Analyzing the Mediterranean Tropical-like Cyclone Ianos Using the Moist Static Energy Budget
Abstract
:1. Introduction
- Can we quantitatively define which process is most important during the various stages of a medicane’s life through the MSE budget?
- Is it possible to objectively define when a medicane can be assimilated into the framework of tropical cyclones by analyzing the increase in variance of the moist static energy terms in the energy balance?
2. Data
2.1. ERA5 Reanalysis
2.2. Medicane Ianos
2.3. Cyclone Tracking
3. Methods
3.1. The MSE Budget Framework
3.2. Hart Parameters
4. Results
4.1. General Characteristics and Warm Core Analysis
4.2. The Vertically Integrated MSE Variance Analysis
- Vertically integrated latent heat energy variance, : represents variations in the latent heat component of MSE, primarily due to moisture fluctuations and condensation processes;
- Vertically integrated dry static energy variance, : accounts for variations in the dry static energy term, related to temperature and geopotential height changes, indicating baroclinic contributions.
- Their covariance : describes interactions between thermal and moisture anomalies, which can either enhance or suppress convective processes. It can indicate the effect of large-scale features, like a cut-off low and the passing of a jet in the region, as will be discussed below.
4.2.1. Initial Phase (13–15 September 2020)
4.2.2. Intense Phase (16–18 September 2020)
4.2.3. Dissipation (19–21 September 2020)
4.3. The Vertically Integrated MSE Variance Budget
4.3.1. Initial Phase
4.3.2. Intense Phase
4.3.3. Dissipation
4.4. Sensitivity to Area
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Derivation of the MSE Budget from Primitive Equations
- The vertically integrated tendency of geopotential must be much smaller in amplitude than the MSE tendency:
- Temporal and spatial fluctuations in K must be much smaller than those in MSE in order to have:
- Surface fluxes of kinetic energy are negatively small or can be neglected when compared to the sensible and latent heat surface fluxes:
References
- Emanuel, K. Genesis and maintenance of “Mediterranean hurricanes”. Adv. Geosci. 2005, 2, 217–220. [Google Scholar] [CrossRef]
- Cavicchia, L.; von Storch, H.; Gualdi, S. Mediterranean tropical-like cyclones in present and future climate. J. Clim. 2014, 27, 7493–7501. [Google Scholar] [CrossRef]
- Tous, M.; Romero, R. Meteorological environments associated with medicane development. Int. J. Climatol. 2013, 33, 1–14. [Google Scholar] [CrossRef]
- Fita, L.; Romero, R.; Luque, A.; Emanuel, K.; Ramis, C. Analysis of the environments of seven Mediterranean tropical-like storms using an axisymmetric, nonhydrostatic, cloud resolving model. Nat. Hazards Earth Syst. Sci. 2007, 7, 41–56. [Google Scholar] [CrossRef]
- Hart, R.E. A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Weather Rev. 2003, 131, 585–616. [Google Scholar] [CrossRef]
- Portmann, R.; González-Alemán, J.J.; Sprenger, M.; Wernli, H. How an uncertain short-wave perturbation on the North Atlantic wave guide affects the forecast of an intense Mediterranean cyclone (Medicane Zorbas). Weather Clim. Dyn. 2020, 1, 597–615. [Google Scholar] [CrossRef]
- Comellas Prat, A.; Federico, S.; Torcasio, R.C.; D’Adderio, L.P.; Dietrich, S.; Panegrossi, G. Evaluation of the Sensitivity of Medicane Ianos to Model Microphysics and Initial Conditions Using Satellite Measurements. Remote Sens. 2021, 13, 4984. [Google Scholar] [CrossRef]
- Saraceni, M.; Silvestri, L.; Bechtold, P.; Bongioannini Cerlini, P. Mediterranean tropical-like cyclone forecasts and analysis using the ECMWF ensemble forecasting system with physical parameterization perturbations. Atmos. Chem. Phys. 2023, 23, 13883–13909. [Google Scholar] [CrossRef]
- Cioni, G.; Cerrai, D.; Klocke, D. Investigating the predictability of a Mediterranean tropical-like cyclone using a storm-resolving model. Q. J. R. Meteorol. Soc. 2018, 144, 1598–1610. [Google Scholar] [CrossRef]
- Picornell, M.; Campins, J.; Jansà, A. Detection and thermal description of medicanes from numerical simulation. Nat. Hazards Earth Syst. Sci. 2014, 14, 1059–1070. [Google Scholar] [CrossRef]
- Gaertner, M.Á.; González-Alemán, J.J.; Romera, R.; Domínguez, M.; Gil, V.; Sánchez, E.; Gallardo, C.; Miglietta, M.M.; Walsh, K.J.; Sein, D.V.; et al. Simulation of medicanes over the Mediterranean Sea in a regional climate model ensemble: Impact of ocean–atmosphere coupling and increased resolution. Clim. Dyn. 2018, 51, 1041–1057. [Google Scholar] [CrossRef]
- Flaounas, E.; Davolio, S.; Raveh-Rubin, S.; Pantillon, F.; Miglietta, M.M.; Gaertner, M.A.; Hatzaki, M.; Homar, V.; Khodayar, S.; Korres, G.; et al. Mediterranean cyclones: Current knowledge and open questions on dynamics, prediction, climatology and impacts. Weather Clim. Dyn. 2022, 3, 173–208. [Google Scholar] [CrossRef]
- Nastos, P.; Papadimou, K.K.; Matsangouras, I. Mediterranean tropical-like cyclones: Impacts and composite daily means and anomalies of synoptic patterns. Atmos. Res. 2018, 208, 156–166. [Google Scholar] [CrossRef]
- Flaounas, E.; Gray, S.L.; Teubler, F. A process-based anatomy of Mediterranean cyclones: From baroclinic lows to tropical-like systems. Weather Clim. Dyn. 2021, 2, 255–279. [Google Scholar] [CrossRef]
- Dafis, S.; Rysman, J.F.; Claud, C.; Flaounas, E. Remote sensing of deep convection within a tropical-like cyclone over the Mediterranean Sea. Atmos. Sci. Lett. 2018, 19, e823. [Google Scholar] [CrossRef]
- Carrió, D.; Homar, V.; Jansa, A.; Romero, R.; Picornell, M. Tropicalization process of the 7 November 2014 Mediterranean cyclone: Numerical sensitivity study. Atmos. Res. 2017, 197, 300–312. [Google Scholar] [CrossRef]
- Chaboureau, J.P.; Pantillon, F.; Lambert, D.; Richard, E.; Claud, C. Tropical transition of a Mediterranean storm by jet crossing. Q. J. R. Meteorol. Soc. 2012, 138, 596–611. [Google Scholar] [CrossRef]
- Rostami, M.; Zeitlin, V. Evolution, propagation and interactions with topography of hurricane-like vortices in a moist-convective rotating shallow-water model. J. Fluid Mech. 2020, 902, A24. [Google Scholar] [CrossRef]
- Montgomery, M.T.; Smith, R.K. Recent developments in the fluid dynamics of tropical cyclones. Annu. Rev. Fluid Mech. 2017, 49, 541–574. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Rotunno, R. Development mechanisms for Mediterranean tropical-like cyclones (medicanes). Q. J. R. Meteorol. Soc. 2019, 145, 1444–1460. [Google Scholar] [CrossRef]
- Fita, L.; Flaounas, E. Medicanes as subtropical cyclones: The December 2005 case from the perspective of surface pressure tendency diagnostics and atmospheric water budget. Q. J. R. Meteorol. Soc. 2018, 144, 1028–1044. [Google Scholar] [CrossRef]
- d’Adderio, L.P.; Panegrossi, G.; Dafis, S.; Rysman, J.F.; Casella, D.; Sanò, P.; Fuccello, A.; Miglietta, M.M. Helios and Juliette: Two falsely acclaimed medicanes? Atmos. Res. 2024, 299, 107179. [Google Scholar] [CrossRef]
- Emanuel, K.A. An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci. 1986, 43, 585–605. [Google Scholar] [CrossRef]
- Rotunno, R.; Emanuel, K.A. An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci. 1987, 44, 542–561. [Google Scholar] [CrossRef]
- Mazza, E.; Ulbrich, U.; Klein, R. The tropical transition of the October 1996 medicane in the western Mediterranean Sea: A warm seclusion event. Mon. Weather Rev. 2017, 145, 2575–2595. [Google Scholar] [CrossRef]
- Bister, M.; Emanuel, K.A. Dissipative heating and hurricane intensity. Meteorol. Atmos. Phys. 1998, 65, 233–240. [Google Scholar] [CrossRef]
- Pytharoulis, I. Analysis of a Mediterranean tropical-like cyclone and its sensitivity to the sea surface temperatures. Atmos. Res. 2018, 208, 167–179. [Google Scholar] [CrossRef]
- Yano, J.I.; Ambaum, M.H. Moist static energy: Definition, reference constants, a conservation law and effects on buoyancy. Q. J. R. Meteorol. Soc. 2017, 143, 2727–2734. [Google Scholar] [CrossRef]
- Yu, L.; Wu, S.; Ma, Z. Evaluation of moist static energy in a simulated tropical cyclone. Atmosphere 2019, 10, 319. [Google Scholar] [CrossRef]
- Emanuel, K. Tropical cyclone energetics and structure. Atmos. Turbul. Mesoscale Meteorol. 2004, 8, 165–191. [Google Scholar]
- Rousseau-Rizzi, R.; Emanuel, K. An evaluation of hurricane superintensity in axisymmetric numerical models. J. Atmos. Sci. 2019, 76, 1697–1708. [Google Scholar] [CrossRef]
- Zhu, H.; Smith, R.K. The importance of three physical processes in a minimal three-dimensional tropical cyclone model. J. Atmos. Sci. 2002, 59, 1825–1840. [Google Scholar] [CrossRef]
- Yanai, M.; Esbensen, S.; Chu, J.H. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci. 1973, 30, 611–627. [Google Scholar] [CrossRef]
- Yanai, M.; Johnson, R.H. Impacts of cumulus convection on thermodynamic fields. In The Representation of Cumulus Convection in Numerical Models; Springer: Berlin/Heidelberg, Germany, 1993; pp. 39–62. [Google Scholar]
- Wing, A.A.; Camargo, S.J.; Sobel, A.H.; Kim, D.; Moon, Y.; Murakami, H.; Reed, K.A.; Vecchi, G.A.; Wehner, M.F.; Zarzycki, C.; et al. Moist static energy budget analysis of tropical cyclone intensification in high-resolution climate models. J. Clim. 2019, 32, 6071–6095. [Google Scholar] [CrossRef]
- Wing, A.A. Acceleration of tropical cyclone development by cloud-radiative feedbacks. J. Atmos. Sci. 2022, 79, 2285–2305. [Google Scholar] [CrossRef]
- Wing, A.A.; Emanuel, K.A. Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations. J. Adv. Model. Earth Syst. 2014, 6, 59–74. [Google Scholar] [CrossRef]
- Coppin, D.; Bony, S. Physical mechanisms controlling the initiation of convective self-aggregation in a general circulation model. J. Adv. Model. Earth Syst. 2015, 7, 2060–2078. [Google Scholar] [CrossRef]
- Holloway, C.E.; Woolnough, S.J. The sensitivity of convective aggregation to diabatic processes in idealized radiative-convective equilibrium simulations. J. Adv. Model. Earth Syst. 2016, 8, 166–195. [Google Scholar] [CrossRef]
- Shi, X.; Fan, Y. Modulation of the bifurcation in radiative-convective equilibrium by gray-zone cloud and turbulence parameterizations. J. Adv. Model. Earth Syst. 2021, 13, e2021MS002632. [Google Scholar] [CrossRef]
- Cerlini, P.B.; Saraceni, M.; Silvestri, L. Competing effect of radiative and moisture feedback in convective aggregation states in two CRMS. J. Adv. Model. Earth Syst. 2023, 15, e2022MS003323. [Google Scholar] [CrossRef]
- Silvestri, L.; Saraceni, M.; Bongioannini Cerlini, P. Numerical diffusion and turbulent mixing in convective self-aggregation. J. Adv. Model. Earth Syst. 2024, 16, e2023MS004151. [Google Scholar] [CrossRef]
- Bretherton, C.S.; Blossey, P.N.; Khairoutdinov, M. An energy-balance analysis of deep convective self-aggregation above uniform SST. J. Atmos. Sci. 2005, 62, 4273–4292. [Google Scholar] [CrossRef]
- Holloway, C.E.; Wing, A.A.; Bony, S.; Muller, C.; Masunaga, H.; L’Ecuyer, T.S.; Turner, D.D.; Zuidema, P. Observing convective aggregation. Surv. Geophys. 2017, 38, 1199–1236. [Google Scholar] [CrossRef] [PubMed]
- Haerter, J.O.; Meyer, B.; Nissen, S.B. Diurnal self-aggregation. NPJ Clim. Atmos. Sci. 2020, 3, 30. [Google Scholar] [CrossRef]
- Khairoutdinov, M.; Emanuel, K. Rotating radiative-convective equilibrium simulated by a cloud-resolving model. J. Adv. Model. Earth Syst. 2013, 5, 816–825. [Google Scholar] [CrossRef]
- Muller, C.J.; Romps, D.M. Acceleration of tropical cyclogenesis by self-aggregation feedbacks. Proc. Natl. Acad. Sci. USA 2018, 115, 2930–2935. [Google Scholar] [CrossRef]
- Muller, C.; Bony, S. What favors convective aggregation and why? Geophys. Res. Lett. 2015, 42, 5626–5634. [Google Scholar] [CrossRef]
- Nolan, D.S.; Rappin, E.D.; Emanuel, K.A. Tropical cyclogenesis sensitivity to environmental parameters in radiative–convective equilibrium. Q. J. R. Meteorol. Soc. A J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2007, 133, 2085–2107. [Google Scholar] [CrossRef]
- Reed, K.A.; Chavas, D.R. Uniformly rotating global radiative-convective equilibrium in the Community Atmosphere Model, version 5. J. Adv. Model. Earth Syst. 2015, 7, 1938–1955. [Google Scholar] [CrossRef]
- Wang, Q.; Kieu, C.; Vu, T.A. Large-scale dynamics of tropical cyclone formation associated with ITCZ breakdown. Atmos. Chem. Phys. 2019, 19, 8383–8397. [Google Scholar] [CrossRef]
- Khairoutdinov, M.F.; Emanuel, K. Intraseasonal variability in a cloud-permitting near-global equatorial aquaplanet model. J. Atmos. Sci. 2018, 75, 4337–4355. [Google Scholar] [CrossRef]
- Beucler, T. Self-Aggregation Phenomenon in Cyclogenesis; Technical Report; Massachusetts Institute of Technology: Cambridge, MA, USA, 2014. [Google Scholar]
- Wing, A.A.; Cronin, T.W. Self-aggregation of convection in long channel geometry. Q. J. R. Meteorol. Soc. 2016, 142, 1–15. [Google Scholar] [CrossRef]
- Wing, A.A.; Camargo, S.J.; Sobel, A.H. Role of radiative–convective feedbacks in spontaneous tropical cyclogenesis in idealized numerical simulations. J. Atmos. Sci. 2016, 73, 2633–2642. [Google Scholar] [CrossRef]
- Yao, L.; Yang, D.; Tan, Z.M. A vertically resolved MSE framework highlights the role of the boundary layer in convective self-aggregation. J. Atmos. Sci. 2022, 79, 1615–1631. [Google Scholar] [CrossRef]
- Smith, W.P.; Nicholls, M.E.; Pielke Sr, R.A. The role of radiation in accelerating tropical cyclogenesis in idealized simulations. J. Atmos. Sci. 2020, 77, 1261–1277. [Google Scholar] [CrossRef]
- Melhauser, C.; Zhang, F. Diurnal radiation cycle impact on the pregenesis environment of Hurricane Karl (2010). J. Atmos. Sci. 2014, 71, 1241–1259. [Google Scholar] [CrossRef]
- Zhang, B.; Soden, B.J.; Vecchi, G.A. A vertically resolved analysis of radiative feedbacks on moist static energy variance in tropical cyclones. J. Clim. 2023, 36, 1125–1141. [Google Scholar] [CrossRef]
- Lagouvardos, K.; Karagiannidis, A.; Dafis, S.; Kalimeris, A.; Kotroni, V. Ianos—A hurricane in the Mediterranean. Bull. Am. Meteorol. Soc. 2022, 103, E1621–E1636. [Google Scholar] [CrossRef]
- Zimbo, F.; Ingemi, D.; Guidi, G. The tropical-like cyclone “ianos” in September 2020. Meteorology 2022, 1, 29–44. [Google Scholar] [CrossRef]
- Panegrossi, G.; D’Adderio, L.P.; Dafis, S.; Rysman, J.F.; Casella, D.; Dietrich, S.; Sanò, P. Warm Core and Deep Convection in Medicanes: A Passive Microwave-Based Investigation. Remote Sens. 2023, 15, 2838. [Google Scholar] [CrossRef]
- Saffir, H.S. Hurricane wind and storm surge. Mil. Eng. 1973, 65, 4–5. [Google Scholar]
- Simpson, R.H. The hurricane disaster—Potential scale. Weatherwise 1974, 27, 169–186. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Silvestri, L.; Saraceni, M.; Brunone, B.; Meniconi, S.; Passadore, G.; Bongioannini Cerlini, P. Assessment of seasonal soil moisture forecasts over the Central Mediterranean. Hydrol. Earth Syst. Sci. 2025, 29, 925–946. [Google Scholar] [CrossRef]
- Silvestri, L.; Saraceni, M.; Bongioannini Cerlini, P. Links between precipitation, circulation weather types and orography in central Italy. Int. J. Clim. 2022, 42, 5807–5825. [Google Scholar] [CrossRef]
- Raveh-Rubin, S.; Wernli, H. Large-scale wind and precipitation extremes in the Mediterranean: Dynamical aspects of five selected cyclone events. Q. J. R. Meteorol. Soc. 2016, 142, 3097–3114. [Google Scholar] [CrossRef]
- Raveh-Rubin, S.; Flaounas, E. A dynamical link between deep Atlantic extratropical cyclones and intense Mediterranean cyclones. Atmos. Sci. Lett. 2017, 18, 215–221. [Google Scholar] [CrossRef]
- Claud, C.; Alhammoud, B.; Funatsu, B.M.; Chaboureau, J.P. Mediterranean hurricanes: Large-scale environment and convective and precipitating areas from satellite microwave observations. Nat. Hazards Earth Syst. Sci. 2010, 10, 2199–2213. [Google Scholar] [CrossRef]
- Miglietta, M.; Cerrai, D.; Laviola, S.; Cattani, E.; Levizzani, V. Potential vorticity patterns in Mediterranean “hurricanes”. Geophys. Res. Lett. 2017, 44, 2537–2545. [Google Scholar] [CrossRef]
- Dafis, S.; Claud, C.; Kotroni, V.; Lagouvardos, K.; Rysman, J.F. Insights into the convective evolution of Mediterranean tropical-like cyclones. Q. J. R. Meteorol. Soc. 2020, 146, 4147–4169. [Google Scholar] [CrossRef]
- Pantillon, F.; Davolio, S.; Avolio, E.; Calvo-Sancho, C.; Carrió, D.S.; Dafis, S.; Flaounas, E.; Gentile, E.S.; Gonzalez-Aleman, J.J.; Gray, S.; et al. The crucial representation of deep convection for the cyclogenesis of medicane Ianos. EGUsphere 2024, 2024, 1–29. [Google Scholar] [CrossRef]
- Ragone, F.; Mariotti, M.; Parodi, A.; Von Hardenberg, J.; Pasquero, C. A climatological study of western mediterranean medicanes in numerical simulations with explicit and parameterized convection. Atmosphere 2018, 9, 397. [Google Scholar] [CrossRef]
- Adames Corraliza, Á.F.; Mayta, V.C. On the accuracy of the moist static energy budget when applied to large-scale tropical motions. J. Atmos. Sci. 2023, 80, 2365–2376. [Google Scholar] [CrossRef]
- Hart, R.E.; Evans, J.L. A climatology of the extratropical transition of Atlantic tropical cyclones. J. Clim. 2001, 14, 546–564. [Google Scholar] [CrossRef]
- Miglietta, M.; Laviola, S.; Malvaldi, A.; Conte, D.; Levizzani, V.; Price, C. Analysis of tropical-like cyclones over the Mediterranean Sea through a combined modeling and satellite approach. Geophys. Res. Lett. 2013, 40, 2400–2405. [Google Scholar] [CrossRef]
- Muller, C.J.; Held, I.M. Detailed investigation of the self-aggregation of convection in cloud-resolving simulations. J. Atmos. Sci. 2012, 69, 2551–2565. [Google Scholar] [CrossRef]
- Porcù, F.; Carrassi, A.; Medaglia, C.M.; Prodi, F.; Mugnai, A. A study on cut-off low vertical structure and precipitation in the Mediterranean region. Meteorol. Atmos. Phys. 2007, 96, 121–140. [Google Scholar] [CrossRef]
- Miglietta, M.; Carnevale, D.; Levizzani, V.; Rotunno, R. Role of moist and dry air advection in the development of Mediterranean Tropical-Like Cyclones (Medicanes). Q. J. R. Meteor. Soc. 2021, 147, 876–899. [Google Scholar] [CrossRef]
- Bouin, M.N.; Lebeaupin Brossier, C. Surface processes in the 7 November 2014 medicane from air–sea coupled high-resolution numerical modelling. Atmos. Chem. Phys. 2020, 20, 6861–6881. [Google Scholar] [CrossRef]
- Coll-Hidalgo, P.; Pérez-Alarcón, A.; Nieto, R. Moisture sources for the precipitation of tropical-like cyclones in the Mediterranean Sea: A case of study. Atmosphere 2022, 13, 1327. [Google Scholar] [CrossRef]
- Koseki, S.; Mooney, P.A.; Cabos, W.; Gaertner, M.Á.; de la Vara, A.; Gonzáles Alemán, J.J. Modelling a tropical-like cyclone in the Mediterranean Sea under present and warmer climate. Nat. Hazards Earth Syst. Sci. Discuss. 2020, 21, 53–71. [Google Scholar] [CrossRef]
- Ernst, J.; Matson, M. A Mediterranean tropical storm? Weather 1983, 38, 332–337. [Google Scholar] [CrossRef]
- Rasmussen, E.; Zick, C. A subsynoptic vortex over the Mediterranean with some resemblance to polar lows. Tellus A 1987, 39, 408–425. [Google Scholar] [CrossRef]
- Palmen, E. On the formation and structure of tropical hurricanes. Geophysica 1948, 3, 26–38. [Google Scholar]
- Cioni, G.; Malguzzi, P.; Buzzi, A. Thermal structure and dynamical precursor of a Mediterranean tropical-like cyclone. Q. J. R. Meteorol. Soc. 2016, 142, 1757–1766. [Google Scholar] [CrossRef]
- Zhang, B.; Soden, B.J.; Vecchi, G.A.; Yang, W. The role of radiative interactions in tropical cyclone development under realistic boundary conditions. J. Clim. 2021, 34, 2079–2091. [Google Scholar] [CrossRef]
- Li, X.; Yang, J.; Han, G.; Ren, L.; Zheng, G.; Chen, P.; Zhang, H. Tropical Cyclone Wind Field Reconstruction and Validation Using Measurements from SFMR and SMAP Radiometer. Remote Sens. 2022, 14, 3929. [Google Scholar] [CrossRef]
- Sánchez, C.; Gray, S.; Volonté, A.; Pantillon, F.; Berthou, S.; Davolio, S. The impact of preceding convection on the development of Medicane Ianos and the sensitivity to sea surface temperature. Weather Clim. Dyn. 2024, 5, 1429–1455. [Google Scholar] [CrossRef]
- ECMWF. IFS Documentation CY41R2 - Part III: Dynamics and Numerical Procedures. In IFS Documentation CY41R2; ECMWF: Reading, UK, 2016. [Google Scholar]
- Givon, Y.; Hess, O.; Flaounas, E.; Catto, J.L.; Sprenger, M.; Raveh-Rubin, S. Process-based classification of Mediterranean cyclones using potential vorticity. Weather Clim. Dyn. 2024, 5, 133–162. [Google Scholar] [CrossRef]
- Malakar, P.; Kesarkar, A.; Bhate, J.; Singh, V.; Deshamukhya, A. Comparison of Reanalysis Data Sets to Comprehend the Evolution of Tropical Cyclones Over North Indian Ocean. Earth Space Sci. 2020, 7, e2019EA000978. [Google Scholar] [CrossRef]
- McErlich, C.; McDonald, A.; Renwick, J.; Schuddeboom, A. An Assessment of Southern Hemisphere Extratropical Cyclones in ERA5 Using WindSat. J. Geophys. Res. Atmos. 2023, 128, e2023JD038554. [Google Scholar] [CrossRef]
- Zhang, W.; Villarini, G.; Scoccimarro, E.; Napolitano, F. Examining the precipitation associated with medicanes in the high-resolution ERA-5 reanalysis data. Int. J. Climatol. 2021, 41, E126–E132. [Google Scholar] [CrossRef]
- Huang, H.; Huang, Y. Radiative sensitivity quantified by a new set of radiation flux kernels based on the ECMWF Reanalysis v5 (ERA5). Earth Syst. Sci. Data 2023, 15, 3001–3021. [Google Scholar] [CrossRef]
- Xin, Y.; Liu, J.; Liu, X.; Liu, G.; Cheng, X.; Chen, Y. Reduction of uncertainties in surface heat flux over the Tibetan Plateau from ERA-Interim to ERA5. Int. J. Climatol. 2022, 42, 6277–6292. [Google Scholar] [CrossRef]
- Urraca, R.; Huld, T.; Gracia-Amillo, A.; de Pison, F.J.M.; Kaspar, F.; Sanz-García, A. Evaluation of global horizontal irradiance estimates from ERA5 and COSMO-REA6 reanalyses using ground and satellite-based data. Sol. Energy 2018, 164, 339–354. [Google Scholar] [CrossRef]
- Slocum, C.; Razin, M.; Knaff, J.; Stow, J.P. Does ERA5 mark a new era for resolving the tropical cyclone environment? J. Clim. 2022, 35, 7147–7164. [Google Scholar] [CrossRef]
- Martens, B.; Schumacher, D.L.; Wouters, H.; Muñoz-Sabater, J.; Verhoest, N.E.; Miralles, D.G. Evaluating the land-surface energy partitioning in ERA5. Geosci. Model Dev. 2020, 13, 4159–4181. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Hui, F.M.; Vihma, T.; Granskog, M.A.; Cheng, B.; Chen, Z.Q.; Cheng, X. On the turbulent heat fluxes: A comparison among satellite-based estimates, atmospheric reanalyses, and in-situ observations during the winter climate over Arctic sea ice. Adv. Clim. Chang. Res. 2023, 14, 347–362. [Google Scholar] [CrossRef]
- Rizza, U.; Canepa, E.; Miglietta, M.M.; Passerini, G.; Morichetti, M.; Mancinelli, E.; Virgili, S.; Besio, G.; De Leo, F.; Mazzino, A. Evaluation of drag coefficients under medicane conditions: Coupling waves, sea spray and surface friction. Atmos. Res. 2021, 247, 105207. [Google Scholar] [CrossRef]
- Silvestri, L.; Saraceni, M.; Bongioannini Cerlini, P. Quality management system and design of an integrated mesoscale meteorological network in Central Italy. Meteorol. Appl. 2022, 29, e2060. [Google Scholar] [CrossRef]
- Arakawa, A.; Schubert, W.H. Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci. 1974, 31, 674–701. [Google Scholar] [CrossRef]
Medicane | Year | Period | Duration (h) | Region | CP (hPa) |
---|---|---|---|---|---|
Ianos | 2020 | 15–21/09 | 117 | Southern Mediterranean | 1000 |
Mathematical Form | Term |
---|---|
Radiative cooling covariance with MSE anomaly | |
Surface sensible fluxes covariance with MSE anomaly | |
Surface latent fluxes covariance with MSE anomaly | |
MSE anomaly vertical advection covariance with MSE anomaly | |
Latent heat energy vertical advection covariance with MSE anomaly | |
Dry static energy vertical advection covariance with MSE anomaly | |
MSE horizontal advection covariance with MSE anomaly | |
Latent heat energy horizontal advection covariance with MSE anomaly | |
Dry static energy horizontal advection covariance with MSE anomaly |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saraceni, M.; Silvestri, L.; Bongioannini Cerlini, P. Analyzing the Mediterranean Tropical-like Cyclone Ianos Using the Moist Static Energy Budget. Atmosphere 2025, 16, 562. https://doi.org/10.3390/atmos16050562
Saraceni M, Silvestri L, Bongioannini Cerlini P. Analyzing the Mediterranean Tropical-like Cyclone Ianos Using the Moist Static Energy Budget. Atmosphere. 2025; 16(5):562. https://doi.org/10.3390/atmos16050562
Chicago/Turabian StyleSaraceni, Miriam, Lorenzo Silvestri, and Paolina Bongioannini Cerlini. 2025. "Analyzing the Mediterranean Tropical-like Cyclone Ianos Using the Moist Static Energy Budget" Atmosphere 16, no. 5: 562. https://doi.org/10.3390/atmos16050562
APA StyleSaraceni, M., Silvestri, L., & Bongioannini Cerlini, P. (2025). Analyzing the Mediterranean Tropical-like Cyclone Ianos Using the Moist Static Energy Budget. Atmosphere, 16(5), 562. https://doi.org/10.3390/atmos16050562