Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (107)

Search Parameters:
Keywords = horizontal advection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4841 KiB  
Article
Nocturnal Convection Along a Trailing-End Cold Front: Insights from Ground-Based Remote Sensing Observations
by Kylie Hoffman, David D. Turner and Belay B. Demoz
Atmosphere 2025, 16(8), 926; https://doi.org/10.3390/atmos16080926 (registering DOI) - 30 Jul 2025
Viewed by 68
Abstract
This study examines a convergence event at the trailing end of a cold front observed in the United States’ Southern Great Plains region on 28 September 1997, using an array of in situ and remote sensing instruments. The event exhibited a structure with [...] Read more.
This study examines a convergence event at the trailing end of a cold front observed in the United States’ Southern Great Plains region on 28 September 1997, using an array of in situ and remote sensing instruments. The event exhibited a structure with elevated divergence near 3 km AGL and moisture transport over both warm and cold sectors. Data from Raman lidar (RL), Atmospheric Emitted Radiance Interferometer (AERI), and Radar Wind Profilers (RWP) were used to characterize vertical profiles of the event, revealing the presence of a narrow moist updraft, horizontal moisture advection, and cloud development ahead of the front. Convection parameters, Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN), were derived from collocated AERI and RL. Regions of high CAPE were aligned with areas of high moisture, indicating that convection was more favorable at moist elevated levels than near the surface. RWP observations revealed vorticity structures consistent with existing theories. This study highlights the value of high-resolution, continuous profiling from remote sensors to resolve mesoscale processes and evaluate convection potential. The event underscores the role of elevated moisture and wind shear in modulating convection initiation along a trailing-end cold front boundary where mesoscale and synoptic forces interact. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

23 pages, 7060 KiB  
Article
Deposition: A DPM and PBM Approach for Particles in a Two-Phase Turbulent Pipe Flow
by Alkhatab Bani Saad, Edward Obianagha and Lande Liu
Powders 2025, 4(3), 20; https://doi.org/10.3390/powders4030020 - 4 Jul 2025
Viewed by 294
Abstract
Particle deposition is a phenomenon that occurs in many natural and industrial systems. Nevertheless, the modelling and understanding of such processes are still quite a big challenge. This study uses a discrete phase model (DPM) to determine the deposition constant for the particles [...] Read more.
Particle deposition is a phenomenon that occurs in many natural and industrial systems. Nevertheless, the modelling and understanding of such processes are still quite a big challenge. This study uses a discrete phase model (DPM) to determine the deposition constant for the particles in a liquid phase flowing in a horizontal pipe. This study also develops a steady-state population balance equation (PBE) for the particles in the flow involving deposition and aggregation and an unsteady-state PBE for particles depositing on the wall. This establishes a mathematical relationship between the deposition constant and velocity. An industrial setting of a 1000 m long pipe of 0.5 m in diameter was used for the population balance modelling (PBM). Based on the extracted deposition constant from the DPM, it was found that the particle deposition velocity increases with the continuous flow velocity. However, the number and volume of the deposit particles on the wall reduce with the increase of the continuous flow velocity. The deposition was found mainly taking place in the inlet region and reduces significantly towards the pipe outlet. The deposition was also found driven by advection of particles. Calculated deposit thickness showed that increasing the continuous flow velocity from 1 m s−1 to 5 m s−1, the thickness at the inlet would reduce to nearly 1/40th. With a 10 m s−1 flow, this would be 1/80th. Full article
Show Figures

Figure 1

30 pages, 14172 KiB  
Article
Synoptic and Dynamic Analyses of an Intense Mediterranean Cyclone: A Case Study
by Ahmad E. Samman
Climate 2025, 13(6), 126; https://doi.org/10.3390/cli13060126 - 15 Jun 2025
Viewed by 577
Abstract
On 3 February 2006, a powerful Mediterranean cyclone instigated a widespread dust storm across Saudi Arabia. Meteorological observations from one station recorded strong westerly to southwesterly winds, with gusts reaching 40 m/s, accompanied by thunderstorms and dust storms. This study delves into the [...] Read more.
On 3 February 2006, a powerful Mediterranean cyclone instigated a widespread dust storm across Saudi Arabia. Meteorological observations from one station recorded strong westerly to southwesterly winds, with gusts reaching 40 m/s, accompanied by thunderstorms and dust storms. This study delves into the formation and development of this significant Mediterranean cyclone, which impacted the Mediterranean basin and the Arabian Peninsula from 26 January to 4 February 2006. Utilizing ECMWF ERA5 reanalysis data, this research analyzes the synoptic and dynamic conditions that contributed to the cyclone’s evolution and intensification. The cyclone originated over the North Atlantic as cold air from higher latitudes and was advected southward, driven by a strong upper-level trough. The initial phase of cyclogenesis was triggered by baroclinic instability, facilitated by an intense upper-level jet stream interacting with a pre-existing low-level baroclinic zone over coastal regions. Upper-level dynamics enhanced surface frontal structures, promoting the formation of the intense cyclone. As the system progressed, low-level diabatic processes became the primary drivers of its evolution, reducing the influence of upper-level baroclinic mechanisms. The weakening of the upper-level dynamics led to the gradual distortion of the low-level baroclinicity and frontal structures, transitioning the system to a more barotropic state during its mature phase. Vorticity analysis revealed that positive vorticity advection and warm air transport toward the developing cyclone played key roles in its intensification, leading to the development of strong low-level winds. Atmospheric kinetic energy analysis showed that the majority of the atmospheric kinetic energy was concentrated at 400 hPa and above, coinciding with intense jet stream activity. The generation of the atmospheric kinetic energy was primarily driven by cross-contour flow, acting as a major energy source, while atmospheric kinetic energy dissipation from grid to subgrid scales served as a major energy sink. The dissipation pattern closely mirrored the generation pattern but with the opposite sign. Additionally, the horizontal flux of the atmospheric kinetic energy was identified as a continuous energy source throughout the cyclone’s lifecycle. Full article
(This article belongs to the Section Weather, Events and Impacts)
Show Figures

Figure 1

36 pages, 12610 KiB  
Article
Analyzing the Mediterranean Tropical-like Cyclone Ianos Using the Moist Static Energy Budget
by Miriam Saraceni, Lorenzo Silvestri and Paolina Bongioannini Cerlini
Atmosphere 2025, 16(5), 562; https://doi.org/10.3390/atmos16050562 - 8 May 2025
Viewed by 452
Abstract
This paper presents a detailed analysis of the energy dynamics of the Mediterranean tropical-like cyclone, Medicane Ianos, by using a moist static energy (MSE) budget framework. Medicanes are hybrid cyclonic systems that share characteristics of both extratropical and tropical cyclones, making their classification [...] Read more.
This paper presents a detailed analysis of the energy dynamics of the Mediterranean tropical-like cyclone, Medicane Ianos, by using a moist static energy (MSE) budget framework. Medicanes are hybrid cyclonic systems that share characteristics of both extratropical and tropical cyclones, making their classification and prediction challenging. Using high-resolution ERA5 reanalysis data, we analyzed the life cycle of Ianos, which is one of the strongest recorded medicanes, employing the vertically integrated MSE spatial variance budget to quantify the contributions of different energy sources to the cyclone’s development. The chosen study area was approximately 25002 km2, covering the entire track of the cyclone. The budget was calculated after tracking Ianos and applying Hart phase space analysis to assess the cyclone phases. The results show that the MSE budget can reveal that the cyclone development was driven by a delicate balance between convection and dynamical factors. The interplay between vertical and horizontal advection, in particular the upward transport of moist air and the lateral inflow of warm, moist air and cold, dry air, was a key mechanism driving the evolution of Ianos, followed by surface fluxes and radiative feedback. By analyzing what process contributes most to the increase in MSE variance, we concluded that Ianos can be assimilated in the tropical framework within a radius of 600 km around the cyclone center, but only during its intense phase. In this way, the budget can contribute as a diagnostic tool to the ongoing debate regarding medicanes classification. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

15 pages, 2215 KiB  
Article
Laboratory Experiments on Reflected Gravity Currents and Implications for Mixing
by Maria Rita Maggi and Claudia Adduce
Water 2025, 17(7), 1062; https://doi.org/10.3390/w17071062 - 3 Apr 2025
Cited by 1 | Viewed by 410
Abstract
When a gravity current encounters a barrier, it is reflected as a moving hydraulic jump or bore. These reflected flows, which play a significant role in estuarine mixing and sediment transport, are often simplified in theoretical models as purely advective processes with no [...] Read more.
When a gravity current encounters a barrier, it is reflected as a moving hydraulic jump or bore. These reflected flows, which play a significant role in estuarine mixing and sediment transport, are often simplified in theoretical models as purely advective processes with no mixing and dilution effects. This study explores the dynamics of gravity currents fully blocked by various inclined barriers, focusing on the resulting mixing behavior. Using an image analysis technique based on light attenuation to capture instantaneous density fields, we reveal how the presence of a barrier influences the current even before impact. By applying the Thorpe scale to assess turbulent mixing, we show that a barrier’s geometry significantly affects mixing intensity. Notably, this study finds that barriers can increase the local turbulent mixing compared to horizontal surfaces. Full article
(This article belongs to the Special Issue Advances in Hydraulic and Water Resources Research (3rd Edition))
Show Figures

Figure 1

18 pages, 6283 KiB  
Article
A Study on Adjusting Vertical Diffusion of Temperature in Tidal Flats to Improve SST of Coastal Models
by Bon-Ho Gu, Jin-Yong Choi, Sung-Hwan Park and Nam-Hoon Kim
Water 2025, 17(4), 474; https://doi.org/10.3390/w17040474 - 8 Feb 2025
Viewed by 742
Abstract
This study proposes improving the process of the vertical diffusion of temperature in numerical models to enhance the accuracy of sea surface temperature (SST) simulation. SST tends to be underestimated in the coastal and tidal flat regions, such as the Yellow Sea around [...] Read more.
This study proposes improving the process of the vertical diffusion of temperature in numerical models to enhance the accuracy of sea surface temperature (SST) simulation. SST tends to be underestimated in the coastal and tidal flat regions, such as the Yellow Sea around Korea. In particular, SST in coastal areas is highly sensitive to wet/dry treatment, implying that the sensitivity of SST increases with the slope of coastal bathymetry. Therefore, during the calculation of vertical temperature diffusion terms, the numerical model’s surface boundary condition (SBC) was modified to limit excessive temperature differences below a certain depth in the coastal regions. Under wet or dry conditions defined by the wet/dry treatment, SBC and bottom boundary condition (BBC) adjustments are stabilized within a predefined depth limit. While horizontal diffusion also plays a role in the model, SST is significantly influenced by the balance of heat advection and shortwave radiation. To demonstrate this, Heat Limit Depth (HLD) was added as an input parameter into the vertical diffusion algorithm in the model to enhance sensitivity to the SBC. If the total water depth in the tidal flat is below the HLD and less than 1.0 m, the model is changed to estimate surface sediment temperature instead of SST. The improvement in the vertical diffusion term for SST was effective primarily in tidal flat areas. In contrast, the impact was less pronounced in coastal areas with average depths exceeding 5 m. The rationale for separating SBC and BBC in the improved air–sea interaction process is twofold: SBC adjustments are suitable for reducing heat flux effects, specifically in shallow depths or tidal flats, without significantly affecting the entire model domain, while combined SBC and BBC adjustments are more appropriate for inducing coastal SST changes across the domain. Full article
(This article belongs to the Special Issue Application of Numerical Modeling in Estuarine and Coastal Dynamics)
Show Figures

Figure 1

22 pages, 14231 KiB  
Article
Quantitative Simulation and Planning for the Heat Island Mitigation Effect in Sponge City Planning: A Case Study of Chengdu, China
by Qingjuan Yang, Ziqi Lin and Qiaozi Li
Land 2025, 14(2), 264; https://doi.org/10.3390/land14020264 - 26 Jan 2025
Viewed by 1053
Abstract
The implementation of sponge cities in China modifies the hydrological conditions of the underlying surface, effectively alleviating the urban heat island effect. However, in planning and construction, heat island mitigation targets are difficult to quantify and lack quantitative design and evaluation methods. To [...] Read more.
The implementation of sponge cities in China modifies the hydrological conditions of the underlying surface, effectively alleviating the urban heat island effect. However, in planning and construction, heat island mitigation targets are difficult to quantify and lack quantitative design and evaluation methods. To address this issue, two planning schemes were proposed based on sponge city management and control indicators. The WRF-UCM model was used to conduct numerical simulations of the current conditions (case 1) and the sponge city planning schemes (cases 2 and 3), analyzing the impact of sponge city initiatives on the mitigation of the heat island effect. The results indicated that by changing the structure of the underlying surface and increasing the water content of the underlying surface, the sponge city affects the urban energy distribution process and regional horizontal advection pattern. This not only reduces heat accumulation within the urban area but also suppresses regional convection during high-temperature periods, thereby mitigating the urban heat island effect. Moreover, different schemes following the same sponge city design requirements have varying impacts on urban microclimate elements and heat island distributions. Notably, a higher subsurface water content yields a more pronounced inhibition of the heat island effect. Finally, a sponge city planning method with the consideration of heat island mitigation was proposed, facilitating pre-simulation optimization and decision-making in sponge city planning. Full article
(This article belongs to the Special Issue Land Use Planning, Sustainability and Disaster Risk Reduction)
Show Figures

Figure 1

17 pages, 11892 KiB  
Article
The Mesoscale SST–Wind Coupling Characteristics in the Yellow Sea and East China Sea Based on Satellite Data and Their Feedback Effects on the Ocean
by Chaoran Cui and Lingjing Xu
J. Mar. Sci. Eng. 2024, 12(10), 1743; https://doi.org/10.3390/jmse12101743 - 3 Oct 2024
Cited by 1 | Viewed by 1166
Abstract
The mesoscale interaction between sea surface temperature (SST) and wind is a crucial factor influencing oceanic and atmospheric conditions. To investigate the mesoscale coupling characteristics of the Yellow Sea and East China Sea, we applied a locally weighted regression filtering method to extract [...] Read more.
The mesoscale interaction between sea surface temperature (SST) and wind is a crucial factor influencing oceanic and atmospheric conditions. To investigate the mesoscale coupling characteristics of the Yellow Sea and East China Sea, we applied a locally weighted regression filtering method to extract mesoscale signals from Quik-SCAT wind field data and AMSR-E SST data and found that the mesoscale coupling intensity is stronger in the Yellow Sea during the spring and winter seasons. We calculated the mesoscale coupling coefficient to be approximately 0.009 N·m−2/°C. Subsequently, the Tikhonov regularization method was used to establish a mesoscale empirical coupling model, and the feedback effect of mesoscale coupling on the ocean was studied. The results show that the mesoscale SST–wind field coupling can lead to the enhancement of upwelling in the offshore area of the East China Sea, a decrease in the upper ocean temperature, and an increase in the eddy kinetic energy in the Yellow Sea. Diagnostic analyses suggested that mesoscale coupling-induced variations in horizontal advection and surface heat flux contribute most to the variation in SST. Moreover, the increase in the wind energy input to the eddy is the main factor explaining the increase in the eddy kinetic energy. Full article
(This article belongs to the Special Issue Air-Sea Interaction and Marine Dynamics)
Show Figures

Figure 1

13 pages, 3522 KiB  
Article
Geometry of Non-Diffusive Tracer Transport in Gridded Atmospheric Models
by Robert McGraw and Tamanna Subba
Atmosphere 2024, 15(10), 1151; https://doi.org/10.3390/atmos15101151 - 25 Sep 2024
Viewed by 1051
Abstract
A first-order linear and numerically non-diffusive Eulerian transport algorithm, minVAR, was recently developed for preservation of correlations between interrelated tracers during advective transport. The present study extends this work by: (1) providing further investigation of several interesting geometric constructions found in contours of [...] Read more.
A first-order linear and numerically non-diffusive Eulerian transport algorithm, minVAR, was recently developed for preservation of correlations between interrelated tracers during advective transport. The present study extends this work by: (1) providing further investigation of several interesting geometric constructions found in contours of constant minVAR, short for minimum variance, through extension to three coordinate dimensions. These contours capture point-by-point representations of thousands of individual atmospheric aerosol and/or cloud particles as they evolve and are rendered on Eulerian grids at a level of sub-grid resolution limited only by numerical precision; and (2) exploration of geometric similarities between the Arakawa C-grid, used to obtain interpolated values of the wind field at grid scale and minVAR. In particular, we consider interpolation of the u and v horizontal components of wind velocity from grid to sub-grid scales. The last results are motivated by recent applications of the Weather Research and Forecasting (WRF) model applied in the coastal Houston region, where the recent TRacking Aerosol Convection Interactions ExpeRiment (TRACER) field campaign was organized. A unique and fully consistent mapping is obtained between particles moving along meteorological wind trajectories and the non-diffusive, non-dispersive representation of such trajectories on an Eulerian grid. Full article
(This article belongs to the Special Issue Geometry in Meteorology and Climatology)
Show Figures

Figure 1

16 pages, 8197 KiB  
Article
Seasonal Phase Relationships between Sea Surface Salinity, Surface Freshwater Forcing, and Ocean Surface Processes
by Frederick M. Bingham and Susannah Brodnitz
J. Mar. Sci. Eng. 2024, 12(9), 1639; https://doi.org/10.3390/jmse12091639 - 13 Sep 2024
Cited by 2 | Viewed by 1282
Abstract
Sea surface salinity (SSS) can change as a result of surface freshwater forcing (FWF) or internal ocean processes such as upwelling or advection. SSS should follow FWF by ¼ cycle, or 3 months, if FWF is the primary process controlling it at the [...] Read more.
Sea surface salinity (SSS) can change as a result of surface freshwater forcing (FWF) or internal ocean processes such as upwelling or advection. SSS should follow FWF by ¼ cycle, or 3 months, if FWF is the primary process controlling it at the seasonal scale. In this paper, we compare the phase relationship between SSS and FWF (i.e., evaporation minus precipitation over mixed layer depth) over the global (non-Arctic) ocean using in situ SSS and satellite evaporation and precipitation. We found that, instead of the expected 3-month delay between SSS and FWF, the delay is mostly closer to 1–2 months, with SSS peaking too soon relative to FWF. We then computed monthly vertical entrainment and horizontal advection terms of the upper ocean salinity balance equation and added their contributions to the phase of the FWF. The addition of these processes to the seasonal upper ocean salinity balance leads to the phase difference between SSS and the forcing processes being closer to the expected value. We conducted a similar computation with the amplitude of the seasonal SSS and the forcing terms, with less definitive results. The results of this study highlight the important role that ocean processes play in the global freshwater cycle at the seasonal scale. Full article
Show Figures

Figure 1

27 pages, 14463 KiB  
Article
Numerical Investigation of Track and Intensity Evolution of Typhoon Doksuri (2023)
by Dieu-Hong Vu, Ching-Yuang Huang and Thi-Chinh Nguyen
Atmosphere 2024, 15(9), 1105; https://doi.org/10.3390/atmos15091105 - 11 Sep 2024
Viewed by 1550
Abstract
This study utilized the WRF model to investigate the track evolution and rapid intensification (RI) of Typhoon Doksuri (2023) as it moved across the Luzon Strait and through the South China Sea (SCS). The simulation results indicate that Doksuri has a smaller track [...] Read more.
This study utilized the WRF model to investigate the track evolution and rapid intensification (RI) of Typhoon Doksuri (2023) as it moved across the Luzon Strait and through the South China Sea (SCS). The simulation results indicate that Doksuri has a smaller track sensitivity to the use of different physics schemes, while having a greater intensity sensitivity. Sensitivity numerical experiments with different physics schemes can well capture its northwestward movement in the first two days, but they predict less westward track deflection as the typhoon moves across the Luzon Strait and through the SCS. Moreover, all the experiments successfully simulated Doksuri’s RI, albeit with quite different rates and a time lag of 12 h. Among different combinations of physics schemes, there exists an optimal set of cumulus parameterization and cloud microphysics schemes for track and intensity predictions. Doksuri’s track changes as the typhoon moved across the Luzon Strait and through the SCS were influenced by the topographic effects of the terrain of the Philippines and Taiwan, to different extents. The track changes of Doksuri are explained by the wavenumber-one potential vorticity (PV) tendency budget from different physical processes, highlighting that the horizontal PV advection dominates the PV tendency throughout most of the simulation time due to the offset of vertical PV advection and differential diabatic heating. In addition, this study applies the extended Sawyer–Eliassen (SE) equation to compare the transverse circulations of the typhoon induced by various forcing sources. The SE solution indicates that radial inflow was largely driven in the lower-tropospheric vortex by strong diabatic heating, while being significantly enhanced in the lower boundary layer due to turbulent friction. All other physical forcing terms were relatively insignificant for the induced transverse circulation. The coordinated radial inflow at low levels may have led to the eyewall development in unbalanced dynamics. Intense diabatic heating thus was vital to the severe RI of Doksuri under a weak vertical wind shear. Full article
(This article belongs to the Special Issue Typhoon/Hurricane Dynamics and Prediction (2nd Edition))
Show Figures

Figure 1

19 pages, 10160 KiB  
Article
Performance Evaluation of TGFS Typhoon Track Forecasts over the Western North Pacific with Sensitivity Tests on Cumulus Parameterization
by Yu-Han Chen, Sheng-Hao Sha, Chang-Hung Lin, Ling-Feng Hsiao, Ching-Yuang Huang and Hung-Chi Kuo
Atmosphere 2024, 15(9), 1075; https://doi.org/10.3390/atmos15091075 - 5 Sep 2024
Viewed by 2046
Abstract
This study employed the new generation Taiwan global forecast system (TGFS) to focus on its performance in forecasting the tracks of western North Pacific typhoons during 2022–2023. TGFS demonstrated better forecasting performance in typhoon track compared to central weather administration (CWA) GFS. For [...] Read more.
This study employed the new generation Taiwan global forecast system (TGFS) to focus on its performance in forecasting the tracks of western North Pacific typhoons during 2022–2023. TGFS demonstrated better forecasting performance in typhoon track compared to central weather administration (CWA) GFS. For forecasts with large track errors by TGFS at the 120th h, it was found that most of them originated during the early stages of typhoon development when the typhoons were of mild intensity. The tracks deviated predominantly towards the northeast and occasionally towards the southwest, which were speculated to be due to inadequate environmental steering guidance resulting from the failure to capture synoptic environmental features. The tracks could be corrected by replacing the original new simplified Arakawa–Schubert (NSAS) scheme with the new Tiedtke (NTDK) scheme to change the synoptic environmental field, not only for Typhoon Khanun, which occurred in the typhoon season of 2023, but also for Typhoon Bolaven, which occurred after the typhoon season, in October 2023, under atypical circulation characteristics over the western Pacific. The diagnosis of vorticity budget primarily analyzed the periods where divergence in typhoon tracks between control (CTRL) and NTDK experiments occurred. The different synoptic environmental fields in the NTDK experiment affected the wavenumber-1 vorticity distribution in the horizontal advection term, thereby enhancing the accuracy of typhoon translation velocity forecasts. This preliminary study suggests that utilizing the NTDK scheme might improve the forecasting skill of TGFS for typhoon tracks. To gain a more comprehensive understanding of the impact of NTDK on typhoon tracks, further examination for more typhoons is still in need. Full article
(This article belongs to the Special Issue Typhoon/Hurricane Dynamics and Prediction (2nd Edition))
Show Figures

Figure 1

11 pages, 2354 KiB  
Article
Influence of Abnormal Eddies on Seasonal Variations in Sonic Layer Depth in the South China Sea
by Xintong Liu, Chunhua Qiu, Tianlin Wang, Huabin Mao and Peng Xiao
Remote Sens. 2024, 16(15), 2845; https://doi.org/10.3390/rs16152845 - 2 Aug 2024
Viewed by 1409
Abstract
Sonic layer depth (SLD) is crucial in ocean acoustics research and profoundly influences sound propagation and Sonar detection. Carrying 90% of oceanic kinetic energy, mesoscale eddies significantly impact the propagation of acoustic energy in the ocean. Recent studies classified mesoscale eddies into normal [...] Read more.
Sonic layer depth (SLD) is crucial in ocean acoustics research and profoundly influences sound propagation and Sonar detection. Carrying 90% of oceanic kinetic energy, mesoscale eddies significantly impact the propagation of acoustic energy in the ocean. Recent studies classified mesoscale eddies into normal eddies (warm anticyclonic and cold cyclonic eddies) and abnormal eddies (cold anticyclonic and warm cyclonic eddies). However, the influence of mesoscale eddies, especially abnormal eddies, on SLD remains unclear. Based on satellite altimeter and reanalysis data, we explored the influence of mesoscale eddies on seasonal variations in SLD in the South China Sea. We found that the vertical structures of temperature anomalies within the eddies had a significant impact on the sound speed field. A positive correlation between sonic layer depth anomaly (SLDA) and eddy intensity (absolute value of relative vorticity) was investigated. The SLDA showed significant seasonal variations: during summer (winter), the proportion of negative (positive) SLDA increased. Normal eddies (abnormal eddies) had a more pronounced effect during summer and autumn (spring and winter). Based on mixed-layer heat budget analysis, it was found that the seasonal variation in SLD was primarily induced by air–sea heat fluxes. However, for abnormal eddies, the horizontal advection and vertical convective terms modulated the variations in the SLDA. This study provides additional theoretical support for mesoscale eddy–acoustic coupling models and advances our understanding of the impact of mesoscale eddies on sound propagation. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Ocean Observation (Third Edition))
Show Figures

Figure 1

20 pages, 6499 KiB  
Article
Tracking Loop Current Eddies in the Gulf of Mexico Using Satellite-Derived Chlorophyll-a
by Corinne B. Trott, Bulusu Subrahmanyam, Luna Hiron and Olmo Zavala-Romero
Remote Sens. 2024, 16(12), 2234; https://doi.org/10.3390/rs16122234 - 19 Jun 2024
Cited by 2 | Viewed by 1714
Abstract
During the period of 2018–2022, there were six named Loop Current Eddy (LCE) shedding events in the central Gulf of Mexico (GoM). LCEs form when a large anticyclonic eddy (AE) separates from the main Loop Current (LC) and propagates westward. In doing so, [...] Read more.
During the period of 2018–2022, there were six named Loop Current Eddy (LCE) shedding events in the central Gulf of Mexico (GoM). LCEs form when a large anticyclonic eddy (AE) separates from the main Loop Current (LC) and propagates westward. In doing so, each LCE traps and advects warmer, saltier waters with lower Chlorophyll-a (Chl-a) concentrations than the surrounding Gulf waters. This difference in water mass permits the study of the effectiveness of using Chl-a from satellite-derived ocean color to identify LCEs in the GoM. In this work, we apply an eddy-tracking algorithm to Chl-a to detect LCEs, which we have validated against the traditional sea surface height-(SSH) based eddy-tracking approach with three datasets. We apply a closed-contour eddy-tracking algorithm to the SSH of two model products (HYbrid Coordination Ocean Model; HYCOM and Nucleus for European Modelling of the Ocean; NEMO) and absolute dynamic topography (ADT) from altimetry, as well as satellite-derived Chl-a data to identify the six named LCEs from 2018 to 2022. We find that Chl-a best characterizes LCEs in the summertime due to a basin-wide increase in the horizontal gradient of Chl-a, which permits a more clearly defined eddy edge. This study demonstrates that Chl-a can be effectively used to identify and track LC and LCEs in the GoM, serving as a promising source of information for regional data assimilative models. Full article
Show Figures

Graphical abstract

9 pages, 254 KiB  
Opinion
Impacts of Land–Atmosphere Interactions on Boundary Layer Variables: A Classification Perspective from Modeling Approaches
by Xin-Min Zeng, Congmin Li, Ning Wang and Irfan Ullah
Atmosphere 2024, 15(6), 650; https://doi.org/10.3390/atmos15060650 - 29 May 2024
Cited by 3 | Viewed by 1313
Abstract
Previously, the types of impacts of land–atmosphere interactions have scarcely been clarified systematically. In this article, we present a classification of these impacts based on modeling boundary layer variables/parameters, which is grouped into local, regional, and remote impacts. In the narrow sense, land [...] Read more.
Previously, the types of impacts of land–atmosphere interactions have scarcely been clarified systematically. In this article, we present a classification of these impacts based on modeling boundary layer variables/parameters, which is grouped into local, regional, and remote impacts. In the narrow sense, land surface processes (LSPs) influence the atmospheric state via vertical land–atmosphere coupling at local scales, which is referred to as local LSP impacts. However, local LSP impacts can lead to the advection effect due to the horizontal heterogeneity in the parameters over a region, which can be defined as regional LSP impacts. Furthermore, remote LSP impacts on the regional atmospheric state are induced by some land/sea surface variables/parameters over remote key areas of the Earth’s surface, which are conventionally taken as strong signals of climate variation. Of the three impacts, local impacts are the most important essential, as the other two types of impacts are derived from these impacts. We describe the quantification of local impacts based on our previous studies from the perspective of modeling approaches, and we discuss some issues related to these impacts. Previous investigations showed that local LSP impacts are mostly stronger than regional LSP impacts, e.g., the diabatic process is dominant in the physical processes responsible for daily maximum temperatures, and two first-order physical processes including vertical diffusion largely induce changes in surface wind speed in China. Finally, some aspects for future research are noted. This study provides insights into the research on land–atmosphre interactions at different scales. Full article
(This article belongs to the Special Issue Land-Atmosphere Interactions)
Back to TopTop