Tracking Loop Current Eddies in the Gulf of Mexico Using Satellite-Derived Chlorophyll-a
Abstract
:1. Introduction
2. Data and Methods
2.1. Satellite Data
2.2. Model Simulations
2.3. Methodology
3. Results
3.1. Loop Current Identification
3.2. Daily Eddy Characteristics Using Eddy-Tracking Algorithm
3.3. Loop Current Eddy Identification Using Satellite-Derived Ocean Color Chlorophyll-a
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Hu, C. Ocean temperature and color frontal zones in the Gulf of Mexico: Where, when, and why. J. Geophys. Res. Ocean. 2021, 126, e2021JC017544. [Google Scholar] [CrossRef]
- Pichevin, T.; Nof, D. The momentum imbalance paradox. Tellus A 1997, 49, 298–319. [Google Scholar] [CrossRef]
- Lee, H.-C.; Mellor, G.L. Numerical simulation of the Gulf Stream System: The Loop Current and the deep circulation. J. Goephys. Res. Ocean. 2003, 108, 25-1–25-16. [Google Scholar] [CrossRef]
- Donohue, K.A.; Watts, D.R.; Hamilton, P.; Leben, R.; Kennelly, M. Loop Current eddy formation and baroclinic instability. Dyn. Atms. Ocean. 2016, 76, 195–216. [Google Scholar] [CrossRef]
- Hall, C.A.; Leben, R.R. Observational evidence of seasonality in the timing of loop current eddy separation. Dyn. Atm. Ocean. 2016, 76, 240–267. [Google Scholar] [CrossRef]
- Alvera-Azcárate, A.; Barth, A.; Weisberg, R.H. The Surface Circulation of the Caribbean Sea and the Gulf of Mexico as Inferred from Satellite Altimetry. J. Phys. Oceanogr. 2009, 39, 640–657. [Google Scholar] [CrossRef]
- Berger, T.J.; Hamilton, P.; Singer, J.J.; Waddell, E.; Churchill, J.H.; Leben, R.R.; Lee, T.N.; Sturges, W. Desoto Canyon Eddy Intrusion, Final Report, Volume I: Executive Summary and Volume II: Technical Report; Minerals Management Service. 3p. Obligation No.: 1435-01-96-CT-30825. Report No.: OCS Study MMS 2000-079 & 2000-080; US Department of the Interior: New Orleans, LA, USA, 2000. Available online: https://espis.boem.gov/Technical%20Summaries/3187.pdf (accessed on 16 June 2024).
- Candela, J.; Ochoa, J.; Sheinbaum, J.; López, M.; Pérez-Brunius, P.; Tenreiro, M.; Pallas-Sanz, E.; Athie, G.; Arriaz-Olivero, L. The Flow through the Gulf of Mexico. J. Phys. Oceanogr. 2019, 49, 1381–1401. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, W.; Qiu, B. Oceanic mass transport by mesoscale eddies. Science 2014, 345, 322–324. [Google Scholar] [CrossRef]
- Shay, L.K.; Goni, G.J.; Black, P.G. Effects of a Warm Oceanic Feature on Hurricane Opal. Mon. Wea. Rev. 2000, 128, 1366–1383. [Google Scholar] [CrossRef]
- Dukhovskoy, D.S.; Leben, R.R.; Chassignet, E.P.; Hall, C.A.; Morey, S.L.; Nedbor-Gross, R. Characterization of the uncertainty of loop current metrics using a multidecadal numerical simulation and altimeter observations. Deep Sea Res. Part 1 Oceanogr. Res. Pap. 2015, 100, 140–158. [Google Scholar] [CrossRef]
- Chassignet, E.P.; Hurlburt, H.E.; Smedstad, O.M.; Barron, C.N.; Ko, D.S.; Rhodes, R.C.; Shriver, J.F.; Wallcraft, A.J.; Arnone, R.A. Assessment of ocean prediction systems in the Gulf of Mexico using ocean color. In New Developments in the Circulation of the Gulf of Mexico; Sturges, W., Lugo-Fernadez, A., Eds.; AGU Monograph Series; American Geophysical Union: Washington, DC, USA, 2006; Volume 161, pp. 87–100. [Google Scholar]
- Wang, Z.; Boyer, T.; Reagan, J.; Hogan, P. Upper Oceanic Warming in the Gulf of Mexico between 1950 and 2020. J. Clim. 2023, 36, 2721–2734. [Google Scholar] [CrossRef]
- Muller-Karger, F.E.; Smith, J.P.; Werner, S.; Chen, R.; Roffer, M.; Liu, Y.; Muhling, B.; Lindo-Atichati, D.; Lamkin, J.; CerdeiraEstrada, S.; et al. Natural variability of surface oceanographic conditions in the offshore Gulf of Mexico. Prog. Oceanogr. 2015, 134, 54–76. [Google Scholar] [CrossRef]
- Li, G.; Wang, Z.; Wang, B. Multidecade trends of sea surface temperature, chlorophyll-a concentration, and ocean eddies in the Gulf of Mexico. Remote Sens. 2022, 14, 3754. [Google Scholar] [CrossRef]
- Sturges, W.; Evans, J.C. On the variability of the Loop Current in the Gulf of Mexico. J. Mar. Res. 1983, 41, 639–653. [Google Scholar] [CrossRef]
- Martin, A.P.; Richards, K.J. Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy. Deep Sea Res. Part II Top. Stud. Oceanogr. 2001, 48, 757–773. [Google Scholar] [CrossRef]
- Gaube, P.; Chelton, D.B.; Strutton, P.G.; Behrenfeld, M.J. Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies. J. Geophys. Res.-Ocean. 2013, 118, 6349–6370. [Google Scholar] [CrossRef]
- Gaube, P.; Chelton, D.B.; Samelson, R.M.; Schlax, M.G.; O’Neill, L.W. Satellite observations of mesoscale eddy-induced Ekman pumping. J. Phys. Oceanogr. 2015, 45, 104–132. [Google Scholar] [CrossRef]
- Rai, S.; Hecht, M.; Maltrud, M.; Aluie, H. Scale of oceanic eddy killing by wind from global satellite observations. Sci. Adv. 2021, 7, eabf4920. [Google Scholar] [CrossRef]
- Williams, R.G. Modification of ocean eddies by air-sea interaction. J. Geophys. Res.-Ocean. 1988, 93, 15523–15533. [Google Scholar] [CrossRef]
- Kouketsu, S.; Tomita, H.; Oka, E.; Hosoda, S.; Kobayashi, T.; Sato, K. The role of meso-scale eddies in mixed layer deepening and mode water formation in the western North Pacific. J. Oceanogr. 2012, 68, 63–77. [Google Scholar] [CrossRef]
- Mayot, N.; D’Ortenzio, F.; Taillandier, V.; Prieur, L.; de Fommervault, O.P.; Claustre, H.; Bosse, A.; Testor, P.; Conan, P. Physical and biogeochemical controls of the phytoplankton blooms in North Western Mediterranean Sea: A multiplatform aproach over a complete annual cycle (2012–2013 DEWEX experiment). J. Geophys. Res.-Ocean. 2017, 122, 9999–10019. [Google Scholar] [CrossRef]
- Weisberg, R.H.; Liu, Y. On the Loop Current penetration into the Gulf of Mexico. J. Geophys. Res. Ocean. 2017, 122, 9679–9694. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, C.; Liu, Y.; Kourafalou, V.H.; McGillicuddy, D.J., Jr.; Cannizzaro, J.P.; English, D.C.; Lembke, C. Bio-Optical, Physical, and Chemical Properties of a Loop Current Eddy in the Gulf of Mexico. J. Geophys. Res. Ocean. 2023, 128, e2022JC018726. [Google Scholar] [CrossRef]
- Beron-Vera, F.J.; Olascoaga, M.J.; Wang, Y.; Triñanes, J.; Pérez-Brunius, P. Enduring Lagrangian coherence of a Loop Current ring assessed using independent observations. Sci. Rep. 2018, 8, 11275. [Google Scholar] [CrossRef]
- Hiron, L.; Miron, P.; Shay, L.K.; Johns, W.E.; Chassignet, E.P.; Bozec, A. Lagrangian coherence and source of water of Loop Current Frontal Eddies in the Gulf of Mexico. Prog. Oceanogr. 2022, 208, 102876. [Google Scholar] [CrossRef]
- Damien, P.; Sheinbaum, J.; Pasqueron de Fommervault, O.; Jouanno, J.; Linacre, L.; Duteil, O. Do Loop Current eddies stimulate productivity in the Gulf of Mexico? Biogeosciences 2021, 18, 4281–4303. [Google Scholar] [CrossRef]
- Leben, R.R. Altimeter-derived Loop Current metrics. Circulation in the Gulf of Mexico: Observations and Models. In Geophysical Monograph Series; American Geophysical Union: Washington, DC, USA, 2005; Volume 161, pp. 181–202. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M. Global daily gap-free ocean color products from multi-satellite measurements. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102714. [Google Scholar] [CrossRef]
- Andrae, A. Comparison of Different Methods for the Detection of Mesoscale Eddy Characteristics in the Eastern Tropical North Atlantic. Ph.D. Thesis, Christian-Albrechts-Universität zu Kiel, Kiel, Germany, 2020. [Google Scholar]
- Le Vu, B.; Stegner, A.; Arsouze, T. Angular momentum eddy detection and tracking algorithm (AMEDA) and its application to coastal eddy formation. J. Atms. Ocean Technol. 2018, 35, 739–762. [Google Scholar] [CrossRef]
- Garreau, P.; Dumas, F.; Louazel, S.; Stegner, A.; Le Vu, B. High-resolution observations and tracking of a dual-core anticyclonic eddy in the Algerian Basin. J. Geophys. Res. Ocean. 2018, 123, 9320–9339. [Google Scholar] [CrossRef]
- Ioannou, A.; Stegner, A.; Le Vu, B.; Taupier-Letage, I.; Speich, S. Dynamical evolution of intense Ierapetra eddies on a 22 year long period. J. Geophys. Res. Ocean. 2017, 122, 9276–9298. [Google Scholar] [CrossRef]
- Cummings, J.A.; Smedstad, O.M. Variational data analysis for the global ocean. In Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications; Park, S.K., Xu, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 2. [Google Scholar] [CrossRef]
- Helber, R.W.; Townsend, T.L.; Barron, C.N.; Dastugue, J.M.; Carnes, M.R. Validation Test Report for the Improved Synthetic Ocean Profile (ISOP) System, Part I: Synthetic Profile Methods and Algorithm; Naval Research Laboratory Report; NRL: Washington, DC, USA, 2013. [Google Scholar]
- Trott, C.B.; Subrahmanyam, B.; Chaigneau, A.; Delcroix, T. Eddy Tracking in the Northwestern Indian Ocean during Southwest Monsoon Regimes. Geophys. Res. Lett. 2018, 45, 6594–6603. [Google Scholar] [CrossRef]
- Trott, C.B.; Subrahmanyam, B.; Chaigneau, A.; Roman-Stork, H.L. Eddy-induced Temperature and Salinity Variability in the Arabian Sea. Geophys. Res. Lett. 2019, 46, 2734–2742. [Google Scholar] [CrossRef]
- Brokaw, R.J.; Subrahmanyam, B.; Trott, C.B.; Chaigneau, A. Eddy Surface Characteristics and Vertical Structure in the Gulf of Mexico from Satellite Observations and Model Simulations. J. Geophys. Res. 2020, 125, e2019JC015538. [Google Scholar] [CrossRef]
- Pegliasco, C.; Chaigneau, A.; Morrow, R. Main eddy vertical structures observed in the four major Eastern Boundary Upwelling Systems. J. Geophys. Res. Ocean. 2015, 120, 6008–6033. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Global observations of nonlinear mesoscale eddies. Prog. Oceang. 2011, 91, 167–216. [Google Scholar] [CrossRef]
- Souza, J.M.A.C.; de Boyer Montégut, C.; Le Traon, P.Y. Comparison between three implementations of automatic identification algorithms for the quantification and characterization of mesoscale eddies in the South Atlantic Ocean. Ocean Sci. 2011, 7, 317–334. [Google Scholar] [CrossRef]
- Yi, J.; Du, Y.; He, Z.; Zhou, C. Enhancing the accuracy of automatic eddy detection and the capability of recognizing the multi-core structures from maps of sea level anomaly. Ocean Sci. 2014, 10, 39. [Google Scholar] [CrossRef]
- Trott, C.B.; Metzger, E.J.; Yu, Z. Investigating mesoscale eddy characteristics in the Luzon Strait region using altimetry. Ocean Dyn. 2021, 71, 679–698. [Google Scholar] [CrossRef]
- Brokaw, R.J.; Subrahmanyam, B.; Morey, S.L. Loop Current and Eddy-Driven Salinity Variability in the Gulf of Mexico. Geophys. Res. Lett. 2019, 46, 5978–5986. [Google Scholar] [CrossRef]
- Hiron, L.; Nolan, D.S.; Shay, L.K. Study of Ageostrophy during Strong, Nonlinear Eddy-Front Interaction in the Gulf of Mexico. J. Phys. Oceanogr. 2021, 51, 745–755. [Google Scholar] [CrossRef]
- Chérubin, L.M.; Morel, Y.; Chassignet, E.P. Loop Current ring shedding: The formation of cyclones and the effect of topography. J. Phys. Oceanogr. 2006, 36, 569–591. [Google Scholar] [CrossRef]
- Jouanno, J.; Ochoa, J.Z.; Pallás-Sanz, E.; Sheinbaum, J.; Andrade-Canto, F.; Candela, J.; Molines, J.-M. Loop current frontal eddies: Formation along the Campeche Bank and impact of coastally trapped waves. J. Phys. Oceanogr. 2016, 46, 3339–3363. [Google Scholar] [CrossRef]
- Garcia-Jove, M.; Sheinbaum, J.; Jouanno, J. Sensitivity of Loop Current metrics and eddy detachments to different model configurations: The impact of topography and Caribbean perturbations. Atmósfera 2016, 29, 235–265. [Google Scholar] [CrossRef]
- Yang, Y.; Weisberg, R.H.; Liu, Y.; Liang, X.S. Instabilities and multiscale interactions underlying the Loop Current eddy shedding in the Gulf of Mexico. J. Phys. Oceanogr. 2020, 50, 1289–1317. [Google Scholar] [CrossRef]
- McGillicuddy, D.J. Formation of Intrathermocline Lenses by Eddy–Wind Interaction. J. Phys. Oceanogr. 2015, 45, 606–612. [Google Scholar] [CrossRef]
- Biggs, D.C.; Ressler, P.H. Distribution and Abundance of Phytoplankton, Zooplankton, Ichthyoplankton, and Micronekton, in the Deepwater Gulf of Mexico. Gulf Mex. Sci. 2001, 19, 2. [Google Scholar] [CrossRef]
- Sturges, W.; Leben, R. Frequency of ring separation from the Loop Current in the Gulf of Mexico: A revised estimate. J. Phys. Oceanogr. 2000, 30, 1814–1819. [Google Scholar] [CrossRef]
- Damien, P.; de Fommervault, P.O.; Sheinbaum, J.; Jouanno, J.; Camacho-Ibar, V.F.; Duteil, O. Partitioning of the Open Waters of the Gulf of Mexico Based on the Seasonal and Interannual Variability of Chlorophyll Concentration. J. Geophys. Res.-Ocean. 2018, 123, 2592–2614. [Google Scholar] [CrossRef]
- Lohrenz, S.E.; Fahnenstiel, G.L.; Redalje, D.G.; Lang, G.A.; Chen, X.; Dagg, M.J. Variations in primary production of northern Gulf of Mexico continental shelf waters linked to nutrient inputs from the Mississippi River Mar. Ecol. Prog. Ser. 1997, 155, 45–54. [Google Scholar] [CrossRef]
- Cullen, J.J.; Franks, P.J.; Karl, D.M.; Longhurst, A. Physical influences on marine ecosystem dynamics. Sea 2002, 12, 297–336. [Google Scholar]
- Jolliff, J.K.; Kindle, J.C.; Penta, B.; Helber, R.; Lee, Z.; Shulman, I.; Arnone, R.; Rowley, C.D. On the relationship between satellite-estimated bio-optical and thermal properties in the Gulf of Mexico. J. Geophys. Res. 2008, 113, G01024. [Google Scholar] [CrossRef]
2018: Revelle | 2019: Sverdrup | 2020: Thor | 2021: Wilde | 2022: Wilde II | 2022: X | 2018–2022 Total | |
---|---|---|---|---|---|---|---|
Spring (MAM) | 16.30% | 1.09% | 79.35% | 39.13% | 55.43% | N/A | 30.43% |
Summer (JJA) | 81.52% | 63.04% | 100% | 56.52% | 100% | 79.35% | 80.07% |
Fall (SON) | 93.41% | 95.60% | 47.25% | 65.38% | 91.21% | 71.43% | 77.38% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trott, C.B.; Subrahmanyam, B.; Hiron, L.; Zavala-Romero, O. Tracking Loop Current Eddies in the Gulf of Mexico Using Satellite-Derived Chlorophyll-a. Remote Sens. 2024, 16, 2234. https://doi.org/10.3390/rs16122234
Trott CB, Subrahmanyam B, Hiron L, Zavala-Romero O. Tracking Loop Current Eddies in the Gulf of Mexico Using Satellite-Derived Chlorophyll-a. Remote Sensing. 2024; 16(12):2234. https://doi.org/10.3390/rs16122234
Chicago/Turabian StyleTrott, Corinne B., Bulusu Subrahmanyam, Luna Hiron, and Olmo Zavala-Romero. 2024. "Tracking Loop Current Eddies in the Gulf of Mexico Using Satellite-Derived Chlorophyll-a" Remote Sensing 16, no. 12: 2234. https://doi.org/10.3390/rs16122234
APA StyleTrott, C. B., Subrahmanyam, B., Hiron, L., & Zavala-Romero, O. (2024). Tracking Loop Current Eddies in the Gulf of Mexico Using Satellite-Derived Chlorophyll-a. Remote Sensing, 16(12), 2234. https://doi.org/10.3390/rs16122234