Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,820)

Search Parameters:
Keywords = hormone responses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1416 KiB  
Article
Humic Substances Promote the Activity of Enzymes Related to Plant Resistance
by Rakiely M. Silva, Fábio L. Olivares, Lázaro E. P. Peres, Etelvino H. Novotny and Luciano P. Canellas
Agriculture 2025, 15(15), 1688; https://doi.org/10.3390/agriculture15151688 - 5 Aug 2025
Abstract
The extensive use of pesticides has significant implications for public health and the environment. Breeding crop plants is the most effective and environmentally friendly approach to improve the plants’ resistance. However, it is time-consuming and costly, and it is sometimes difficult to achieve [...] Read more.
The extensive use of pesticides has significant implications for public health and the environment. Breeding crop plants is the most effective and environmentally friendly approach to improve the plants’ resistance. However, it is time-consuming and costly, and it is sometimes difficult to achieve satisfactory results. Plants induce defense responses to natural elicitors by interpreting multiple genes that encode proteins, including enzymes, secondary metabolites, and pathogenesis-related (PR) proteins. These responses characterize systemic acquired resistance. Humic substances trigger positive local and systemic physiological responses through a complex network of hormone-like signaling pathways and can be used to induce biotic and abiotic stress resistance. This study aimed to assess the effect of humic substances on the activity of phenylalanine ammonia-lyase (PAL), peroxidase (POX), and β-1,3-glucanase (GLU) used as a resistance marker in various plant species, including orange, coffee, sugarcane, soybeans, maize, and tomato. Seedlings were treated with a dilute aqueous suspension of humic substances (4 mM C L−1) as a foliar spray or left untreated (control). Leaf tissues were collected for enzyme assessment two days later. Humic substances significantly promoted the systemic acquired resistance marker activities compared to the control in all independent assays. Overall, all enzymes studied in this work, PAL, GLUC, and POX, showed an increase in activity by 133%, 181%, and 149%, respectively. Among the crops studied, citrus and coffee achieved the highest activity increase in all enzymes, except for POX in coffee, which showed a decrease of 29% compared to the control. GLUC exhibited the highest response to HS treatment, the enzyme most prominently involved in increasing enzymatic activity in all crops. Plants can improve their resistance to pathogens through the exogenous application of HSs as this promotes the activity of enzymes related to plant resistance. Finally, we consider the potential use of humic substances as a natural chemical priming agent to boost plant resistance in agriculture Full article
(This article belongs to the Special Issue Biocontrol Agents for Plant Pest Management)
Show Figures

Figure 1

15 pages, 357 KiB  
Article
Apalutamide Monotherapy in Metastatic Hormone-Sensitive Prostate Cancer: A Viable Alternative to First-Generation Anti-Androgen Agents to Avoid the Flare Phenomenon and an Effective Treatment for Achieving Early PSA Response
by Gaetano Facchini, Andrea D’Arienzo, Antonella Nicastro, Fabiano Flauto, Michela Izzo, Liliana Montella, Filippo Riccardo, Giovanni Maria Fusco, Francesco Trama, Giovanni Di Lauro, Giuseppe Di Costanzo, Anna Giacoma Tucci, Francesca Iasiello, Lorena Di Lorenzo, Salvatore Maddaluno, Carmela Liguori, Rita Assante di Cupillo, Paola Coppola, Angela Minissale, Maria Teresa Di Nardo, Luigi Formisano, Erika Martinelli, Giuliana Ciappina, Salvatore Pisconti, Massimiliano Berretta and Chiara Barracoadd Show full author list remove Hide full author list
Cancers 2025, 17(15), 2573; https://doi.org/10.3390/cancers17152573 - 5 Aug 2025
Abstract
Background/Objectives: Androgen deprivation therapy (ADT) is the mainstay of prostate cancer treatment, especially in advanced disease. In particular, the gonadotropin-releasing hormone agonists (aGnRH) reduce the production of gonadotropin and, therefore, of testosterone. In about 10% of patients, the non-pulsatile stimulation of GnRH receptor [...] Read more.
Background/Objectives: Androgen deprivation therapy (ADT) is the mainstay of prostate cancer treatment, especially in advanced disease. In particular, the gonadotropin-releasing hormone agonists (aGnRH) reduce the production of gonadotropin and, therefore, of testosterone. In about 10% of patients, the non-pulsatile stimulation of GnRH receptor initially causes a surge in LH and testosterone, defined as the “flare-up phenomenon”, leading to increased bone pain, spinal cord compression, bladder outlet obstruction and cardiovascular issues. To mitigate this effect, combining a first-generation antiandrogen agent (FGA) with aGnRH is recommended. However, second-generation anti-androgens, such as apalutamide, bind selectively and irreversibly to the androgen receptor (AR), exhibiting a more efficient inhibition of the AR pathway. Methods: This is a descriptive retrospective study of 27 patients (pts) with mHSPC, treated at a single center (“Santa Maria delle Grazie” Hospital in Pozzuoli, ASL Napoli 2 Nord, Italy) between June 2022 and April 2024. Patients received apalutamide monotherapy for 14 days followed by continuous combination with aGnRH plus apalutamide. Serum PSA and testosterone levels were measured at baseline, at day 14 (after 13 days of apalutamide monotherapy), at day 28 (after an additional 15 days of apalutamide plus a aGnRH), and at day 60. Results: PSA levels decreased from a mean of 45.2 (±63.1) ng/mL at baseline to a mean of 12.6 (±23.4) ng/mL at day 14 and to 3.3 ng/mL (±6.0) at day 28 of treatment. After 14 days of apalutamide monotherapy, 21 patients (77.8%) achieved a >50% PSA reduction and 4 (14.8%) a >90% PSA reduction. The number of patients with undetectable PSA was one (3.7%) at day 14, two (7.4%) at day 28, and nine (33.3%) at day 60. The mean serum testosterone levels were 6.56 (±4.46) ng/mL at baseline, 6.58 (±4.42) ng/mL at day 14, and 2.40 (± 3.38) ng/mL at day 28. No significant difference in PSA and testosterone level reduction during treatment emerged between subgroups of patients with low- vs. high-volume disease. Conclusions: Apalutamide alone is a viable option for mitigating the flare-up phenomenon, avoiding first generation anti-androgen therapy, and it can achieve rapid and deep biochemical control. Full article
(This article belongs to the Special Issue Advances in Therapeutic Strategies for Prostate Cancer)
Show Figures

Figure 1

16 pages, 2073 KiB  
Article
Physiological Mechanisms of the Enhanced UV-B Radiation Triggering Plant-Specific Peroxidase-Mediated Antioxidant Defences
by Yijia Gao, Ling Wei, Chenyu Jiang, Shaopu Shi, Jiabing Jiao, Hassam Tahir, Minjie Qian and Kaibing Zhou
Antioxidants 2025, 14(8), 957; https://doi.org/10.3390/antiox14080957 (registering DOI) - 4 Aug 2025
Abstract
In this study, an artificially simulated enhanced UV-B radiation treatment of 96 kJ/m2·d−1 was applied with natural sunlight as the control. By observing changes in biological tissue damage, peroxidase (POD) enzyme activity, and hormone content, combined with transcriptome analysis and [...] Read more.
In this study, an artificially simulated enhanced UV-B radiation treatment of 96 kJ/m2·d−1 was applied with natural sunlight as the control. By observing changes in biological tissue damage, peroxidase (POD) enzyme activity, and hormone content, combined with transcriptome analysis and quantitative fluorescence PCR validation, this study preliminarily elucidated the physiological mechanisms of plant-specific peroxidase (POD) in responding to enhanced UV-B radiation stress. Enhanced UV-B treatment significantly inhibited biological tissue growth, particularly during the rapid growth stage. At this stage, the treatment exhibited higher malondialdehyde (MDA) content, indicating increased oxidative stress due to the accumulation of reactive oxygen species (ROS). Despite the inhibition in growth, the treatment showed improvements in the accumulation of organic nutrients as well as the contents of abscisic acid (ABA), salicylic acid (SA), and methyl jasmonate (MeJA). Additionally, an increase in POD activity and lignin content was observed in the treatment, especially during the middle period of the rapid growth period. Transcriptome analysis revealed that two POD multigene family members, LOC123198833 and LOC123225298, were significantly upregulated under enhanced UV-B radiation, which was further validated through qPCR. In general, enhanced UV-B radiation triggered a defence response in biological tissue by upregulating POD genes, which can effectively help to scavenge excess ROS. Full article
(This article belongs to the Special Issue Oxidative Stress in Plant Stress and Plant Physiology)
Show Figures

Figure 1

24 pages, 1861 KiB  
Review
Protective Effect of Melatonin Against Bisphenol A Toxicity
by Seong Soo Joo and Yeong-Min Yoo
Int. J. Mol. Sci. 2025, 26(15), 7526; https://doi.org/10.3390/ijms26157526 (registering DOI) - 4 Aug 2025
Abstract
Bisphenol A (BPA), a prevalent endocrine-disrupting chemical, is widely found in various consumer products and poses significant health risks, particularly through hormone receptor interactions, oxidative stress, and mitochondrial dysfunction. BPA exposure is associated with reproductive, metabolic, and neurodevelopmental disorders. Melatonin, a neurohormone with [...] Read more.
Bisphenol A (BPA), a prevalent endocrine-disrupting chemical, is widely found in various consumer products and poses significant health risks, particularly through hormone receptor interactions, oxidative stress, and mitochondrial dysfunction. BPA exposure is associated with reproductive, metabolic, and neurodevelopmental disorders. Melatonin, a neurohormone with strong antioxidant and anti-inflammatory properties, has emerged as a potential therapeutic agent to counteract the toxic effects of BPA. This review consolidates recent findings from in vitro and animal/preclinical studies, highlighting melatonin’s protective mechanisms against BPA-induced toxicity. These include its capacity to reduce oxidative stress, restore mitochondrial function, modulate inflammatory responses, and protect against DNA damage. In animal models, melatonin also mitigates reproductive toxicity, enhances fertility parameters, and reduces histopathological damage. Melatonin’s ability to regulate endoplasmic reticulum (ER) stress and cell death pathways underscores its multifaceted protective role. Despite promising preclinical results, human clinical trials are needed to validate these findings and establish optimal dosages, treatment durations, and safety profiles. This review discusses the wide range of potential uses of melatonin for treating BPA toxicity and suggests directions for future research. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

17 pages, 2094 KiB  
Article
Breast Cancer Cell Line-Specific Responses to Insulin: Effects on Proliferation and Migration
by Mattia Melloni, Domenico Sergi, Angelina Passaro and Luca Maria Neri
Int. J. Mol. Sci. 2025, 26(15), 7523; https://doi.org/10.3390/ijms26157523 (registering DOI) - 4 Aug 2025
Abstract
Breast cancer (BC) progression appears to be significantly influenced by the diabetic microenvironment, characterised by hyperglycaemia and hyperinsulinemia, though the exact cellular mechanisms remain partly unclear. This study investigated the effects of exposure to supra-physiological levels of glucose and insulin on two distinct [...] Read more.
Breast cancer (BC) progression appears to be significantly influenced by the diabetic microenvironment, characterised by hyperglycaemia and hyperinsulinemia, though the exact cellular mechanisms remain partly unclear. This study investigated the effects of exposure to supra-physiological levels of glucose and insulin on two distinct BC cell models: hormone-responsive MCF-7 cells and triple-negative MDA-MB-231 cells. To evaluate the effects triggered by high insulin level in different BC cell subtypes, we analysed the activation status of PI3K/AKT and MAPK pathways, cell proliferation, cell distribution in cell cycle phases and cell migration. High insulin level significantly activates the insulin metabolic pathway via AKT phosphorylation in both cell lines while inducing pro-proliferative stimulus and modulation of cell distribution in cell cycle phases only in the hormone-responsive MCF-7 cell line. On the contrary, high-glucose containing medium alone did not modulate proliferation nor further increased it when combined with high insulin level in both the investigated cell lines. However, following insulin treatment, the MAPK pathway remained unaffected, suggesting that the proliferation effects in the MCF-7 cell line are mediated by AKT activation. This linkage was also demonstrated by AKT phosphorylation blockade, driven by the AKT inhibitor MK-2206, which negated the proliferative stimulus. Interestingly, while MDA-MB-231 cells, following chronic hyperinsulinemia exposure, did not exhibit enhanced proliferation, they displayed a marked increase in migratory behaviour. These findings suggest that chronic hyperinsulinemia, but not hyperglycaemia, exerts subtype-specific effects in BC, highlighting the potential of targeting insulin pathways for therapeutic intervention. Full article
(This article belongs to the Special Issue Advances in the Relationship Between Diet and Insulin Resistance)
Show Figures

Figure 1

21 pages, 1488 KiB  
Article
Comparative Evaluation and Optimization of Auxin Type and Concentration on Rooting Efficiency of Photinia × fraseri Dress: Stem Cuttings Using Response Surface Methodology
by Gülcay Ercan Oğuztürk, Müberra Pulatkan, Cem Alparslan and Türker Oğuztürk
Plants 2025, 14(15), 2420; https://doi.org/10.3390/plants14152420 - 4 Aug 2025
Abstract
This study aimed to evaluate and optimize the effects of three auxin types—indole-3-butyric acid (IBA), naphthaleneacetic acid (NAA), and indole-3-acetic acid (IAA)—applied at four concentrations (1000, 3000, 5000, and 8000 ppm) on the rooting performance of Photinia × fraseri Dress. stem cuttings. The [...] Read more.
This study aimed to evaluate and optimize the effects of three auxin types—indole-3-butyric acid (IBA), naphthaleneacetic acid (NAA), and indole-3-acetic acid (IAA)—applied at four concentrations (1000, 3000, 5000, and 8000 ppm) on the rooting performance of Photinia × fraseri Dress. stem cuttings. The experiment was conducted under controlled greenhouse conditions using a sterile perlite medium. Rooting trays were placed on bottom-heated propagation benches maintained at a set temperature of 25 ± 2 °C to stimulate root formation. However, the actual rooting medium temperature—measured manually every four days from the perlite zone using a calibrated thermometer—ranged between 18 °C and 22 °C, with an overall average of approximately 20 ± 2 °C. The average values of these root-zone temperatures were used in the statistical analyses. Rooting percentage, root number, root length, callus formation, and mortality rate were recorded after 120 days. In addition to classical one-way ANOVA, response surface methodology (RSM) was employed to model and optimize the interactions between auxin type, concentration, and temperature. The results revealed that 5000 ppm IBA significantly enhanced rooting performance, yielding the highest rooting percentage (85%), average root number (5.80), and root length (6.30 cm). RSM-based regression models demonstrated strong predictive power, with the model for rooting percentage explaining up to 92.79% of the total variance. Temperature and auxin concentration were identified as the most influential linear factors, while second-order and interaction terms—particularly T·ppm—contributed substantially to root length variation. These findings validate IBA as the most effective exogenous auxin for the vegetative propagation of Photinia × fraseri Dress. and provide practical recommendations for optimizing hormone treatments. Moreover, the study offers a robust statistical modeling framework that can be applied to similar propagation systems in woody ornamental plants. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

21 pages, 6621 KiB  
Article
Genome-Wide Identification and Expression Pattern Analysis of the Late Embryogenesis Abundant (LEA) Family in Foxtail Millet (Setaria italica L.)
by Yingying Qin, Yiru Zhao, Xiaoyu Li, Ruifu Wang, Shuo Chang, Yu Zhang, Xuemei Ren and Hongying Li
Genes 2025, 16(8), 932; https://doi.org/10.3390/genes16080932 (registering DOI) - 4 Aug 2025
Abstract
Background/Objectives: Late embryogenesis abundant (LEA) proteins regulate stress responses and contribute significantly to plant stress tolerance. As a model species for stress resistance studies, foxtail millet (Setaria italica) lacks comprehensive characterization of its LEA gene family. This study aimed to [...] Read more.
Background/Objectives: Late embryogenesis abundant (LEA) proteins regulate stress responses and contribute significantly to plant stress tolerance. As a model species for stress resistance studies, foxtail millet (Setaria italica) lacks comprehensive characterization of its LEA gene family. This study aimed to comprehensively identify SiLEA genes in foxtail millet and elucidate their functional roles and tissue-specific expression patterns. Methods: Genome-wide identification of SiLEA genes was conducted, followed by phylogenetic reconstruction, cis-acting element analysis of promoters, synteny analysis, and expression profiling. Results: Ninety-four SiLEA genes were identified and classified into nine structurally distinct subfamilies, which are unevenly distributed across all nine chromosomes. Phylogenetic analysis showed closer clustering of SiLEA genes with sorghum and rice orthologs than with Arabidopsis thaliana AtLEA genes. Synteny analysis indicated the LEA gene family expansion through tandem and segmental duplication. Promoter cis-element analysis linked SiLEA genes to plant growth regulation, stress responses, and hormone signaling. Transcriptome analysis revealed tissue-specific expression patterns among SiLEA members, while RT-qPCR verified ABA-induced transcriptional regulation of SiLEA genes. Conclusions: This study identified 94 SiLEA genes grouped into nine subfamilies with distinct spatial expression profiles. ABA treatment notably upregulated SiASR-2, SiASR-5, and SiASR-6 in both shoots and roots. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

37 pages, 2918 KiB  
Review
Guardians of Water and Gas Exchange: Adaptive Dynamics of Stomatal Development and Patterning
by Eleni Giannoutsou, Ioannis-Dimosthenis S. Adamakis and Despina Samakovli
Plants 2025, 14(15), 2405; https://doi.org/10.3390/plants14152405 - 3 Aug 2025
Viewed by 56
Abstract
Stomata, highly specialized structures that evolved on the aerial surfaces of plants, play a crucial role in regulating hydration, mitigating the effects of abiotic stress. Stomatal lineage development involves a series of coordinated events, such as initiation, stem cell proliferation, and cell fate [...] Read more.
Stomata, highly specialized structures that evolved on the aerial surfaces of plants, play a crucial role in regulating hydration, mitigating the effects of abiotic stress. Stomatal lineage development involves a series of coordinated events, such as initiation, stem cell proliferation, and cell fate determination, ultimately leading to the differentiation of guard cells. While core transcriptional regulators and signaling pathways controlling stomatal cell division and fate determination have been characterized over the past twenty years, the molecular mechanisms linking stomatal development to dynamic environmental cues remain poorly understood. Therefore, stomatal development is considered an active and compelling frontier in plant biology research. On the one hand, this review aims to provide an understanding of the molecular networks governing stomatal ontogenesis, which relies on the activation and function of the transcription factors SPEECHLESS (SPCH), MUTE, and FAMA; the EPF–TMM and ERECTA receptor systems; and downstream MAPK signaling. On the other hand, it synthesizes current discoveries of how hormonal signaling pathways regulate stomatal development in response to environmental changes. As the climate crisis intensifies, the understanding of the complex interplay between stress stimuli and key factors regulating stomatal development may reveal key mechanisms that enhance plant resilience under adverse environmental conditions. Full article
Show Figures

Figure 1

20 pages, 11402 KiB  
Article
Identification and Characterization of NAC Transcription Factors Involved in Pine Wilt Nematode Resistance in Pinus massoniana
by Zhengping Zhao, Jieyun Lei, Min Zhang, Jiale Li, Chungeng Pi, Jinxiu Yu, Xuewu Yan, Kun Luo and Yonggang Xia
Plants 2025, 14(15), 2399; https://doi.org/10.3390/plants14152399 - 3 Aug 2025
Viewed by 137
Abstract
Pinus massoniana Lamb. is an economically important conifer native to China. However, it is highly susceptible to the pine wood nematode (Bursaphelenchus xylophilus, PWN), the causal agent of pine wilt disease (PWD), resulting in substantial ecological and economic losses. To elucidate [...] Read more.
Pinus massoniana Lamb. is an economically important conifer native to China. However, it is highly susceptible to the pine wood nematode (Bursaphelenchus xylophilus, PWN), the causal agent of pine wilt disease (PWD), resulting in substantial ecological and economic losses. To elucidate potential molecular defense mechanisms, 50 NAC (NAM, ATAF1/2, and CUC2) transcription factors (PmNACs) were identified in the P. massoniana genome. Phylogenetic analysis divided these PmNACs into seven subfamilies, and motif analysis identified ten conserved motifs associated with stress responses. Twenty-three genes were selected for expression analysis in various tissues and under exogenous salicylic acid (SA), methyl jasmonate (MeJA), and PWN infection. Six genes (PmNAC1, PmNAC8, PmNAC9, PmNAC17, PmNAC18, and PmNAC20) were significantly up-regulated by both hormonal treatment and PWN infection, implying their involvement in JA/SA-mediated immune pathways. Functional characterization showed PmNAC8 is a nuclear-localized transcription factor with autoactivation activity. Furthermore, transient overexpression of PmNAC8 in Nicotiana benthamiana induced reactive oxygen species (ROS) accumulation and necrotic lesions. Collectively, these results elucidate NAC-mediated defense responses to PWN infection in P. massoniana and identify candidate genes for developing PWD-resistant pine varieties. Full article
Show Figures

Figure 1

15 pages, 3854 KiB  
Article
PVC Inhibits Radish (Raphanus sativus L.) Seedling Growth by Interfering with Plant Hormone Signal Transduction and Phenylpropanoid Biosynthesis
by Lisi Jiang, Zirui Liu, Wenyuan Li, Yangwendi Yang, Zirui Yu, Jiajun Fan, Lixin Guo, Chang Guo and Wei Fu
Horticulturae 2025, 11(8), 896; https://doi.org/10.3390/horticulturae11080896 (registering DOI) - 3 Aug 2025
Viewed by 169
Abstract
Polyvinyl chloride (PVC) is commonly employed as mulch in agriculture to boost crop yields. However, its toxicity is often overlooked. Due to its chemical stability, resistance to degradation, and the inadequacy of the recycling system, PVC tends to persist in farm environments, where [...] Read more.
Polyvinyl chloride (PVC) is commonly employed as mulch in agriculture to boost crop yields. However, its toxicity is often overlooked. Due to its chemical stability, resistance to degradation, and the inadequacy of the recycling system, PVC tends to persist in farm environments, where it can decompose into microplastics (MPs) or nanoplastics (NPs). The radish (Raphanus sativus L.) was chosen as the model plant for this study to evaluate the underlying toxic mechanisms of PVC NPs on seedling growth through the integration of multi-omics approaches with oxidative stress evaluations. The results indicated that, compared with the control group, the shoot lengths in the 5 mg/L and 150 mg/L treatment groups decreased by 33.7% and 18.0%, respectively, and the root lengths decreased by 28.3% and 11.3%, respectively. However, there was no observable effect on seed germination rates. Except for the peroxidase (POD) activity in the 150 mg/L group, all antioxidant enzyme activities and malondialdehyde (MDA) levels were higher in the treated root tips than in the control group. Both transcriptome and metabolomic analysis profiles showed 2075 and 4635 differentially expressed genes (DEGs) in the high- and low-concentration groups, respectively, and 1961 metabolites under each treatment. PVC NPs predominantly influenced seedling growth by interfering with plant hormone signaling pathways and phenylpropanoid production. Notably, the reported toxicity was more evident at lower concentrations. This can be accounted for by the plant’s “growth-defense trade-off” strategy and the manner in which nanoparticles aggregate. By clarifying how PVC NPs coordinately regulate plant stress responses via hormone signaling and phenylpropanoid biosynthesis pathways, this research offers a scientific basis for assessing environmental concerns related to nanoplastics in agricultural systems. Full article
(This article belongs to the Special Issue Stress Physiology and Molecular Biology of Vegetable Crops)
Show Figures

Figure 1

22 pages, 5283 KiB  
Article
Transcriptome Analysis Reveals Candidate Pathways and Genes Involved in Wheat (Triticum aestivum L.) Response to Zinc Deficiency
by Shoujing Zhu, Shiqi Zhang, Wen Wang, Nengbing Hu and Wenjuan Shi
Biology 2025, 14(8), 985; https://doi.org/10.3390/biology14080985 (registering DOI) - 2 Aug 2025
Viewed by 281
Abstract
Zinc (Zn) deficiency poses a major global health challenge, and wheat grains generally contain low Zn concentrations. In this study, the wheat cultivar ‘Zhongmai 175’ was identified as zinc-efficient. Hydroponic experiments demonstrated that Zn deficiency induced the secretion of oxalic acid and malic [...] Read more.
Zinc (Zn) deficiency poses a major global health challenge, and wheat grains generally contain low Zn concentrations. In this study, the wheat cultivar ‘Zhongmai 175’ was identified as zinc-efficient. Hydroponic experiments demonstrated that Zn deficiency induced the secretion of oxalic acid and malic acid in root exudates and significantly increased total root length in ‘Zhongmai 175’. To elucidate the underlying regulatory mechanisms, transcriptome profiling via RNA sequencing was conducted under Zn-deficient conditions. A total of 2287 and 1935 differentially expressed genes (DEGs) were identified in roots and shoots, respectively. Gene Ontology enrichment analysis revealed that these DEGs were primarily associated with Zn ion transport, homeostasis, transmembrane transport, and hormone signaling. Key DEGs belonged to gene families including VIT, NAS, DMAS, ZIP, tDT, HMA, and NAAT. KEGG pathway analysis indicated that phenylpropanoid biosynthesis, particularly lignin synthesis genes, was significantly downregulated in Zn-deficient roots. In shoots, cysteine and methionine metabolism, along with plant hormone signal transduction, were the most enriched pathways. Notably, most DEGs in shoots were associated with the biosynthesis of phytosiderophores (MAs, NA) and ethylene. Overall, genes involved in Zn ion transport, phytosiderophore biosynthesis, dicarboxylate transport, and ethylene biosynthesis appear to play central roles in wheat’s adaptive response to Zn deficiency. These findings provide a valuable foundation for understanding the molecular basis of Zn efficiency in wheat and for breeding Zn-enriched varieties. Full article
Show Figures

Figure 1

21 pages, 1024 KiB  
Review
The Impact of Environmental Factors on the Secretion of Gastrointestinal Hormones
by Joanna Smarkusz-Zarzecka, Lucyna Ostrowska and Marcelina Radziszewska
Nutrients 2025, 17(15), 2544; https://doi.org/10.3390/nu17152544 - 2 Aug 2025
Viewed by 216
Abstract
The enteroendocrine system of the gastrointestinal (GI) tract is the largest endocrine organ in the human body, playing a central role in the regulation of hunger, satiety, digestion, and energy homeostasis. Numerous factors—including dietary components, physical activity, and the gut microbiota—affect the secretion [...] Read more.
The enteroendocrine system of the gastrointestinal (GI) tract is the largest endocrine organ in the human body, playing a central role in the regulation of hunger, satiety, digestion, and energy homeostasis. Numerous factors—including dietary components, physical activity, and the gut microbiota—affect the secretion of GI hormones. This study aims to analyze how these factors modulate enteroendocrine function and influence systemic metabolic regulation. This review synthesizes the current scientific literature on the physiology and distribution of enteroendocrine cells and mechanisms of hormone secretion in response to macronutrients, physical activity, and microbial metabolites. Special attention is given to the interactions between gut-derived signals and central nervous system pathways involved in appetite control. Different GI hormones are secreted in specific regions of the digestive tract in response to meal composition and timing. Macronutrients, particularly during absorption, stimulate hormone release, while physical activity influences hormone concentrations, decreasing ghrelin and increasing GLP-1, PYY, and leptin levels. The gut microbiota, through fermentation and metabolite production (e.g., SCFAs and bile acids), modulates enteroendocrine activity. Species such as Akkermansia muciniphila are associated with improved gut barrier integrity and enhanced GLP-1 secretion. These combined effects contribute to appetite regulation and energy balance. Diet composition, physical activity, and gut microbiota are key modulators of gastrointestinal hormone secretion. Their interplay significantly affects appetite regulation and metabolic health. A better understanding of these relationships may support the development of personalized strategies for managing obesity and related disorders. Full article
(This article belongs to the Section Nutritional Immunology)
Show Figures

Graphical abstract

13 pages, 2838 KiB  
Article
Differential Effects of Two Herbivore-Induced Plant Volatiles on the Oviposition of Chilo suppressalis
by Xiaowei Yang, Chang Liu, Xixi Jia, Chen Zhang, Lanzhi Han, Wanlun Cai and Yunhe Li
Plants 2025, 14(15), 2384; https://doi.org/10.3390/plants14152384 - 2 Aug 2025
Viewed by 188
Abstract
Herbivore-induced plant volatiles (HIPVs) are well known for their roles in herbivore deterrence and attraction of natural enemies, but their direct impact on insect reproduction remains largely unexplored. In this study, we provide novel evidence that two representative HIPVs, 2-heptanol and α-cedrene, exert [...] Read more.
Herbivore-induced plant volatiles (HIPVs) are well known for their roles in herbivore deterrence and attraction of natural enemies, but their direct impact on insect reproduction remains largely unexplored. In this study, we provide novel evidence that two representative HIPVs, 2-heptanol and α-cedrene, exert opposing effects on the reproduction of Chilo suppressalis, a major rice pest. While both volatiles repelled adults, α-cedrene unexpectedly enhanced oviposition, whereas 2-heptanol significantly suppressed egg laying. To examine these effects, we conducted oviposition assays, preoviposition and longevity tests, combined with qPCR and transcriptome analyses to explore underlying molecular responses. Mechanistically, α-cedrene upregulated Kr-h1, a gene linked to juvenile hormone signaling and vitellogenesis, promoting reproductive investment. Transcriptomic profiling revealed divergent molecular responses: α-cedrene activated reproductive pathways, whereas 2-heptanol induced stress- and immune-related genes, suggesting a trade-off between stress defense and reproduction. These findings demonstrate that HIPVs can exert compound-specific reproductive effects beyond repellency. This work fills a key knowledge gap and highlights the potential of HIPVs as precision tools in pest management strategies that exploit behavioral and physiological vulnerabilities beyond repellency. Full article
Show Figures

Figure 1

21 pages, 3959 KiB  
Article
Unveiling Stage-Specific Flavonoid Dynamics Underlying Drought Tolerance in Sweet Potato (Ipomoea batatas L.) via Integrative Transcriptomic and Metabolomic Analyses
by Tao Yin, Chaoyu Song, Huan Li, Shaoxia Wang, Wenliang Wei, Jie Meng and Qing Liu
Plants 2025, 14(15), 2383; https://doi.org/10.3390/plants14152383 - 2 Aug 2025
Viewed by 204
Abstract
Drought stress severely limits the productivity of sweet potato (Ipomoea batatas L.), yet the stage-specific molecular mechanisms of its adaptation remain poorly understood. Therefore, we integrated transcriptomics and extensive targeted metabolomics analysis to investigate the drought responses of the sweet potato cultivar [...] Read more.
Drought stress severely limits the productivity of sweet potato (Ipomoea batatas L.), yet the stage-specific molecular mechanisms of its adaptation remain poorly understood. Therefore, we integrated transcriptomics and extensive targeted metabolomics analysis to investigate the drought responses of the sweet potato cultivar ‘Luoyu 11’ during the branching and tuber formation stage (DS1) and the storage root expansion stage (DS2) under controlled drought conditions (45 ± 5% field capacity). Transcriptome analysis identified 8292 and 13,509 differentially expressed genes in DS1 and DS2, respectively, compared with the well-watered control (75 ± 5% field capacity). KEGG enrichment analysis revealed the activation of plant hormone signaling, carbon metabolism, and flavonoid biosynthesis pathways, and more pronounced transcriptional changes were observed during the DS2 stage. Metabolomic analysis identified 415 differentially accumulated metabolites across the two growth periods, with flavonoids being the most abundant (accounting for 30.3% in DS1 and 23.7% in DS2), followed by amino acids and organic acids, which highlighted their roles in osmotic regulation and oxidative stress alleviation. Integrated omics analysis revealed stage-specific regulation of flavonoid biosynthesis under drought stress. Genes such as CYP75B1 and IF7MAT were consistently downregulated, whereas flavonol synthase and glycosyltransferases exhibited differential expression patterns, which correlated with the selective accumulation of trifolin and luteoloside. Our findings provide novel insights into the molecular basis of drought tolerance in sweet potato and offer actionable targets for breeding and precision water management in drought-prone regions. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

21 pages, 2600 KiB  
Article
Bamboo Biochar and Sodium Silicate Alleviate Oxybenzone-Induced Phytotoxicity via Distinct Mechanisms for Sustainable Plant Protection
by Chuantong Cui, Wenhai Yang, Weiru Dang, Ruiya Chen, Pedro García-Caparrós, Guoqun Yang, Jianhua Huang and Li-Jun Huang
Plants 2025, 14(15), 2382; https://doi.org/10.3390/plants14152382 - 2 Aug 2025
Viewed by 263
Abstract
Oxybenzone (OBZ), an organic ultraviolet filter, is an emerging contaminant posing severe threats to ecosystem health. Using tobacco (Nicotiana tabacum) as a model plant, this study investigated the alleviation mechanisms of exogenous silicon (Na2SiO3, Si) and bamboo-based [...] Read more.
Oxybenzone (OBZ), an organic ultraviolet filter, is an emerging contaminant posing severe threats to ecosystem health. Using tobacco (Nicotiana tabacum) as a model plant, this study investigated the alleviation mechanisms of exogenous silicon (Na2SiO3, Si) and bamboo-based biochar (Bc) under OBZ stress. We systematically analyzed physiological and biochemical responses, including phenotypic parameters, reactive oxygen species metabolism, photosynthetic function, chlorophyll synthesis, and endogenous hormone levels. Results reveal that OBZ significantly inhibited tobacco growth and triggered a reactive oxygen species (ROS) burst. Additionally, OBZ disrupted antioxidant enzyme activities and hormonal balance. Exogenous Bc mitigated OBZ toxicity by adsorbing OBZ, directly scavenging ROS, and restoring the ascorbate-glutathione (AsA-GSH) cycle, thereby enhancing photosynthetic efficiency, while Si alleviated stress via cell wall silicification, preferential regulation of root development and hormonal signaling, and repair of chlorophyll biosynthesis precursor metabolism and PSII function. The mechanisms of the two stress mitigators were complementary, Bc primarily relied on physical adsorption and ROS scavenging, whereas Si emphasized metabolic regulation and structural reinforcement. These findings provide practical strategies for simultaneously mitigating organic UV filter pollution and enhancing plant resilience in contaminated soils. Full article
Show Figures

Figure 1

Back to TopTop