Nocturnal Convection Along a Trailing-End Cold Front: Insights from Ground-Based Remote Sensing Observations
Abstract
1. Introduction
1.1. Convergence Theories
1.2. Observation-Based Studies
2. Instruments and Data
2.1. In Situ
2.2. Remote Sensors
2.3. Data Limitations
3. Synoptic Overview and In Situ Measurements
4. Remote Sensing Observations
5. Derived Quantities
5.1. CAPE
5.2. Front-Relative Winds
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RL | Raman Lidar |
AERI | Atmospheric Emitted Radiance Interferometer |
RWP | Radar Wind Profiler |
CAPE | Convective Available Potential Energy |
CIN | Convective Inhibition |
QLCS | Quasi-Linear Convective System |
ARM | Atmospheric Radiation Measurement |
SGP | Southern Great Plains |
AGL | Above Ground Level |
UTC | Coordinated Universal Time |
GOES-8 | Geostationary Operational Environmental Satellite 8 |
PECAN | Plains Elevated Convection At Night |
IHOP | International H20 Project |
LFC | Lifting Condensation Level |
EL | Equilibrium Level |
References
- Rotunno, R.; Klemp, J.B.; Weisman, M.L. A Theory for Strong, Long-Lived Squall Lines. J. Atmos. Sci. 1988, 45, 463–485. [Google Scholar] [CrossRef]
- Weisman, M.L.; Rotunno, R. A Theory for Strong Long-Lived Squall Lines Revisited. J. Atmos. Sci. 2004, 61, 361–382. [Google Scholar] [CrossRef]
- Shapiro, A. A Hydrodynamical Model of Shear Flow over Semi-Infinite Barriers with Application to Density Currents. J. Atmos. Sci. 1992, 49, 2293–2305. [Google Scholar] [CrossRef]
- Stensrud, D.J.; Coniglio, M.C.; Davies-Jones, R.P.; Evans, J.S. Comments on a Theory for Strong Long-Lived Squall Lines Revisited. J. Atmos. Sci. 2005, 62, 2989–2996. [Google Scholar] [CrossRef]
- Coniglio, M.C.; Stensrud, D.J.; Wicker, L.J. Effects of Upper-Level Shear on the Structure and Maintenance of Strong Quasi-Linear Mesoscale Convective Systems. J. Atmos. Sci. 2006, 63, 1231–1252. [Google Scholar] [CrossRef]
- Crook, N.A.; Klemp, J.B. Lifting by Convergence Lines. J. Atmos. Sci. 2000, 57, 873–890. [Google Scholar] [CrossRef]
- Wilson, J.W.; Megenhardt, D.L. Thunderstorm Initiation, Organization, Lifetime Associated with Florida Boundary Layer Convergence Lines. Mon. Weather Rev. 1997, 125, 1507–1525. [Google Scholar] [CrossRef]
- Chen, C. Numerical Simulations of Gravity Currents in Uniform Shear Flows, American Meteorological Society. Mon. Weather Rev. 1995, 123, 3240–3253. [Google Scholar] [CrossRef]
- Simpson, J.E. Gravity Currents in the Laboratory, Atmosphere, and Ocean. Annu. Rev. Fluid Mech 1982, 141, 213–234. [Google Scholar] [CrossRef]
- Garner, S.T.; Thorpe, A.J. The Development of Organized Convection in a Simplified Squall-Line Model. Quart. J. R. Meteoro. Soc. 1992, 118, 101–124. [Google Scholar] [CrossRef]
- Melfi, S.H.; Whiteman, D.; Ferrare, R. Observation of Atmospheric Fronts Using Raman Lidar Moisture Measurements. J. Appl. Meteor. 1989, 28, 789–806. [Google Scholar] [CrossRef]
- Sakai, T.; Nagai, T.; Matsumura, T.; Nakazato, M.; Sasaoka, M. Vertical Structure of a Nonprecipitating Cold Frontal Head as Revealed by Raman Lidar and Wind Profiler Observations. J. Meteorol. Soc. Jpn. 2005, 83, 293–304. [Google Scholar] [CrossRef]
- Demoz, B.B.; Starr, D.O.; Evans, K.D.; Lare, A.R.; Whiteman, D.N.; Schwemmer, G.; Ferrare, R.A.; Goldsmith, J.E.M.; Bisson, S.E. The Cold Front of 15 April 1994 over the Central United States. Part I: Observations. Mon. Weather Rev. 2005, 133, 1525–1543. [Google Scholar] [CrossRef]
- Turner, D.D.; Feltz, W.F.; Ferrare, R.A. Continuous Water Vapor Profiles from Operational Ground—Based Active and Passive Remote Sensors. Bull. Amer. Meteor. Soc. 2000, 81, 1301–1317. [Google Scholar] [CrossRef]
- Knuteson, R.O.; Revercomb, H.E.; Best, F.A.; Ciganovich, N.C.; Dedecker, R.G.; Dirkx, T.P.; Ellington, S.C.; Feltz, W.F.; Garcia, R.K.; Howell, H.B.; et al. Atmospheric Emitted Radiance Interferometer. Part I: Instrument Design. J. Atmos. Ocean. Technol. 2004, 21, 1763–1776. [Google Scholar] [CrossRef]
- Feltz, W.F.; Smith, W.L.; Knuteson, R.O.; Revercomb, H.E.; Woolf, H.M.; Howell, H.B. Meteorological Applications of Temperature and Water Vapor Retrievals from the Ground-Based Atmospheric Emitted Radiance Interferometer AERI. J. Appl. Meteor. 1998, 37, 857–875. [Google Scholar] [CrossRef]
- Turner, D.D.; Löhnert, U. Information Content and Uncertainties in Thermodynamic Profiles and Liquid Cloud Properties Retrieved from the Ground-Based Atmospheric Emitted Radiance Interferometer AERI. J. Appl. Meteorol. Climatol. 2014, 53, 752–771. [Google Scholar] [CrossRef]
- Friedrich, K.; Kingsmill, D.E.; Flamant, C.; Murphey, H.V.; Wakimoto, R.M. Kinematic and Moisture Characteristics of a Nonprecipitating Cold Front Observed during IHOP. Part I: Across-Front Structures. Mon. Weather Rev. 2008, 136, 147–172. [Google Scholar] [CrossRef]
- Friedrich, K.; Kingsmill, D.E.; Flamant, C.; Murphey, H.V.; Wakimoto, R.M. Kinematic and Moisture Characteristics of a Nonprecipitating Cold Front Observed during IHOP. Part II: Alongfront Structures. Mon. Weather Rev. 2008, 136, 3796–3821. [Google Scholar] [CrossRef]
- Tepper, M. A Proposed Mechanism of Squall Lines: The Pressure Jump Line. J. Meteor. 1950, 7, 21–29. [Google Scholar] [CrossRef]
- Smith, R.K.; Reeder, M.J. On the Movement and Low-Level Structure of Cold Fronts. Mon. Weather Rev. 1988, 116, 1927–1944. [Google Scholar] [CrossRef]
- Rottman, J.W.; Simpson, J.E. The formation of internal bores in the atmosphere: A laboratory model. Quart. J. R. Meteoro. Soc. 1989, 115, 941–963. [Google Scholar] [CrossRef]
- Haghi, K.R.; Parsons, D.B.; Shapiro, A. Bores Observed during IHOP_2002: The Relationship of Bores to the Nocturnal Environment. Mon. Weather Rev. 2017, 145, 3929–3946. [Google Scholar] [CrossRef]
- Loveless, D.M.; Wagner, T.J.; Turner, D.D.; Ackerman, S.A.; Feltz, W.F. A Composite Perspective on Bore Passages during the PECAN Campaign. Mon. Weather Rev. 2019, 147, 1395–1413. [Google Scholar] [CrossRef]
- Flamant, C.; Koch, S.; Weckwerth, T.; Wilson, J.; Parsons, D.; Demoz, B.; Gentry, B.; Whiteman, D.; Schwemmer, G.; Fabry, F.; et al. The Life Cycle of a Bore Event over the US Southern Great Plains During IHOP 2002. In Proceedings of the 22nd International Laser Radar Conference, Matera, Italy, 12–16 July 2004; Available online: https://adsabs.harvard.edu/full/2004ESASP.561..635F (accessed on 15 May 2025).
- Koch, S.E.; Dorian, P.B.; Ferrare, R.; Melfi, S.H.; Skillman, W.C.; Whiteman, D. Structure of an Internal Bore and Dissipating Gravity Current as Revealed by Raman Lidar. Mon. Weather Rev. 1991, 119, 857–887. [Google Scholar] [CrossRef]
- Toms, B.A.; Tomaszewski, J.M.; Turner, D.D.; Koch, S.E. Analysis of a Lower-Tropospheric Gravity Wave Train Using Direct and Remote Sensing Measurement Systems. Mon. Weather Rev. 2017, 145, 2791–2812. [Google Scholar] [CrossRef]
- Lin, G.; Grasmick, C.; Geerts, B.; Wang, Z.; Deng, M. Convection Initiation and Bore Formation Following the Collision of Mesoscale Boundaries over a Developing Stable Boundary Layer: A Case Study from PECAN. Mon. Weather Rev. 2021, 149, 2351–2367. [Google Scholar] [CrossRef]
- Grasmick, C.; Geerts, B.; Turner, D.D.; Wang, Z.; Weckwerth, T.M. The Relation between Nocturnal MCS Evolution and Its Outflow Boundaries in the Stable Boundary Layer: An Observational Study of the 15 July 2015 MCS in PECAN. Mon. Weather Rev. 2018, 146, 3203–3226. [Google Scholar] [CrossRef]
- Ritsche, M. Surface Temperature Humidity Reference System Handbook; DOE/SC-ARM/TR-068; PNNL: Richland, WA, USA, 2011. [Google Scholar] [CrossRef]
- Brock, F.V.; Crawford, K.C.; Elliott, R.L.; Cuperus, G.W.; Stadler, S.J.; Johnson, H.L.; Eilts, M.D. The Oklahoma Mesonet: A Technical Overview. J. Atmos. Ocean. Technol. 1995, 12, 5–19. [Google Scholar] [CrossRef]
- Automated Surface Observing System. ASOS User’s Guide. Available online: https://apps.dtic.mil/sti/citations/ADA354716 (accessed on 15 May 2025).
- Cook, D. Tower Temperature and Humidity Sensors TWR Handbook; DOE/SC-ARM/TR-050; PNNL: Richland, WA, USA, 2010. [Google Scholar] [CrossRef]
- Goldsmith, J.E.M.; Blair, F.H.; Bisson, S.E.; Turner, D.D. Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols. Appl. Opt. 1998, 37, 4979. [Google Scholar] [CrossRef]
- Turner, D.D.; Goldsmith, J.E.M.; Ferrare, R.A. Development and Applications of the ARM Raman Lidar. Meteorol. Monogr. 2016, 57, 18.1–18.15. [Google Scholar] [CrossRef]
- Ralph, F.M. Using Radar-Measured Radial Vertical Velocities to Distinguish Precipitation Scattering from Clear-Air Scattering. J. Atmos. Ocean. Technol. 1995, 12, 257–267. [Google Scholar] [CrossRef]
- Tridon, F.; Battaglia, A.; Kollias, P.; Luke, E.; Williams, C.R. Signal Postprocessing and Reflectivity Calibration of the Atmospheric Radiation Measurement Program 915-MHz Wind Profilers. J. Atmos. Ocean. Technol. 2013, 30, 1038–1054. [Google Scholar] [CrossRef]
- Turner, D.D.; Blumberg, W.G. Improvements to the AERIoe Thermodynamic Profile Retrieval Algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 125, 1339–1354. [Google Scholar] [CrossRef]
- Adam, M.; Demoz, B.B.; Venable, D.D.; Joseph, E.; Connell, R.; Whiteman, D.N.; Gambacorta, A.; Wei, J.; Shephard, M.W.; Miloshevich, L.M.; et al. Water Vapor Measurements by Howard University Raman Lidar during the WAVES 2006 Campaign. J. Atmos. Ocean. Technol. 2010, 271, 42–60. [Google Scholar] [CrossRef]
- Turner, D.D.; Ellingson, R.G. Introduction. Meteorol. Monogr. 2016, 57, v–x. [Google Scholar] [CrossRef]
- Sisterson, D.L.; Peppler, R.A.; Cress, T.S.; Lamb, P.J.; Turner, D.D. The ARM Southern Great Plains SGP Site. Meteorol. Monogr. 2016, 57, 6.1–6.14. [Google Scholar] [CrossRef]
- Hoffman, K.; Demoz, B. Convection Parameters from Remote Sensing Observations over the Southern Great Plains. Sensors 2025, 25, 4163. [Google Scholar] [CrossRef]
- National Research Council U.S. Observing Weather and Climate from the Ground up: A Nationwide Network of Networks; National Academies Press: Washington, DC, USA, 2009. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoffman, K.; Turner, D.D.; Demoz, B.B. Nocturnal Convection Along a Trailing-End Cold Front: Insights from Ground-Based Remote Sensing Observations. Atmosphere 2025, 16, 926. https://doi.org/10.3390/atmos16080926
Hoffman K, Turner DD, Demoz BB. Nocturnal Convection Along a Trailing-End Cold Front: Insights from Ground-Based Remote Sensing Observations. Atmosphere. 2025; 16(8):926. https://doi.org/10.3390/atmos16080926
Chicago/Turabian StyleHoffman, Kylie, David D. Turner, and Belay B. Demoz. 2025. "Nocturnal Convection Along a Trailing-End Cold Front: Insights from Ground-Based Remote Sensing Observations" Atmosphere 16, no. 8: 926. https://doi.org/10.3390/atmos16080926
APA StyleHoffman, K., Turner, D. D., & Demoz, B. B. (2025). Nocturnal Convection Along a Trailing-End Cold Front: Insights from Ground-Based Remote Sensing Observations. Atmosphere, 16(8), 926. https://doi.org/10.3390/atmos16080926