Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,228)

Search Parameters:
Keywords = homology group

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5628 KiB  
Article
Improving the Efficiency of CRISPR/Cas9-Mediated Non-Homologous End Joining Gene Knockout Using Small Molecules in Porcine Cells
by Shihao Lv, Xiaokang Xu, Sijia Yang, Mingjie Feng, Zhongyu Yuan, Xueqing Liu, Chaoqian Jiang, Jun Song and Yanshuang Mu
Biomolecules 2025, 15(8), 1132; https://doi.org/10.3390/biom15081132 - 6 Aug 2025
Abstract
The CRISPR/Cas9 genome editing system has emerged as an effective platform to generate loss-of-function gene edits through non-homologous end joining (NHEJ) without a repair template. To verify whether small molecules can enhance the efficiency of CRISPR/ Cas9-mediated NHEJ gene editing in porcine cells, [...] Read more.
The CRISPR/Cas9 genome editing system has emerged as an effective platform to generate loss-of-function gene edits through non-homologous end joining (NHEJ) without a repair template. To verify whether small molecules can enhance the efficiency of CRISPR/ Cas9-mediated NHEJ gene editing in porcine cells, this experiment investigated the effects of six small-molecule compounds, namely Repsox, Zidovudine, IOX1, GSK-J4, YU238259, and GW843682X, on the efficiency of CRISPR/Cas9-mediated NHEJ gene editing. The results showed the optimal concentrations of the small molecules, including Repsox, Zidovudine, IOX1, GSK-J4, YU238259, and GW843682X, for in vitro-cultured PK15 viability. Compared with the control group, the single small molecules Repsox, Zidovudine, GSK-J4, and IOX1 increased the efficiency of NHEJ-mediated gene editing 3.16-fold, 1.17-fold, 1.16-fold, and 1.120-fold, respectively, in the Cas9-sgRNA RNP delivery system. There were no benefits when using YU238259 and GW843682X compared with the control group. In the CRISPR/Cas9 plasmid delivery system, the Repsox, Zidovudine, IOX1, and GSK-J4 treatments increased the efficiency of NHEJ-mediated gene editing 1.47-fold, 1.15-fold, 1.21-fold, and 1.23-fold, respectively, compared with the control group. Repsox can also improve the efficiency of NHEJ-mediated multi-gene editing based on a CRISPR sgRNA-tRNA array. We also explored the mechanism of Repsox’s effect on the efficiency of NHEJ-mediated gene editing. The results showed that Repsox reduces the expression levels of SMAD2, SMAD3, and SMAD4 in the TGF-β pathway, indicating that Repsox can increase the efficiency of CRISPR NHEJ-mediated gene editing in porcine cells through the TGF-β pathway. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 647 KiB  
Article
Effects of Burdock Addition and Different Starters on the Quality and Flavor Improvement of Duck Sausages
by Li Cui, Xuan Zhao, Xingye Song, Wenjing Zhou, Tao Wang, Wuyang Huang and Yuxing Guo
Biology 2025, 14(8), 996; https://doi.org/10.3390/biology14080996 (registering DOI) - 4 Aug 2025
Abstract
Burdock (Arctium lappa L.) is a medicinal and edible homologous plant whose roots contain many bioactive substances such as polysaccharides and phenolics. This study explored the integration of burdock powder and lactic acid bacteria fermentation to enhance the nutritional quality, sensory attributes, [...] Read more.
Burdock (Arctium lappa L.) is a medicinal and edible homologous plant whose roots contain many bioactive substances such as polysaccharides and phenolics. This study explored the integration of burdock powder and lactic acid bacteria fermentation to enhance the nutritional quality, sensory attributes, and flavor profiles of duck sausages. Three bacterial strains, Lacticaseibacillus casei, L. helveticus, and L. plantarum, were selected based on sensory analysis, and their effects on sausage properties were evaluated through combined fermentation trials. The results demonstrated that duck sausages fermented with L. plantarum and L. helveticus and supplemented with 3% burdock powder (PHB group) exhibited > 1.5-fold higher antioxidant activity (ABTS at 85.2 μmol trolox/g and DPPH at 92.7 μmol trolox/g, respectively; p < 0.05) and 15% increase in total phenolic content (8.24 mg gallic acid/g) compared to non-fermented counterparts. The PHB formulation also enhanced color stability (lightness, redness, yellowness), textural characteristics (hardness, springiness, cohesiveness), and sensory acceptability. Volatile compound analysis revealed a reduction in off-odor aldehydes (hexanal, (E)-2-octenal, (E)-2-decenal, and (E,E)-2,4-decadienal) and increased production of desirable aromatic compounds like tetramethyl-pyrazine. These findings highlight the potential of combining lactic acid bacteria fermentation with burdock powder to develop functional duck sausages with improved nutritional and sensory properties. Full article
(This article belongs to the Special Issue Nutraceutical and Bioactive Compounds in Foods)
Show Figures

Figure 1

26 pages, 13311 KiB  
Article
A Spatiotemporal Atlas of the Gut Microbiota in Macaca mulatta brevicaudus: Implications for Health and Environment
by Jingli Yuan, Zewen Sun, Ruiping Sun, Jun Wang, Chengfeng Wu, Baozhen Liu, Xinyuan Zhao, Qiang Li, Jianguo Zhao and Keqi Cai
Biology 2025, 14(8), 980; https://doi.org/10.3390/biology14080980 (registering DOI) - 1 Aug 2025
Viewed by 202
Abstract
The gut microbiota of macaques, highly homologous to humans in biological characteristics and metabolic functions, serves as an ideal model for studying the mechanisms of human intestinal diseases and therapeutic approaches. A comprehensive characterization of the macaque gut microbiota provides unique insights into [...] Read more.
The gut microbiota of macaques, highly homologous to humans in biological characteristics and metabolic functions, serves as an ideal model for studying the mechanisms of human intestinal diseases and therapeutic approaches. A comprehensive characterization of the macaque gut microbiota provides unique insights into human health and disease. This study employs metagenomic sequencing to assess the gut microbiota of wild M. mulatta brevicaudus across various ages, sexes, and physiological states. The results revealed that the dominant bacterial species in various age groups included Segatella copri and Bifidobacterium adolescentis. The predominant bacterial species in various sexes included Alistipes senegalensis and Parabacteroides (specifically Parabacteroides merdae, Parabacteroides johnsonii, and Parabacteroides sp. CT06). The dominant species during lactation and non-lactation periods were identified as Alistipes indistinctus and Capnocytophaga haemolytica. Functional analysis revealed significant enrichment in pathways such as global and overview maps, carbohydrate metabolism and amino acid metabolism. This study enhances our understanding of how age, sex, and physiological states shape the gut microbiota in M. mulatta brevicaudus, offering a foundation for future research on (1) host–microbiome interactions in primate evolution, and (2) translational applications in human health, such as microbiome-based therapies for metabolic or immune-related disorders. Full article
Show Figures

Figure 1

13 pages, 724 KiB  
Article
Investigating the Diagnostic Utility of LncRNA GAS5 in NAFLD Patients
by Maysa A. Mobasher, Alaa Muqbil Alsirhani, Sahar Abdulrahman Alkhodair, Amir Abd-elhameed, Shereen A. Baioumy, Marwa M. Esawy and Marwa A. Shabana
Biomedicines 2025, 13(8), 1873; https://doi.org/10.3390/biomedicines13081873 - 1 Aug 2025
Viewed by 206
Abstract
Background/Objectives: Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver conditions globally. This study aimed to assess the long non-coding RNAs (lncRNAs) growth arrest-specific 5 (GAS5), miR-29a-3p, and neurogenic locus notch homolog protein 2 (NOTCH2) as biomarkers in [...] Read more.
Background/Objectives: Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver conditions globally. This study aimed to assess the long non-coding RNAs (lncRNAs) growth arrest-specific 5 (GAS5), miR-29a-3p, and neurogenic locus notch homolog protein 2 (NOTCH2) as biomarkers in patients with NAFLD and find out if they are related to any clinical factors. Subjects and Methods: Thirty-eight age-matched healthy persons and thirty-eight NAFLD patients were enrolled. Patients were split into the following three groups: non-alcoholic steatohepatitis (NASH) (n = 12), patients with NAFLD-related cirrhosis (n = 8), and patients with NAFLD-related simple steatosis (n = 18). Real-time PCR was utilized to examine the expression. Results: The lncRNA GAS5 and NOTCH2 were higher in NAFLD cases in comparison to controls. On the other hand, microRNA-29a-3p was underexpressed in NAFLD cases in comparison to controls. Regarding NAFLD diagnosis, lncRNA GAS5 was the best single marker with a sensitivity of 100% and a specificity of 94.7% at the cutoff values of ≥1.16-fold change. Regarding different stages of the disease, the highest level of lncRNA GAS5 was in cirrhosis. lncRNA GAS5 expression, among other studied parameters, is still a significant predictor of NAFLD (adjusted odds ratio of 162, C.I. = 5.7–4629) (p = 0.003). LncRNA GAS5 has a positive correlation with NOTCH2 and a negative correlation with miR-29a-3p. LncRNA GAS5, NOTCH2, and RNA-29a-3p were significantly different in NAFLD cases compared to controls. Conclusions: lncRNA GAS5 appears to be the most effective single marker for detecting NAFLD. LncRNA GAS5 expression is a significant independent predictor of NAFLD. LncRNA GAS5 can differentiate different NAFLD stages. Full article
Show Figures

Figure 1

14 pages, 4194 KiB  
Article
Crystal Structure of Anthranilate Phosphoribosyltransferase from Methanocaldococcus jannaschii
by Jung-Min Choi
Crystals 2025, 15(8), 702; https://doi.org/10.3390/cryst15080702 - 31 Jul 2025
Viewed by 161
Abstract
Tryptophan is synthesized in microorganisms via a five-step enzymatic pathway originating from chorismate, which is a product of the shikimate pathway. As a biosynthetic precursor to a wide range of high-value compounds such as indole-3-acetic acid, indigo, indirubin, and violacein, this pathway has [...] Read more.
Tryptophan is synthesized in microorganisms via a five-step enzymatic pathway originating from chorismate, which is a product of the shikimate pathway. As a biosynthetic precursor to a wide range of high-value compounds such as indole-3-acetic acid, indigo, indirubin, and violacein, this pathway has been a central target for metabolic engineering to enhance microbial production. Anthranilate phosphoribosyltransferase (AnPRT) catalyzes the second step of the pathway by transferring a phosphoribosyl group from PRPP to anthranilate, forming phosphoribosyl anthranilate (PRA). AnPRT, the sole member of class IV phosphoribosyltransferases, adopts a unique fold and functions as a homodimer. While the structural basis of AnPRT activity has been elucidated in several organisms, thermostable variants remain underexplored despite their relevance for high-temperature bioprocessing. In this study, the crystal structure of AnPRT from the thermophilic archaeon Methanocaldococcus jannaschii (MjAnPRT) was determined at a 2.16 Å resolution. The enzyme exhibits a conserved dimeric architecture and key catalytic motifs. Comparative structural analysis with mesophilic and hyper thermophilic homologs revealed that MjAnPRT possesses enhanced local stability in catalytically important regions and strengthened inter-subunit interactions. These features likely contribute to its thermostability and provide a valuable framework for the rational design of robust AnPRTs for industrial and synthetic biology applications. Full article
(This article belongs to the Special Issue Crystallography of Enzymes)
Show Figures

Figure 1

15 pages, 4068 KiB  
Article
Characterization of the Avian Mitochondrial-Derived Peptide MOTS-c and Its Potential Role as a Metabolic Regulator
by Xin Shu, Jiying Liu, Bingjie Xu, Hui Wang, Li Liu, Xiaotong Zheng and Jianfei Chen
Animals 2025, 15(15), 2230; https://doi.org/10.3390/ani15152230 - 29 Jul 2025
Viewed by 183
Abstract
MOTS-c is a mitochondrial peptide that plays a crucial role in regulating energy metabolism, gene expression, and immune processes. However, current research primarily focuses on mammals like humans and mice, with no reports on avian MOTS-c. This study aimed to identify and characterize [...] Read more.
MOTS-c is a mitochondrial peptide that plays a crucial role in regulating energy metabolism, gene expression, and immune processes. However, current research primarily focuses on mammals like humans and mice, with no reports on avian MOTS-c. This study aimed to identify and characterize MOTS-c coding sequences across major poultry species through bioinformatics analysis and experimental validation. The alignment results showed high sequence similarity in the MOTS-c coding regions between avian and mammalian species. However, a single nucleotide deletion was identified in avian sequences at the position corresponding to the fourth amino acid residue of mammalian homologs, resulting in divergent downstream amino acid sequences. Despite this deletion, several residues were conserved across species. Phylogenetic analysis of mRNA sequences grouped pigeons with mammals, while protein sequence analysis revealed that poultry and mammals form separate branches, highlighting the divergence between avian and mammalian MOTS-c sequences. Tissue expression profiling demonstrated widespread distribution of chicken MOTS-c across multiple tissues, with the highest expression levels in the heart. Fasting significantly reduced heart MOTS-c expression, suggesting potential metabolic regulatory functions. Functional analysis of MOTS-c in primary hepatocytes revealed significant enrichment of the ribosome, oxidative phosphorylation, and key signaling pathways (PI3K-AKT and JAK-STAT) following 24 hours of treatment. Western blot validation confirmed MOTS-c-mediated activation of the AKT signaling pathway. This study represents the first comprehensive characterization of avian MOTS-c, providing critical insights into its evolutionary conservation and its potential functional roles in gene expression and cellular metabolism. Our findings establish a foundation for further investigation into the functions of mitochondrial-encoded peptides in avian species. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

16 pages, 3903 KiB  
Article
Identification of Salt Tolerance-Related NAC Genes in Wheat Roots Based on RNA-Seq and Association Analysis
by Lei Zhang, Aili Wei, Weiwei Wang, Xueqi Zhang, Zhiyong Zhao and Linyi Qiao
Plants 2025, 14(15), 2318; https://doi.org/10.3390/plants14152318 - 27 Jul 2025
Viewed by 335
Abstract
Excavating new salt tolerance genes and utilizing them to improve salt-tolerant wheat varieties is an effective way to utilize salinized soil. The NAC gene family plays an important role in plant response to salt stress. In this study, 446 NAC sequences were isolated [...] Read more.
Excavating new salt tolerance genes and utilizing them to improve salt-tolerant wheat varieties is an effective way to utilize salinized soil. The NAC gene family plays an important role in plant response to salt stress. In this study, 446 NAC sequences were isolated from the whole genome of common wheat and classified into 118 members based on subgenome homology, named TaNAC1 to TaNAC118. Transcriptome analysis of salt-tolerant wheat breeding line CH7034 roots revealed that 144 of the 446 TaNAC genes showed significant changes in expression levels at least two time points after NaCl treatment. These differentially expressed TaNACs were divided into four groups, and Group 4, containing the largest number of 78 genes, exhibited a successive upregulation trend after salt treatment. Single nucleotide polymorphisms (SNPs) of the TaNAC gene family in 114 wheat germplasms were retrieved from the public database and were subjected to further association analysis with the relative salt-injury rates (RSIRs) of six root phenotypes, and then 20 SNPs distributed on chromosomes 1B, 2B, 2D, 3B, 3D, 5B, 5D, and 7A were correlated with phenotypes involving salt tolerance (p < 0.0001). Combining the results of RT-qPCR and association analysis, we further selected three NAC genes from Group 4 as candidate genes that related to salt tolerance, including TaNAC26-D3.2, TaNAC33-B, and TaNAC40-B. Compared with the wild type, the roots of the tanac26-d3.2 mutant showed shorter length, less volume, and reduced biomass after being subjected to salt stress. Four SNPs of TaNAC26-D3.2 formed two haplotypes, Hap1 and Hap2, and germplasms with Hap2 exhibited better salt tolerance. Snp3, in exon 3 of TaNAC26-D3.2, causing a synonymous mutation, was developed into a Kompetitive Allele-Specific PCR marker, K3, to distinguish the two haplotypes, which can be further used for wheat germplasm screening or marker-assisted breeding. This study provides new genes and molecular markers for improvement of salt tolerance in wheat. Full article
Show Figures

Figure 1

15 pages, 2688 KiB  
Article
Recombinant Tetrameric Neuraminidase Subunit Vaccine Provides Protection Against Swine Influenza A Virus Infection in Pigs
by Ao Zhang, Bin Tan, Jiahui Wang and Shuqin Zhang
Vaccines 2025, 13(8), 783; https://doi.org/10.3390/vaccines13080783 - 23 Jul 2025
Viewed by 355
Abstract
Background/Objectives: Swine influenza A virus (swIAV), a prevalent respiratory pathogen in porcine populations, poses substantial economic losses to global livestock industries and represents a potential threat to public health security. Neuraminidase (NA) has been proposed as an important component for universal influenza [...] Read more.
Background/Objectives: Swine influenza A virus (swIAV), a prevalent respiratory pathogen in porcine populations, poses substantial economic losses to global livestock industries and represents a potential threat to public health security. Neuraminidase (NA) has been proposed as an important component for universal influenza vaccine development. NA has potential advantages as a vaccine antigen in providing cross-protection, with specific antibodies that have a broad binding capacity for heterologous viruses. In this study, we evaluated the immunogenicity and protective efficacy of a tetrameric recombinant NA subunit vaccine in a swine model. Methods: We constructed and expressed structurally stable soluble tetrameric recombinant NA (rNA) and prepared subunit vaccines by mixing with ISA 201 VG adjuvant. The protective efficacy of rNA-ISA 201 VG was compared to that of a commercial whole inactivated virus vaccine. Pigs received a prime-boost immunization (14-day interval) followed by homologous viral challenge 14 days post-boost. Results: Both rNA-ISA 201 VG and commercial vaccine stimulated robust humoral responses. Notably, the commercial vaccine group exhibited high viral-binding antibody titers but very weak NA-specific antibodies, whereas rNA-ISA 201 VG immunization elicited high NA-specific antibody titers alongside substantial viral-binding antibodies. Post-challenge, both immunization with rNA-ISA 201 VG and the commercial vaccine were effective in inhibiting viral replication, reducing viral load in porcine respiratory tissues, and effectively mitigating virus-induced histopathological damage, as compared to the PBS negative control. Conclusions: These findings found that the anti-NA immune response generated by rNA-ISA 201 VG vaccination provided protection comparable to that of a commercial inactivated vaccine that primarily induces an anti-HA response. Given that the data are derived from one pig per group, there is a requisite to increase the sample size for more in-depth validation. This work establishes a novel strategy for developing next-generation SIV subunit vaccines leveraging NA as a key immunogen. Full article
(This article belongs to the Special Issue Vaccine Development for Swine Viral Pathogens)
Show Figures

Figure 1

10 pages, 615 KiB  
Article
The Impact of DDR Gene Mutations on the Efficacy of Etoposide Plus Cisplatin in Grade 3 Metastatic Gastroenteropancreatic (GEP)—Neuroendocrine Carcinoma (NEC)
by Ji Eun Shin, Minsuk Kwon, Sung Hee Lim, Jung Yong Hong and Seung Tae Kim
Cancers 2025, 17(15), 2436; https://doi.org/10.3390/cancers17152436 - 23 Jul 2025
Viewed by 213
Abstract
Purpose: Neuroendocrine carcinomas (NECs) are aggressive tumors treated with cisplatin-based chemotherapy, though responses vary. As DNA damage response (DDR) pathways influence cisplatin sensitivity, this single-center retrospective study evaluates the efficacy of first-line cisplatin in recurrent or metastatic NEC based on DDR mutation status. [...] Read more.
Purpose: Neuroendocrine carcinomas (NECs) are aggressive tumors treated with cisplatin-based chemotherapy, though responses vary. As DNA damage response (DDR) pathways influence cisplatin sensitivity, this single-center retrospective study evaluates the efficacy of first-line cisplatin in recurrent or metastatic NEC based on DDR mutation status. Materials and Methods: This study analyzed patients with grade 3 recurrent or metastatic NEC treated with first-line etoposide plus cisplatin at Samsung Medical Center between January 2019 and September 2023. All patients underwent next-generation sequencing to determine DDR mutation status, defined by pathogenic alterations in major DNA repair pathways. Clinical outcomes were assessed per RECIST v1.1. Survival analyses were conducted using Kaplan–Meier methods and Cox regression models, with significance set at p ≤ 0.05. Results: A total of 40 patients with NEC were included in this study. There were 16 patients with DDR wild-type (WT) and 24 patients with DDR mutant type (MT). The most common primary tumor sites were the pancreas (25.0%), stomach (20.0%), and gallbladder/duct (12.5%). Among 40 patients, those with DDR mutations (n = 24) showed significantly higher objective response (58.3% vs. 12.5%) and disease control rates (91.7% vs. 50.0%) compared to patients with DDR WT (n = 16). The median progression-free survival (PFS) showed the favorable trend in the DDR mutant group (8.0 vs. 4.3 months; p = 0.15), with similar trends observed across homologous recombination repair (HRR), Fanconi anemia (FA), and mismatch repair (MMR) subgroups. Conclusions: This study revealed that patients with DDR mutations had significantly higher response to first-line etoposide–cisplatin, suggesting DDR mutation status as a potential predictive marker to guide treatment and improve outcomes in recurrent or metastatic NEC. Full article
(This article belongs to the Section Cancer Metastasis)
Show Figures

Figure 1

14 pages, 2887 KiB  
Article
Development and Biochemical Characterization of Quorum Quenching Enzyme from Deep-Sea Bacillus velezensis DH82
by Xiaohui Sun, Jia Liu, Ying Yan, Suping Yang, Guangya Zhang and Hala F. Mohamed
Microorganisms 2025, 13(8), 1717; https://doi.org/10.3390/microorganisms13081717 - 22 Jul 2025
Viewed by 219
Abstract
Quorum quenching (QQ) is of interest for potential application as a sustainable strategy for bacterial disease control via communication interruption. The QQ enzyme can be used as a good alternative antagonist to combat antibiotic abuse and bacterial resistance. Here, genomic DNA sequencing was [...] Read more.
Quorum quenching (QQ) is of interest for potential application as a sustainable strategy for bacterial disease control via communication interruption. The QQ enzyme can be used as a good alternative antagonist to combat antibiotic abuse and bacterial resistance. Here, genomic DNA sequencing was performed on N-acyl homoserine lactonase from the deep-sea strain Bacillus velezensis DH82 with Cluster of Orthologous Groups of proteins (COGs) annotation. The homologous sequences with β-lactamase domain-containing protein were predicted to be potential QQ enzymes and were cloned and expressed to study their quorum quenching properties by comparing them with the reported enzyme AiiA3DHB. The experimental results of enzyme activity analysis and steady-state kinetics, as well as enzyme structure and substrate docking simulations and predictions, all consistently demonstrated that YtnPDH82 presented superior enzyme structural stability and higher degradation efficiency of N-acyl homoserine lactones than AiiADH82 under the effects of pH, and temperature, and performed better on short -chain and 3-O-substituted AHSLs. The findings revealed the structural and biochemical characterization of YtnPDH82 from the deep sea, which provide the capacity for further application in sustainable aquaculture as an alternative to antibiotics. Full article
(This article belongs to the Special Issue Microbes in Aquaculture)
Show Figures

Figure 1

21 pages, 7180 KiB  
Article
Characteristics and Expression Profiles of Identified WRKY Genes in Barley Landraces Under Cold Stress
by Yuancheng Zhou, Yiling Wang, Ting Gao, Yongli Cao, Yong Yao, Yukun Zhao and Zhen Wang
Int. J. Mol. Sci. 2025, 26(14), 6948; https://doi.org/10.3390/ijms26146948 - 19 Jul 2025
Viewed by 239
Abstract
The WRKY gene family comprises important transcription factors widely distributed in plants and plays significant roles in the growth and development, diverse (biotic and abiotic) stress responses, and various biological processes. In the current study, 96 identified HvLWRKY genes were classified into three [...] Read more.
The WRKY gene family comprises important transcription factors widely distributed in plants and plays significant roles in the growth and development, diverse (biotic and abiotic) stress responses, and various biological processes. In the current study, 96 identified HvLWRKY genes were classified into three groups and seven subgroups. Among these, 89 genes possessed the conserved domain WRKYGQK. A total of ten motifs were harbored in HvLWRKY genes with two to four introns. Fragmental duplication was suggested to be the prime force that drove the evolution of HvLWRKY genes. A high degree of collinearity was observed between barley and Triticum spelta. Cis-elements of HvLWRKYs were closely associated with abiotic stress, light response, and hormone response; however, there were differences in the numbers among groups. HvLWRKY genes, even the paralogous gene pairs, from different clades were differentially regulated under cold treatments in two landraces. HvLWRKY33, 43, 44, 57, 65, and 77 were homologous with the relative AtWRKY genes in Arabidopsis thaliana. They are suggested to regulate abiotic and pathogen resistance of two barley landraces via SA and JA pathways. Meanwhile, some genes (for example, HvLWRKY1 and HvLWRKY32) were specifically expressed in either cold-tolerant or cold-sensitive landraces. Under cold stress, different cold-responsive patterns occurred in different barley landraces. These findings provide a foundation for further studies on cold resistance in barley landraces and offer new insights for application of WRKY genes in barley breeding. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 1560 KiB  
Article
Knockdown of the snoRNA-Jouvence Blocks the Proliferation and Leads to the Death of Human Primary Glioblastoma Cells
by Lola Jaque-Cabrera, Julia Buggiani, Jérôme Bignon, Patricia Daira, Nathalie Bernoud-Hubac and Jean-René Martin
Non-Coding RNA 2025, 11(4), 54; https://doi.org/10.3390/ncrna11040054 - 18 Jul 2025
Viewed by 393
Abstract
Background/Objectives: Cancer research aims to understand the cellular and molecular mechanisms involved, in order to identify new therapeutic targets and provide patients with more effective therapies that generate fewer side undesirable and toxic effects. Previous studies have demonstrated the role of small [...] Read more.
Background/Objectives: Cancer research aims to understand the cellular and molecular mechanisms involved, in order to identify new therapeutic targets and provide patients with more effective therapies that generate fewer side undesirable and toxic effects. Previous studies have demonstrated the role of small nucleolar RNAs (snoRNAs) in many physiological and pathological cellular processes, including cancers. SnoRNAs are a group of non-coding RNAs involved in different post-transcriptional modifications of ribosomal RNAs. Recently, we identified a new snoRNA (jouvence), first in Drosophila, and thereafter, by homology, in humans. Methods: Here, we characterize the effect of the knockdown of jouvence by a sh-lentivirus on human primary patient-derived glioblastoma cells. Results: The sh-lentivirus anti-jouvence induces a significant decrease in cell proliferation and leads to cell death. EdU staining confirmed this decrease, while TUNEL also showed the presence of apoptotic cells. An RNA-Seq analysis revealed a decrease, in particular, in the level of BAALC, a gene known to potentiate the oncogenic ERK pathway and deregulating p21, leading to cell cycle blockage. Conclusions: Altogether, these results allow the hypothesis that the knockdown of jouvence could potentially be used as a new anti-cancer treatment (sno-Therapy), especially against glioblastoma and also, potentially, against acute myeloid leukemia (AML) due to the BAALC deregulation. Full article
(This article belongs to the Section Small Non-Coding RNA)
Show Figures

Figure 1

14 pages, 2241 KiB  
Article
Cross-Sectional Study of Occlusal Loading and Periodontal Status of Teeth with Deflective Occlusal Contacts
by Ximena Anca Nicolae, Elena Preoteasa, Catalina Murariu Magureanu and Cristina Teodora Preoteasa
Bioengineering 2025, 12(7), 766; https://doi.org/10.3390/bioengineering12070766 - 16 Jul 2025
Viewed by 417
Abstract
Aim: To evaluate whether maximum occlusal loading and periodontal status are different between teeth presenting deflective occlusal contacts and those without such contacts, specifically adjacent and homologous teeth. Method: A cross-sectional study was conducted using OccluSense to detect deflective contacts and quantify occlusal [...] Read more.
Aim: To evaluate whether maximum occlusal loading and periodontal status are different between teeth presenting deflective occlusal contacts and those without such contacts, specifically adjacent and homologous teeth. Method: A cross-sectional study was conducted using OccluSense to detect deflective contacts and quantify occlusal load per tooth. For group comparisons, the Kruskal–Wallis, Friedman, Cochran’s Q, and chi-squared tests were used. Results: A total of 493 teeth with deflective contacts were compared to 473 adjacent (first control group) and 457 homologous teeth (second control group). Teeth with deflective contacts showed significantly higher occlusal loading (mean value: 208) than adjacent (72) and homologous teeth (97) (p < 0.05). They also exhibited more advanced periodontal damage, including deeper probing depths, greater gingival recession, alveolar bone loss, and a wider periodontal ligament space. Deflective contacts in centric relation were more strongly linked to periodontal deterioration than those in protrusive or lateral mandibular movements, despite similar occlusal forces. Conclusions: Within this study’s limitations, deflective occlusal contacts are associated with increased occlusal forces and more severe periodontal damage, suggesting a biomechanical factor in periodontal disease progression. Full article
Show Figures

Figure 1

18 pages, 3194 KiB  
Article
Identification and Characterization of the Complete Genome of the TGF-β Gene Family in Tupaia belangeri: Expression and Function of Adipose Tissue Under Cold Acclimation Conditions
by Lijie Du, Wanlong Zhu and Lin Zhang
Int. J. Mol. Sci. 2025, 26(14), 6681; https://doi.org/10.3390/ijms26146681 - 11 Jul 2025
Viewed by 322
Abstract
The transforming growth factor beta (TGF-β) gene family is widely distributed across the animal kingdom, playing a crucial role in various cellular processes and maintaining overall health and homeostasis. The present study identified 34 TGF-β family genes based on the [...] Read more.
The transforming growth factor beta (TGF-β) gene family is widely distributed across the animal kingdom, playing a crucial role in various cellular processes and maintaining overall health and homeostasis. The present study identified 34 TGF-β family genes based on the genome sequence in Tupaia belangeri, which were classified into the TGF-β, bone morphogenetic protein (BMP), growth differentiation factor (GDF), glial cell-derived neurotrophic factor (GDNF), and Activin/Inhibin subfamilies. A phylogenetic analysis revealed the evolutionary relationships among members of the TGF-β family in T. belangeri and their homologous genes in Homo sapiens, Mus musculus, and Pan troglodytes, indicating a high degree of conservation throughout evolution. A chromosomal distribution and collinearity analysis demonstrated the localization of these genes within the genome of T. belangeri and their collinearity with genes from other species. A gene structure and motif analysis further illustrated the conservation and diversity among TGF-β family members. A protein interaction network analysis highlighted the central roles of TGFB1, TGFB3, BMP7, and BMP2 in signal transduction. A functional enrichment analysis underscored the significance of the TGF-β signaling pathway in the biological processes of T. belangeri, particularly in cell proliferation, differentiation, and apoptosis. We assessed the impact of cold acclimation treatment on the expression of TGF-β family proteins in the adipose tissue (white adipose tissue [WAT] and brown adipose tissue [BAT]) of T. belangeri using ELISA technology, finding that protein expression levels in the experimental group were significantly higher than those of in the control group. These results suggested that cold acclimation may enhance the adaptability of T. belangeri to cold environments by modulating the expression of TGF-β family genes. This study offers new insights into the role of the TGF-β family in the cold acclimation adaptation of T. belangeri, providing a scientific foundation for future genetic improvements and strategies for cold acclimation. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

19 pages, 1875 KiB  
Systematic Review
PARP Inhibitors for Metastatic CRPC: More Answers than Questions, a Systematic Review and Meta-Analysis
by Ray Manneh, Javier Molina-Cerrillo, Guillermo de Velasco, Linda Ibatá, Susan Martínez, Álvaro Ruiz-Granados and Teresa Alonso-Gordoa
Pharmaceuticals 2025, 18(7), 1015; https://doi.org/10.3390/ph18071015 - 8 Jul 2025
Viewed by 485
Abstract
PARP inhibitors (PARPi), alone or in combination with androgen receptor signaling inhibitors (ARSi), have shown clinical benefit in metastatic castration-resistant prostate cancer (mCRPC), particularly in tumors with homologous recombination repair (HRR) gene alterations. Recent data from the TALAPRO-2 trial complete the current evidence [...] Read more.
PARP inhibitors (PARPi), alone or in combination with androgen receptor signaling inhibitors (ARSi), have shown clinical benefit in metastatic castration-resistant prostate cancer (mCRPC), particularly in tumors with homologous recombination repair (HRR) gene alterations. Recent data from the TALAPRO-2 trial complete the current evidence on PARPi–ARSi combination strategies in this setting. Background/Objectives: To evaluate the efficacy and safety of PARPi-based therapies—monotherapy and combination with ARSi—in patients with mCRPC, focusing on molecular subgroups defined by DNA repair alterations. Methods: We conducted a systematic review and meta-analysis of phase III randomized controlled trials (RCTs) assessing PARPi as monotherapy or in combination with ARSi. Searches were performed in PubMed, EMBASE, the Cochrane Library, and oncology conference proceedings up to February 2025. Outcomes included radiographic progression-free survival (rPFS), overall survival (OS), second progression-free survival (PFS2), and grade ≥3 adverse events (AEs). Data were pooled using a random-effects model, with subgroup analyses by DNA repair status. Results: Five RCTs (n = 2921) were I confirmincluded: three on combination therapy (n = 2271) and two on monotherapy (n = 650). Combination therapy improved rPFS in the ITT (HR = 0.64; 95% CI: 0.56–0.74), HRRm (HR = 0.55; 95% CI: 0.44–0.68), and BRCAm (HR = 0.33; 95% CI: 0.18–0.58) subgroups. OS was also improved in the ITT (HR = 0.80; 95% CI: 0.70–0.92), HRRm (HR = 0.68; 95% CI: 0.55–0.83), and BRCAm (HR = 0.54; 95% CI: 0.34–0.85) groups. No benefit was observed in non-HRRm patients. PFS2 favored combination therapy (HR = 0.77; 95% CI: 0.64–0.91). Grade ≥3 AEs were more frequent (RR = 1.44; 95% CI: 1.20–1.73). Monotherapy improved rPFS in ITT (HR = 0.46; 95% CI: 0.20–0.81) and BRCAm (HR = 0.33; 95% CI: 0.15–0.75); OS benefit was seen only in BRCAm (HR = 0.73; 95% CI: 0.57–0.95). Conclusions: PARPi therapies improve outcomes mainly in HRR- and BRCA-mutated mCRPC. Molecular selection is key to optimizing benefit and minimizing toxicity. Further research on the activity of PARPi combinations in non-HRR mutated mCRPC is needed to better understand the underlying mechanisms of efficacy. Full article
(This article belongs to the Special Issue Advances in Prostate Cancer Therapeutics)
Show Figures

Figure 1

Back to TopTop