srichuwong, S.; Isono, N.; Jiang, H.; Mishima, T.; Hisamatsu, M. Freeze–Thaw Stability of Starches from Different Botanical Sources: Correlation with Structural Features. Carbohydr. Polym. 2012, 87, 1275–1279. [Google Scholar] [CrossRef]
- Moore, J.G.; Christian, P.E.; Coleman, R.E. Gastric Emptying of Varying Meal Weight and Composition in Man: Evaluation by Dual Liquid- and Solid-Phase Isotopic Method. Dig. Dis. Sci. 1981, 26, 16–22. [Google Scholar] [CrossRef]
- Kong, F.; Singh, R.P. A Human Gastric Simulator (HGS) to Study Food Digestion in Human Stomach. J. Food Sci. 2010, 75, E627–E635. [Google Scholar] [CrossRef]
- Dong, X.; Zhuo, H.; Wang, K.; Wu, P.; Chen, X.D. Real-Time Spatial Quantification of Gastric Acid Diffusion in Whey Protein Gels with Different NaCl Concentrations by Wide-Field Fluorescence Microscopy. Food Res. Int. 2023, 169, 112828. [Google Scholar] [CrossRef]
- Dong, X.; Wu, P.; Cong, H.; Chen, X.D. Mechanistic Study on in Vitro Disintegration and Proteolysis of Whey Protein Isolate Gels: Effect of the Strength of Sodium Ions. Food Hydrocoll. 2022, 132, 107862. [Google Scholar] [CrossRef]
- Jeon, J.-H.; Yoo, M.; Jung, T.-H.; Jeon, W.-M.; Han, K.-S. Evaluation of the Digestibility of Korean Hanwoo Beef Cuts Using the in Vitro Physicochemical Upper Gastrointestinal System. Korean J. Food Sci. Anim. Resour. 2017, 37, 682–689. [Google Scholar] [CrossRef]
- Bellmann, S.; Lelieveld, J.; Gorissen, T.; Minekus, M.; Havenaar, R. Development of an Advanced in Vitro Model of the Stomach and Its Evaluation versus Human Gastric Physiology. Food Res. Int. 2016, 88, 191–198. [Google Scholar] [CrossRef]
- Bornhorst, G.M.; Chang, L.Q.; Rutherfurd, S.M.; Moughan, P.J.; Singh, R.P. Gastric Emptying Rate and Chyme Characteristics for Cooked Brown and White Rice Meals in Vivo: Gastric Emptying and Chyme Traits of Cooked Brown and White Rice in Vivo. J. Sci. Food Agric. 2013, 93, 2900–2908. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, P.; Wang, J.; Wang, J.; Gu, B.; Ge, F.; Chen, X.D. In Vitro Gastric Digestion and Emptying of Cooked White and Brown Rice Using a Dynamic Human Stomach System. Food Struct. 2022, 31, 100245. [Google Scholar] [CrossRef]
- Shang, L.; Wang, Y.; Ren, Y.; Ai, T.; Zhou, P.; Hu, L.; Wang, L.; Li, J.; Li, B. In Vitro Gastric Emptying Characteristics of Konjac Glucomannan with Different Viscosity and Its Effects on Appetite Regulation. Food Funct. 2020, 11, 7596–7610. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, C.; Ullah, N.; Guo, Y.; Sun, X.; Wang, X.; Xu, X.; Hackman, R.M.; Zhou, G.; Feng, X. Different Physicochemical, Structural and Digestibility Characteristics of Myofibrillar Protein from PSE and Normal Pork before and after Oxidation. Meat Sci. 2016, 121, 228–237. [Google Scholar] [CrossRef]
- Santé-Lhoutellier, V.; Engel, E.; Aubry, L.; Gatellier, P. Effect of Animal (Lamb) Diet and Meat Storage on Myofibrillar Protein Oxidation and in Vitro Digestibility. Meat Sci. 2008, 79, 777–783. [Google Scholar] [CrossRef]
- Li, S.; Wu, W.; Tang, S.; Wang, J. Effects of Eleutherine Bulbosa Extract on the Myofibrillar Protein Oxidation and Moisture Migration of Yak Meat under Oxidation Stress. Meat Sci. 2024, 215, 109550. [Google Scholar] [CrossRef]
Sample | k (1/min) | β | t1/2 (min) | tlag (min) | R2 |
---|---|---|---|---|---|
Total-ADM | 0.0171 ± 0.0017 a | 2.4 ± 0.43 b | 80.41 ± 1.15 d | 50.37 ± 5.54 c | 0.999 |
Total-VFDM | 0.0194 ± 0.0006 a | 3.26 ± 0.12 b | 85.12 ± 0.98 c | 60.87 ± 0.03 b | 0.999 |
Solid-ADM | 0.0207 ± 0.0048 a | 7.52 ± 4.45 a | 113.1 ± 2.7 a | 91.94 ± 9.18 a | 0.995 |
Solid-VFDM | 0.0214 ± 0.0019 a | 6.61 ± 1.28 a | 107.2 ± 0.83 b | 87.54 ± 1.37 a | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, B.; Liu, Z.; Wen, Y.; Lu, Y.; Zhang, Y.; Wang, J.; Chen, X.D.; Wu, P. Comparative Gastrointestinal Digestion Dynamics of Air-Dried and Freeze-Dried Yak Jerky: Insights from a Dynamic In Vitro Human Stomach–Intestine (DHSI-IV) System. Foods 2025, 14, 2086. https://doi.org/10.3390/foods14122086
Xue B, Liu Z, Wen Y, Lu Y, Zhang Y, Wang J, Chen XD, Wu P. Comparative Gastrointestinal Digestion Dynamics of Air-Dried and Freeze-Dried Yak Jerky: Insights from a Dynamic In Vitro Human Stomach–Intestine (DHSI-IV) System. Foods. 2025; 14(12):2086. https://doi.org/10.3390/foods14122086
Chicago/Turabian StyleXue, Bei, Zhendong Liu, Yiling Wen, Yubing Lu, Yidan Zhang, Jingjing Wang, Xiao Dong Chen, and Peng Wu. 2025. "Comparative Gastrointestinal Digestion Dynamics of Air-Dried and Freeze-Dried Yak Jerky: Insights from a Dynamic In Vitro Human Stomach–Intestine (DHSI-IV) System" Foods 14, no. 12: 2086. https://doi.org/10.3390/foods14122086
APA StyleXue, B., Liu, Z., Wen, Y., Lu, Y., Zhang, Y., Wang, J., Chen, X. D., & Wu, P. (2025). Comparative Gastrointestinal Digestion Dynamics of Air-Dried and Freeze-Dried Yak Jerky: Insights from a Dynamic In Vitro Human Stomach–Intestine (DHSI-IV) System. Foods, 14(12), 2086. https://doi.org/10.3390/foods14122086