Impacts of Land–Atmosphere Interactions on Boundary Layer Variables: A Classification Perspective from Modeling Approaches
Abstract
:1. Introduction
2. Methodology
2.1. Local Impact on Surface Air Temperature
2.2. Local Impact on Surface Wind Speed
2.3. Local Impact on Geopotential Height
3. Discussion
3.1. Regional and Remote Impacts
3.2. Some Issues Associated with Local LSP Impacts
4. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koster, R.D.; Dirmeyer, P.A.; Guo, Z.; Bonan, G.; Chan, E.; Cox, P.; Gordon, C.T.; Kanae, S.; Kowalczyk, E.; Lawrence, D.; et al. Regions of strong coupling between soil moisture and precipitation. Science 2004, 305, 1138–1140. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Lüthi, D.; Litschi, M.; Schär, C. Land–atmosphere coupling and climate change in Europe. Nature 2006, 443, 205–209. [Google Scholar] [CrossRef]
- Qiao, L.; Zuo, Z.; Zhang, R.; Piao, S.; Xiao, D.; Zhang, K. Soil moisture–atmosphere coupling accelerates global warming. Nat. Commun. 2003, 14, 4908. [Google Scholar] [CrossRef]
- Fischer, E.M.; Seneviratne, S.I.; Vidale, P.L.; Lüthi, D.; Schär, C. Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J. Clim. 2007, 20, 5081–5099. [Google Scholar] [CrossRef]
- Zeng, X.-M.; Wang, N.; Wang, Y.; Zheng, Y.; Zhou, Z.; Wang, G.; Chen, C.; Liu, H. WRF-simulated sensitivity to land surface schemes in short and medium ranges for a high-temperature event in East China: A comparative study. J. Adv. Model. Earth Syst. 2015, 7, 1305–1325. [Google Scholar] [CrossRef]
- Ullah, I.; Zeng, X.-M.; Mukherjee, S.; Aadhar, S.; Mishra, A.K.; Syed, S.; Ayugi, B.O.; Iyakaremye, V.; Lv, H. Future Amplification of Multivariate Risk of Compound Drought and Heatwave events on South Asian population. Earth’s Future 2023, 11, e2023EF003688. [Google Scholar] [CrossRef]
- Pielke, R.A. Mesoscale Meteorological Modeling; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Dickinson, R.E.; Henderson-Sellers, A.; Kennedy, P.J.; Wilson, M.F. Biosphere/Atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model; NCAR Tech. Note TN-387 + STR; National Center for Atmospheric Research: Boulder, CO, USA, 1993. [Google Scholar]
- Dai, Y.; Zeng, X.; Dickinson, R.E.; Baker, I.; Bonan, G.B.; Bosilovich, M.G.; Denning, A.S.; Dirmeyer, P.A.; Houser, P.R.; Niu, G.; et al. The Common Land Model. Bull. Am. Meteorol. Soc. 2003, 84, 1013–1023. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Yu, M.; Wang, G.; Pal, J.S. Effects of vegetation feedback on future climate change over West Africa. Clim. Dyn. 2016, 46, 3669–3688. [Google Scholar] [CrossRef]
- Koster, R.D.; Sud, Y.C.; Guo, Z.; Dirmeyer, P.A.; Bonan, G.; Oleson, K.W.; Chan, E.; Verseghy, D.; Cox, P.; Davies, H.; et al. GLACE: The global land–atmosphere coupling experiment. Part I: Overview. J. Hydrometeorol. 2006, 7, 590–610. [Google Scholar] [CrossRef]
- Wu, M.; Schurgers, G.; Rummukainen, M.; Smith, B.; Samuelsson, P.; Jansson, C.; Siltberg, J.; May, W. Vegetation–climate feedbacks modulate rainfall patterns in Africa under future climate change. Earth Syst. Dyn. 2016, 7, 627–647. [Google Scholar] [CrossRef]
- Jeong, S.-J.; Ho, C.-H.; Kim, K.-Y.; Kim, J.; Jeong, J.-H.; Park, T.-W. Potential impact of vegetation feedback on European heat waves in a 2 × CO2 climate: Vegetation impact on European heat waves. Clim. Change 2010, 99, 625–635. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, W.; Wei, J. Assessing land-atmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Liu, W.; Wang, G.; Yu, M.; Chen, H.; Jiang, Y.; Yang, M.; Shi, Y. Projecting the future vegetation–climate system over East Asia and its RCP-dependence. Clim. Dyn. 2020, 55, 2725–2742. [Google Scholar] [CrossRef]
- Jeong, S.J.; Ho, C.H.; Park, T.W.; Kim, J.W.; Levis, S. Impact of vegetation feedback on the temperature and its diurnal range over the Northern Hemisphere during summer in a 2 × CO2 climate. Clim. Dyn. 2011, 37, 821–833. [Google Scholar] [CrossRef]
- Mehboob, M.S.; Kim, Y.; Lee, J.; Um, M.-J.; Erfanian, A.; Wang, G. Projection of vegetation impacts on future droughts over West Africa using a coupled RegCM-CLM-CN-DV. Clim. Change 2020, 163, 653–668. [Google Scholar] [CrossRef]
- Jaksa, W.T.; Sridhar, V.; Huntington, J.L.; Khanal, M. Evaluation of the complementary relationship using Noah Land Surface Model and North American Regional Reanalysis (NARR) data to estimate evapotranspiration in semiarid ecosystems. J. Hydrometeorol. 2013, 14, 345–359. [Google Scholar] [CrossRef]
- Sridhar, V.; Anderson, K.A. Human-induced modifications to land surface fluxes and their implications on water management under past and future climate change conditions. Agric. For. Meteorol. 2017, 234–235, 66–79. [Google Scholar] [CrossRef]
- Sridhar, V. Tracking the influence of irrigation on land surface fluxes and boundary layer climatology. J. Contemp. Water Res. Educ. 2013, 152, 79–93. [Google Scholar] [CrossRef]
- Zeng, X.-M.; Zhao, M.; Su, B.-K.; Tang, J.-P.; Zheng, Y.-Q.; Zhang, Y.-J.; Chen, J. Effects of the land-surface heterogeneities in temperature and moisture from the “combined approach” on regional climate: A sensitivity study. Glob. Planet. Change 2003, 37, 247–263. [Google Scholar] [CrossRef]
- Zeng, X.-M.; Wang, B.; Zhang, Y.; Song, S.; Huang, X.; Zheng, Y.; Chen, C.; Wang, G. Sensitivity of high-temperature weather to initial soil moisture: A case study using the WRF model. Atmos. Meas. Technol. 2014, 14, 9623–9639. [Google Scholar] [CrossRef]
- Zeng, X.-M.; Zuo, C.; Zhang, Y.; Wang, N.; Zheng, Y.; Chen, C. Feedback between surface air temperature and atmospheric circulation in high-temperature weather in East China: A diurnal perspective. Atmos. Sci. Lett. 2017, 18, 253–260. [Google Scholar] [CrossRef]
- Zeng, X.-M.; Wang, M.; Wang, N.; Yi, X.; Chen, C.; Zhou, Z.; Wang, G.; Zheng, Y. Assessing simulated summer 10-m wind speed over China: Influencing processes and sensitivities to land surface schemes. Clim. Dyn. 2018, 50, 4189–4209. [Google Scholar] [CrossRef]
- Zeng, X.-M.; Wang, B.; Zhang, Y.; Zheng, Y.; Wang, N.; Wang, M.; Yi, X.; Chen, C.; Zhou, Z.; Liu, H. Effects of land surface schemes on WRF-simulated geopotential heights over China in summer 2003. J. Hydrometeorol. 2016, 17, 829–851. [Google Scholar] [CrossRef]
- Texier, D.; De Noblet, N.; Harrison, S.P.; Haxeltine, A.; Jolly, D.; Joussaume, S.; Laarif, F.; Prentice, I.C.; Tarasov, P. Quantifying the role of biosphere-atmosphere feedbacks in climate change: Coupled model simulations for 6000 years BP and comparison with palaeo data for northern Eurasia and northern Africa. Clim. Dyn. 1997, 13, 865–881. [Google Scholar] [CrossRef]
- Zeng, X.-M.; Wu, Z.-H.; Song, S.; Xiong, S.-Y.; Zheng, Y.-Q.; Zhou, Z.-G.; Liu, H.-Q. The influence of WRF model with different land surface schemes on a rainstorm event simulation. Chin. J. Geophys. 2012, 55, 16–28. [Google Scholar] [CrossRef]
- Argüeso, D.; Evans, J.P.; Pitman, A.J.; Di Luca, A. Effects of City Expansion on Heat Stress under Climate Change Conditions. PLoS ONE 2015, 10, e0117066. [Google Scholar] [CrossRef]
- López-Espinoza, E.D.; Zavala-Hidalgo, J.; Mahmood, R.; Gómez-Ramos, O. Assessing the Impact of Land Use and Land Cover Data Representation on Weather Forecast Quality: A Case Study in Central Mexico. Atmosphere 2020, 11, 1242. [Google Scholar] [CrossRef]
- Chen, H.; Yu, B.; Zhou, B.; Zhang, W.; Zhang, J. Role of local atmospheric forcing and land-atmosphere interaction in recent land surface warming in the middle latitude over East Asia. J. Clim. 2020, 33, 2295–2309. [Google Scholar] [CrossRef]
- Sun, S.; Li, Q.; Li, J.; Wang, G.; Zhou, S.; Chai, R.; Hua, W.; Deng, P.; Wang, J.; Lou, W. Revisiting the evolution of the 2009-2011 meteorological drought over Southwest China. J. Hydrol. 2019, 568, 385–402. [Google Scholar] [CrossRef]
- Gu, C.; Huang, A.; Zhang, Y.; Yang, B.; Cai, S.; Xu, X.; Luo, J.; Wu, Y. The Wet Bias of RegCM4 over Tibet Plateau in Summer Reduced by Adopting the 3D Sub-grid Terrain Solar Radiative Effect Parameterization Scheme. J. Geophys. Res. Atmos. 2022, 127, e2022JD037434. [Google Scholar] [CrossRef]
- Zhao, Z.; Huang, A.; Ma, W.; Wu, Y.; Wen, L.; Zhu, L.; Gu, C. Effects of Lake Nam Co and Surrounding Terrain on Extreme Precipitation over Nam Co Basin, Tibetan Plateau: A Case Study. J. Geophys. Res. Atmos. 2022, 127, e2021JD036190. [Google Scholar] [CrossRef]
- Chen, D.; Zebiak, S.E.; Busalacchi, A.J.; Cane, M.A. An Improved Procedure for EI Niño Forecasting: Implications for Predictability. Science 1995, 269, 1699–1702. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Duan, A.; Jia, X.; Hu, J.; Liu, S. Snow Cover on the Tibetan Plateau and Lake Baikal Intensifies the Winter North Atlantic Oscillation. Geophys. Res. Lett. 2003, 50, e2023GL104754. [Google Scholar] [CrossRef]
- Li, W.; Guo, W.; Qiu, B.; Xue, Y.; Hsu, P.-C.; Wei, J. Influence of Tibetan Plateau snow cover on East Asian atmospheric circulation at medium-range time scales. Nat. Commun. 2018, 9, 4243. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zeng, X.-M.; Guo, W.-D.; Chen, C.; You, W.; Zheng, Y.; Zhu, J. Quantitative diagnosis of moisture sources and transport pathways for summer precipitation over the Mid-lower Yangtze River Basin. J. Hydrol. 2018, 559, 252–265. [Google Scholar] [CrossRef]
- Gao, C.; Chen, H.; Li, G.; Ma, H.; Li, X.; Long, S.; Xu, B.; Li, X.; Zeng, X.; Yan, H.; et al. Land–atmosphere interaction over the Indo-China Peninsula during spring and its effect on the following summer climate over the Yangtze River basin. Clim. Dyn. 2019, 53, 6181–6198. [Google Scholar] [CrossRef]
- Shao, S.; Zeng, X.-M.; Wang, N.; Ullah, I.; Lv, H.; Schubert, W.H.; Klemp, J.B.; Heideman, K.F.; Brasseur, O.; Cassano, J.J.; et al. Attribution of Moisture Sources for Summer Precipitation in the Upstream Catchment of the Three Gorges Dam. J. Hydrometeorol. 2024, 25, 353–369. [Google Scholar] [CrossRef]
- Tang, S.; Piao, S.; Holland, D.M.; Kan, F.; Wang, T.; Yao, T.; Li, X. Resonance between projected Tibetan Plateau surface darkening and Arctic climate change. Sci. Bull. 2024, 69, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Mann, M.E.; Wehner, M.F.; Rahmstorf, S.; Petri, S.; Christiansen, S.; Carrillo, J. Role of atmospheric resonance and land–atmosphere feedbacks as a precursor to the June 2021 Pacific Northwest Heat Dome event. Proc. Natl. Acad. Sci. USA 2024, 121, e2315330121. [Google Scholar] [CrossRef]
- Zhao, M.; Zeng, X.-M. A theoretical analysis on the local climate change induced by the change of landuse. Adv. Atmos. Sci. 2002, 19, 45–63. [Google Scholar]
- Hu, X.-M.; Nielsen-Gammon, J.W.; Zhang, F. Evaluation of Three Planetary Boundary Layer Schemes in the WRF Model. J. Appl. Meteorol. Clim. 2010, 49, 1831–1844. [Google Scholar] [CrossRef]
- Hirschi, M.; Mueller, B.; Dorigo, W.; Seneviratne, S.I. Using remotely sensed soil moisture for land–atmosphere coupling diagnostics: The role of surface vs. root-zone soil moisture variability. Remote Sens. Environ. 2014, 154, 246–252. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, X.-M.; Li, C.; Wang, N.; Ullah, I. Impacts of Land–Atmosphere Interactions on Boundary Layer Variables: A Classification Perspective from Modeling Approaches. Atmosphere 2024, 15, 650. https://doi.org/10.3390/atmos15060650
Zeng X-M, Li C, Wang N, Ullah I. Impacts of Land–Atmosphere Interactions on Boundary Layer Variables: A Classification Perspective from Modeling Approaches. Atmosphere. 2024; 15(6):650. https://doi.org/10.3390/atmos15060650
Chicago/Turabian StyleZeng, Xin-Min, Congmin Li, Ning Wang, and Irfan Ullah. 2024. "Impacts of Land–Atmosphere Interactions on Boundary Layer Variables: A Classification Perspective from Modeling Approaches" Atmosphere 15, no. 6: 650. https://doi.org/10.3390/atmos15060650
APA StyleZeng, X. -M., Li, C., Wang, N., & Ullah, I. (2024). Impacts of Land–Atmosphere Interactions on Boundary Layer Variables: A Classification Perspective from Modeling Approaches. Atmosphere, 15(6), 650. https://doi.org/10.3390/atmos15060650