Development and Biochemical Characterization of Quorum Quenching Enzyme from Deep-Sea Bacillus velezensis DH82
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacteria, Plasmids, and Reagents
2.2. Genomic DNA Sequencing
2.3. Gene Cloning
2.4. Bacterial Culture and Protein Expression
2.5. In Vitro Rapid Assessment of AHLs Level
2.6. Quantitative Analysis of Enzyme Activity on AHL Degradation
2.6.1. Characterization of Enzyme Activity
2.6.2. Kinetic Analysis of Enzyme Activity
2.7. Three-Dimensional Structure Simulation and Functional Prediction
2.8. Analysis of Enzyme-Substrate Docking
2.9. Statistical Analysis
3. Results
3.1. Prediction and Phylogenetic Tree Analysis of Quorum Quenching Enzyme
3.2. Construction of Engineered Enzyme and Protein Expression
3.3. Identification of Quorum Quenching Capacity on AHL Degradation
3.4. 3D Structural Simulation and Analysis
3.4.1. 3D Structure of Lactonase
3.4.2. Capacity of Lactonase-AHL Docking
3.4.3. Prediction of Ester-Hydrolysis Activity on AHLs
3.5. Qualification of AHL Degradation Activity
3.6. Steady-State Kinetics Characterization of Enzyme
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Surette, M.G.; Miller, M.B.; Bassler, B.L. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: A new family of genes responsible for autoinducer production. Proc. Natl. Acad. Sci. USA 1999, 96, 1639–1644. [Google Scholar] [CrossRef]
- Fetzner, S. Quorum quenching enzymes. J. Biotechnol. 2015, 201, 2–14. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, M.; Quan, C.S.; Fan, S.D. Mechanisms of quorum sensing and strategies for quorum sensing disruption in aquaculture pathogens. J. Fish. Dis. 2015, 38, 771–786. [Google Scholar] [CrossRef]
- Skindersoe, M.E.; Ettinger-Epstein, P.; Rasmussen, T.B.; Bjarnsholt, T.; de Nys, R.; Givskov, M. Quorum sensing antagonism from marine organisms. Mar. Biotechnol. 2008, 10, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Quintana, J.; Brango-Vanegas, J.; Costa, G.M.; Castellanos, L.; Arevalo, C.; Duque, C. Marine organisms as source of extracts to disrupt bacterial communication: Bioguided isolation and identification of quorum sensing inhibitors from Ircinia felix. Rev. Bras. Farmacogn. 2015, 25, 199–207. [Google Scholar] [CrossRef]
- Liu, J.; Sun, X.; Ma, Y.; Zhang, J.; Xu, C.; Zhou, S. Quorum quenching mediated bacteria interruption as a probable strategy for drinking water treatment against bacterial pollution. Int. J. Environ. Res. Public Health 2020, 17, 9539. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Hill, P.; Liu, J.; Qian, J.; Ma, Y.; Zhou, S. Marine-source quorum quenching wnzyme YtnP to improve hygiene quality in dntal units. Mar. Drugs. 2021, 19, 225. [Google Scholar] [CrossRef]
- Kim, M.H.; Choi, W.C.; Kang, H.O.; Lee, J.S.; Kang, B.S.; Kim, K.J.; Derewenda, Z.S.; Oh, T.K.; Lee, C.H.; Lee, J.K. The molecular structure and catalytic mechanism of a quorum-quenching N-acyl-L-homoserine lactone hydrolase. Proc. Natl. Acad. Sci. USA 2005, 102, 17606–17611. [Google Scholar] [CrossRef]
- Liu, D.; Momb, J.; Thomas, P.W.; Moulin, A.; Petsko, G.A.; Fast, W.; Ringe, D. Mechanism of the quorum-quenching lactonase (AiiA) from Bacillus thuringiensis. 1. Product-bound structures. Biochemistry 2008, 47, 7706–7714. [Google Scholar] [CrossRef]
- Momb, J.; Wang, C.; Liu, D.; Thomas, P.W.; Petsko, G.A.; Guo, H.; Ringe, D.; Fast, W. Mechanism of the quorum-quenching lactonase (AiiA) from Bacillus thuringiensis. 2. Substrate modeling and active site mutations. Biochemistry 2008, 47, 7715–7725. [Google Scholar] [CrossRef]
- Huang, S.; Song, Y.; Zhuang, X.; Gao, Z.; Wang, K.; Peng, Y.; Fang, B. Design and application of an artificial hybrid promoter PluxI-lacO in Genetic Circuit to Achieve Lower Basal Expression Level. Appl. Biochem. Biotech. 2020, 191, 893–903. [Google Scholar] [CrossRef]
- Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-TASSER Suite: Protein structure and function prediction. Nat. Methods 2015, 12, 7–8. [Google Scholar] [CrossRef]
- Wu, G.S.; Robertson, D.H.; Brooks, C.L.; Vieth, M. Detailed analysis of grid-based molecular docking: A case study of CDOCKER—A CHARMm-based MD docking algorithm. J. Comput. Chem. 2003, 24, 1549–1562. [Google Scholar] [CrossRef]
- Lu, X.; Yuan, Y.; Xue, X.; Zhang, G.; Zhou, S.N. Identification of the critical role of Tyr-194 in the catalytic activity of a novel identification of the critical role of Tyr-194 in the catalytic activity of a novel N-Acyl-Homoserine lactonase from marine Bacillus cereus strain Y2. Curr. Microbiol. 2006, 53, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.; Yepes, A.; Garcia-Betancur, J.C.; Westedt, I.; Mielich, B.; Lopez, D. Streptomycin-induced expression in Bacillus subtilis of YtnP, a lactonase-homologous protein that inhibits development and streptomycin production in Streptomyces griseus. Appl. Environ. Microb. 2012, 78, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, A.U.; Ahmad, M.; Pandya, A.; Sanmukh, S.; Khairnar, K. Genome Annotation and Structure Predictions for Hypothetical Proteins in Agrobacterium fabrum Str. C58 Plasmid At. Int. J. Comput. Appl. 2014, 85, 22–24. [Google Scholar] [CrossRef]
- Lee, H.; Park, J.; Lim, J.Y.; Kim, H.; Choi, G.J.; Kim, J.; Seo, Y. Complete genome sequence of Bacillus velezensis G341, a strain with a broad inhibitory spectrum against plant pathogens. J. Biotechnol. 2015, 211, 97. [Google Scholar] [CrossRef]
- Pandin, C.; Le Coq, D.; Deschamps, J.; Vedie, R.; Rousseau, T.; Aymerich, S.; Briandet, R. Complete genome sequence of Bacillus velezensis QST713: A biocontrol agent that protects Agaricus bisporus crops against the green mould disease. J. Biotechnol. 2018, 278, 10–19. [Google Scholar] [CrossRef]
- Yamamoto, H.; Murata, M.; Sekiguchi, J. The CitST two-component system regulates the expression of the Mg-citrate transporter in Bacillus subtilis. Mol. Microbiol. 2000, 37, 898–912. [Google Scholar] [CrossRef]
- Papenfort, K.; Bassler, B.L. Quorum sensing signal-response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 2016, 14, 576–588. [Google Scholar] [CrossRef]
- Defoirdt, T.; Boon, N.; Bossier, P. Can bacteria evolve resistance to quorum sensing disruption? PLoS Pathog. 2010, 6, 1000989. [Google Scholar] [CrossRef]
- Mukherjee, S.; Bossier, B.L. Bacterial quorum sensing in complex and dynamically changing environments. Nat. Rev. Microbiol. 2019, 17, 371–382. [Google Scholar] [CrossRef]
- Torres, M.; Uroz, S.; Salto, R.; Fauchery, L.; Quesada, E.; Llamas, I. HqiA, a novel quorum-quenching enzyme which expands the AHL lactonase family. Sci. Rep. 2017, 7, 943. [Google Scholar] [CrossRef]
- Chan, K.; Liu, Y.; Chang, C. Inhibiting N-acyl-homoserine lactone synthesis and quenching Pseudomonas quinolone quorum sensing to attenuate virulence. Front. Microbiol. 2015, 6, 1173. [Google Scholar] [CrossRef]
- Charendoff, M.N.; Shah, H.P.; Briggs, J.M. New insights into the binding and catalytic mechanisms of Bacillus thuringiensis lactonase: Insights into B. thuringiensis AiiA mechanism. PLoS ONE 2013, 8, e0075395. [Google Scholar] [CrossRef] [PubMed]
- Kyeong, H.; Kim, J.; Kim, H. Design of N-acyl homoserine lactonase with high substrate specificity by a rational approach. Appl. Microbiol. Biot. 2015, 99, 4735–4742. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas, R.; Thomas, P.W.; Wu, C.; Nocek, B.P.; Hoang, Q.Q.; Liu, D.; Fast, W. Structural and biochemical characterization of AidC, a quorum-quenching lactonase with atypical selectivity. Biochemistry 2015, 54, 4342–4353. [Google Scholar] [CrossRef] [PubMed]
- Holden, M.; Chhabra, S.R.; de Nys, R.; Stead, P.; Bainton, N.J.; Hill, P.J.; Manefield, M.; Kumar, N.; Labatte, M.; England, D.; et al. Quorum-sensing cross talk: Isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other Gram-negative bacteria. Mol. Microbiol. 1999, 33, 1254–1266. [Google Scholar] [CrossRef]
- Yates, E.A.; Philipp, B.; Buckley, C.; Atkinson, S.; Chhabra, S.R.; Sockett, R.E.; Goldner, M.; Dessaux, Y.; Cmara, M.; Smith, H.; et al. N-acylhomoserine Lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect. Immun. 2002, 70, 5635–5646. [Google Scholar] [CrossRef]
- Trovato, A.; Seno, F.; Zanardo, M.; Alberghini, S.; Tondello, A.; Squartini, A. Quorum vs. diffusion sensing: A quantitative analysis of the relevance of absorbing or reflecting boundaries. Fems Microbiol. Lett. 2014, 352, 198–203. [Google Scholar] [CrossRef]
- Bergonzi, C.; Schwab, M.; Naik, T.; Daude, D.; Chabriere, E.; Elias, M. Structural and biochemical characterization of AaL, a quorum quenching lactonase with unusual kinetic properties. Sci. Rep. 2018, 8, 11262. [Google Scholar] [CrossRef]
Primer | Sequence |
---|---|
aiiA-F | 5′-GGAATTCCATATGACAGTAAAGAAGCTTTATTTC-3′ |
aiiA-R | 5′-CCGCTCGAGCGGTATATATATTCGAACACTTTACATCCCC-3′ |
ytnP-F | 5′-GGAATTCATGGAGACATTGAATATTGGGAATTTTC-3′ |
ytnP-R | 5′-CCGCTCGAGCGGTTTTTTCTCCCGTTGACAGATG-3′ |
Substrate | AiiADH82 | YtnPDH82 | p Value (t-Test) |
---|---|---|---|
3-OH-C4-HSL | 21.898 ± 1.645 | 23.146 ± 1.705 | 0.113 |
C4-HSL | 22.618 ± 1.848 | 23.050 ± 0.937 | 0.519 |
3-oxo-C6-HSL | 27.820 ± 1.499 | 31.130 ± 0.804 | 1.389 × 10−10 |
C6-HSL | 27.020 ± 1.561 | 28.396 ± 0.805 | 0.023 |
3-oxo-C10-HSL | 36.196 ± 1.766 | 35.080 ± 1.702 | 0.049 |
3-oxo-C12-HSL | 40.803 ± 1.175 | 38.229 ± 1.405 | 2.319 × 10−7 |
Km (mM) | kcat (s−1) | kcat/Km (M−1s−1) | |
---|---|---|---|
AiiADH82 | 7.8 | 1.616 × 103 | 2.071 × 105 |
YtnPDH82 | 15.33 | 3.840 × 103 | 2.505 × 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Liu, J.; Yan, Y.; Yang, S.; Zhang, G.; Mohamed, H.F. Development and Biochemical Characterization of Quorum Quenching Enzyme from Deep-Sea Bacillus velezensis DH82. Microorganisms 2025, 13, 1717. https://doi.org/10.3390/microorganisms13081717
Sun X, Liu J, Yan Y, Yang S, Zhang G, Mohamed HF. Development and Biochemical Characterization of Quorum Quenching Enzyme from Deep-Sea Bacillus velezensis DH82. Microorganisms. 2025; 13(8):1717. https://doi.org/10.3390/microorganisms13081717
Chicago/Turabian StyleSun, Xiaohui, Jia Liu, Ying Yan, Suping Yang, Guangya Zhang, and Hala F. Mohamed. 2025. "Development and Biochemical Characterization of Quorum Quenching Enzyme from Deep-Sea Bacillus velezensis DH82" Microorganisms 13, no. 8: 1717. https://doi.org/10.3390/microorganisms13081717
APA StyleSun, X., Liu, J., Yan, Y., Yang, S., Zhang, G., & Mohamed, H. F. (2025). Development and Biochemical Characterization of Quorum Quenching Enzyme from Deep-Sea Bacillus velezensis DH82. Microorganisms, 13(8), 1717. https://doi.org/10.3390/microorganisms13081717