Geometry of Non-Diffusive Tracer Transport in Gridded Atmospheric Models
Abstract
:1. Introduction
2. Extensions of the Algorithm to Two- and Three-Dimensional Grids
3. Exploiting Similarities with the Arakawa-C Grid Using WRF
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Rendering Points on a Large Eulerian Grid Using minVAR
Appendix A1. minVAR Values from Table 2
Appendix A2. p-Values from Table 3
References
- McGraw, R.; Yang, F.; Fierce, L.M. Preserving tracer correlations in moment-based atmospheric transport models. J. Adv. Model. Earth Syst. 2024, 16, e2023MS003621. [Google Scholar] [CrossRef]
- Wright, D.L. Numerical advection of moments of the particle size distribution in Eulerian models. J. Aerosol Sci. 2007, 38, 352–369. [Google Scholar] [CrossRef]
- Ovtchinnikov, M.; Easter, R.C. Nonlinear advection algorithms applied to interrelated tracers: Errors and implications for modeling aerosol–cloud interactions. Mon. Weather Rev. 2009, 137, 632–644. [Google Scholar] [CrossRef]
- Lauritzen, P.H.; Thuburn, J. Evaluating advection/transport schemes using interrelated tracers, scatterplots and numerical mixing diagnostics. Q. J. R. Meteorol. Soc. 2012, 138, 906–918. [Google Scholar] [CrossRef]
- McGraw, R. Correcting transport errors during advection of aerosol and cloud particle moment sequences in Eulerian models. In Climate Models; Druyan, L.M., Ed.; InTech Open: London, UK, 2012; Chapter 13; pp. 297–310. [Google Scholar]
- Lundquist, K.A.; Chow, F.K.; Lundquis, J.K. An Immersed Boundary Method for the Weather Research and Forecasting Model. Mon. Weather Rev. 2009, 138, 796–817. [Google Scholar] [CrossRef]
- McGraw, R. Codes Used in Preservation of Tracer Correlations in Atmospheric Transport Models [Software]. 2023. Available online: https://zenodo.org/doi/10.5281/zenodo.7607751 (accessed on 23 September 2024).
- Wannier, G.H. Statistical Physics; Dover Publications, Inc.: New York, NY, USA, 1966; p. 87. [Google Scholar]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.; Duda, M.G.; Huang, X.; Wang, W.; Powers, J.G. NCAR Technical Note NCAR/TN-475+STR. In A Description of the Advanced Research WRF Version 3; National Center for Atmospheric Research: Boulder, CO, USA, 2008; 113p. [Google Scholar]
- Jensen, M.P.; Flynn, J.H.; Judd, L.M.; Kollias, P.; Kuang, C.; Mcfarquhar, G.; Nadkarni, R.; Powers, H.; Sullivan, J. A Succession of Cloud, Precipitation, Aerosol and Air Quality Field Experiments in the Coastal Urban Environment. Bull. Am. Meteorol. Soc. 2022, 103, 103–105. [Google Scholar] [CrossRef]
- EarthData. Visible Infrared Imaging Radiometer Suite (VIIRS). Available online: https://www.earthdata.nasa.gov/learn/find-data/near-real-time/viirs (accessed on 20 May 2024).
- Chou, M.-D.; Suarez, M.J.; Ho, C.-H.; Yan, M.M.-H.; Lee, K.-T. Parameterizations for Cloud Overlapping and Shortwave Single-Scattering Properties for Use in General Circulation and Cloud Ensemble Models. J. Clim. 1998, 11, 202–214. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res.-Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Monin, A.S.; Obukhov, A.M. Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Slovak Acad. Sci. USSR 1954, 151, 163–187. [Google Scholar]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Grell, G.A.; Devenyi, D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 2002, 29, 38-1–38-4. [Google Scholar] [CrossRef]
- Morrison, H.; Curry, J.A.; Khvorostyanov, V.I. A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci. 2005, 62, 1665–1677. [Google Scholar] [CrossRef]
- Tuccella, P.; Curci, G.; Visconti, G.; Bessagnet, B.; Menut, L.; Park, R.J. Modeling of gas and aerosol with WRF/Chem over Europe: Evaluation and sensitivity study. J. Geophys. Res. 2012, 117, D03303. [Google Scholar] [CrossRef]
- Solbakken, K.; Birkelund, Y.; Samuelsen, E.M. Evaluation of surface wind using WRF in complex terrain: Atmospheric input data and grid spacing. Environ. Model. Softw. 2021, 145, 105182. [Google Scholar] [CrossRef]
- Subba, T.; Zhang, Y.; Steiner, A.L. Simulating the transport and rupture of pollen in the atmosphere. J. Adv. Model. Earth Syst. 2023, 15, e2022MS003329. [Google Scholar] [CrossRef]
xvals = Table[i, {i, 0, 7}]; (* grid centers along coordinate x *) xvalsq = xvals^2 ones = Table[1, {i, 0, 7}] varsp = Table[p[i], {i, 0, 7}]; (* p-values *) pconstraints = Table[0 <= p[i], {i, 0, 7] |
LP1D[x_] := (cost1D = xvalsq . varsp − x^2; cx = xvals . varsp == x; norm = ones . varsp == 1; soln1D = Chop[FindMinimum[{cost1D, {cx, norm, pconstraints}}, varsp]]; Table[soln1D[[2]][[i]][[2]], {i, 1, 8}]) |
LP1DVAR[x_] := LP1D[x] . xvalsq − x^2 (* LP1DVAR gives min variance values identical to those of mV1D *) |
mV1D[x_] := (ax = Floor[x] + 1/2; 1/4 − SquaredEuclideanDistance[ax, x]) |
mV2D[{x_, y_}] := ({ax, ay} = {Floor[x], Floor[y]} + {1/2, 1/2}; 1/2 − SquaredEuclideanDistance[{ax, ay}, {x, y}]) |
mV3D[{x_, y_, z_}] := ({ax, ay, az} = {Floor[x], Floor[y], Floor[z]} + {1/2, 1/2, 1/2}; 3/4 − SquaredEuclideanDistance[{ax, ay, az}, {x, y, z}]) |
v1D[x_] := {1, x, mV1D[x] + x x} (* zeroth, first, second moments *) |
p1D[x_] := (mat = {{1, 1, 1}, {0, 1, 2}, {0, 1, 4}}; Inverse[mat] . v1D[x]) // Chop |
p2D[{x_, y_}] := (mat = {{1, 1, 1}, {0, 1, 2}, {0, 1, 4}}; Outer[Times, Inverse[mat] . v1D[y], Inverse[mat] . v1D[x]] // Flatten// Chop) |
p3D[{x_, y_, z_}] := (mat = {{1, 1, 1}, {0, 1, 2}, {0, 1, 4}}; Outer[Times, Inverse[mat] . v1D[z], Inverse[mat] . v1D[y], Inverse[mat] . v1D[x]] // Flatten //Chop) |
Simulation Period | 1 July–30 August 2022 |
---|---|
Domain | 26 to 33° N and −98 to −92° E, Southern Texas Region |
Horizontal resolution (dx) | 5 × 5 km |
Vertical resolution | 45 layers from 1000–50 mb |
Meteorological boundary conditions | North America mesoscale (NAM) forecast output at T221 (32-km) resolution, 28 vertical levels |
Shortwave radiation | Goddard shortwave radiation scheme [13] |
Longwave radiation | The rapid radiative transfer mode (RRTM) [14] |
Land surface | Community National Center for Environmental Prediction (NCEP), Oregon State University, Air Force, and Hydrologic Research Lab-NWS Land Surface Model (NOAH) [15] |
Surface Layer | Monin-Obukhov [16] |
PBL | Yonsei University Scheme (YSU) [17] |
Cumulus | The Grell scheme [18] |
Microphysics | Morrison 2-moment scheme [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McGraw, R.; Subba, T. Geometry of Non-Diffusive Tracer Transport in Gridded Atmospheric Models. Atmosphere 2024, 15, 1151. https://doi.org/10.3390/atmos15101151
McGraw R, Subba T. Geometry of Non-Diffusive Tracer Transport in Gridded Atmospheric Models. Atmosphere. 2024; 15(10):1151. https://doi.org/10.3390/atmos15101151
Chicago/Turabian StyleMcGraw, Robert, and Tamanna Subba. 2024. "Geometry of Non-Diffusive Tracer Transport in Gridded Atmospheric Models" Atmosphere 15, no. 10: 1151. https://doi.org/10.3390/atmos15101151
APA StyleMcGraw, R., & Subba, T. (2024). Geometry of Non-Diffusive Tracer Transport in Gridded Atmospheric Models. Atmosphere, 15(10), 1151. https://doi.org/10.3390/atmos15101151