Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = hole quality and surface integrity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 10089 KB  
Article
A New Experimental Framework for Unsupported Drilling of Thin Woven GFRP Laminates
by Razvan Udroiu, Paul Bere, Katarzyna Biruk-Urban and Jerzy Józwik
Fibers 2026, 14(1), 8; https://doi.org/10.3390/fib14010008 - 5 Jan 2026
Viewed by 253
Abstract
High-quality drilled holes are critical in thin fabric-reinforced composites used in many industrial applications; however, the influence of woven architecture on drilling performance without a backup plate remains insufficiently defined. This paper introduces the first comprehensive experimental and statistical framework for evaluating unsupported [...] Read more.
High-quality drilled holes are critical in thin fabric-reinforced composites used in many industrial applications; however, the influence of woven architecture on drilling performance without a backup plate remains insufficiently defined. This paper introduces the first comprehensive experimental and statistical framework for evaluating unsupported drilling of thin woven glass fiber-reinforced polymer (GFRP) laminates. The framework integrates the effect of support opening width, fiber weight fraction (wf), feed per tooth, and fabric architecture to quantify their combined effects on delamination, cutting forces, and surface roughness. The samples consisted of vacuum mold-pressed GFRP laminates. Drilling tests were conducted on plain and twill-woven plates, and hole quality was evaluated using thrust force, delamination factor, and surface roughness (Sa). A statistical DOE and multifactorial ANOVA were applied to quantify the effects of the main parameters. For plain-woven GFRP, the best results were obtained with a 65 mm support opening width, 45% fiber wf, and 0.04 mm/tooth feed. Plain-woven laminates exhibited lower average surface roughness (Sa ≈ 5.0–6.5 µm) than twill-woven laminates (Sa ≈ 6.0–7.0 µm). The study demonstrates how fabric architecture and drilling parameters jointly influence hole quality in thin GFRP composites, providing practical guidance for manufacturing applications. Full article
Show Figures

Figure 1

16 pages, 4227 KB  
Article
Influence of Drill Geometry on Adhesion Layer Formation and Tool Wear During Drilling of AFRP/Al7075-T6 Stacked Composites for Aircraft Industry Applications
by Jebaratnam Joy Mathavan, Choo Then Xiang, Muhammad Hafiz Hassan and Gérald Franz
J. Compos. Sci. 2025, 9(12), 658; https://doi.org/10.3390/jcs9120658 - 1 Dec 2025
Viewed by 413
Abstract
Aramid Fiber Reinforced Plastic (AFRP) and aluminum alloy Al7075-T6 are widely used in the aerospace industry because they offer a high strength-to-weight ratio and reliable structural performance. However, drilling through stacked AFRP and Al7075-T6 materials in a single operation presents considerable challenges due [...] Read more.
Aramid Fiber Reinforced Plastic (AFRP) and aluminum alloy Al7075-T6 are widely used in the aerospace industry because they offer a high strength-to-weight ratio and reliable structural performance. However, drilling through stacked AFRP and Al7075-T6 materials in a single operation presents considerable challenges due to the differences in their mechanical and thermal properties. In this study, three types of customized twist drill bits were designed and fabricated to evaluate their effectiveness in single-shot drilling of these stacked materials. The drill geometries included the W-point design, the tapered web design, and the burnishing design. Each drill bit was tested using its own optimized drilling parameters to produce a total of one hundred holes. The aim was to determine which drill geometry provided the best overall performance in terms of tool wear and hole quality. After the drilling experiments, the tool tips were examined using a Scanning Electron Microscope (SEM) to observe wear characteristics and analyze elemental composition. The analysis revealed that aluminum adhered to the cutting lips of all drill bits. The percentage of adhesion layer, known as percentage of adhesion layer (PAL), was calculated to assess the severity of material adhesion. In addition, the morphology of the produced chips and dust was analyzed to support the PAL results. The findings showed that the drill bit with the lowest PAL value demonstrated superior wear resistance, a longer tool life, and the ability to produce holes of higher quality when drilling AFRP and Al7075-T6 stacked materials. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

23 pages, 3805 KB  
Article
Sustainable Drilling Strategies for Rivet Hole Formation in Nickel-Based Alloys for Aeronautical Applications
by José Manuel Sáenz de Pipaón, Amabel García-Domínguez, Juan Claver and Eva María Rubio
J. Manuf. Mater. Process. 2025, 9(12), 389; https://doi.org/10.3390/jmmp9120389 - 25 Nov 2025
Viewed by 630
Abstract
The formation of rivet holes is a critical step in aeronautical assembly, as hole quality directly influences the fatigue resistance and structural reliability of riveted joints. Nickel-based alloys, such as Inconel 625, present additional challenges due to their poor machinability and the stringent [...] Read more.
The formation of rivet holes is a critical step in aeronautical assembly, as hole quality directly influences the fatigue resistance and structural reliability of riveted joints. Nickel-based alloys, such as Inconel 625, present additional challenges due to their poor machinability and the stringent surface integrity requirements imposed by the aerospace sector. This study investigates innovative and sustainable drilling strategies for rivet hole preparation, focusing on the comparative performance of two environmentally friendly cooling and lubrication methods: minimum quantity lubrication with an eco-friendly fluid (MQL-Eco) and cold compressed air (CCA). A comprehensive experimental campaign was carried out to analyze the combined effects of spindle speed, S, feed rate, f, and cooling method, R, on hole surface roughness parameters (Ra and Rz). These values are measured inside the drilled hole using optical scanner 3D equipment. Statistical tools, including analysis of variance (ANOVA) and response surface methodology (RSM), were employed to identify the most significant factors and optimize cutting conditions. The results reveal that the interaction between spindle speed and coolant type is the dominant contributor to surface roughness variability, with MQL-Eco consistently achieving values within the aeronautical standard range (Ra = 0.8–1.6 µm), and the coolant factor is the second cause of variability in both roughness Ra and Rz. Moreover, correlations between roughness parameters and tool wear confirm the relevance of sustainable cooling methods in extending tool life while maintaining compliance with aerospace quality requirements. The findings demonstrate that innovative eco-friendly drilling approaches can effectively replace conventional lubrication, offering a viable pathway towards greener manufacturing practices in metal forming and joining technologies. Full article
(This article belongs to the Special Issue Advances in Dissimilar Metal Joining and Welding, 2nd Edition)
Show Figures

Figure 1

23 pages, 3299 KB  
Article
Criticality Assessment of Pipes in Water Distribution Networks Based on the Minimum Pressure Criterion
by Daniele Puleo, Marco Sinagra, Calogero Picone and Tullio Tucciarelli
Water 2025, 17(22), 3185; https://doi.org/10.3390/w17223185 - 7 Nov 2025
Cited by 1 | Viewed by 589
Abstract
A new criticality indicator for Water Distribution Networks (WDNs) is presented. The new indicator is based on the minimum pressure (MP) model, which relies on the assumption that air can enter the pipes, e.g., when failure occurs in water scarcity scenarios, and maintain [...] Read more.
A new criticality indicator for Water Distribution Networks (WDNs) is presented. The new indicator is based on the minimum pressure (MP) model, which relies on the assumption that air can enter the pipes, e.g., when failure occurs in water scarcity scenarios, and maintain a minimum pressure equal to zero in the whole network. The proposed indicator properly integrates topological features, provided by structural hole theory, with the hydraulic constraints provided by the WDN steady-state solution, with a particular focus on pipes where occurring free surface flow leads to a serious reduction in the quality of the network service. The new indicator leads to a new criterion for the prioritized maintenance of pipes in existing networks, as well as for the design and planning of new ones, which is different from the one derived from other popular indicators. Three real-life WDNs are selected as test cases. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

11 pages, 2858 KB  
Article
Optimization Design of High-Performance Powder-Spreading Arm for Metal 3D Printers
by Guoqing Zhang, Junxin Li, Xiaoyu Zhou, Yongsheng Zhou, Juanjuan Xie and Yuchao Bai
Micromachines 2025, 16(11), 1194; https://doi.org/10.3390/mi16111194 - 22 Oct 2025
Viewed by 471
Abstract
The powder-laying arm of a metal 3D printer is heavy, which can easily cause long-term damage to the powder-laying servomotor or belt, so it is necessary to design a lightweight powder-laying arm. To this end, we first use 3D modeling Rhino software to [...] Read more.
The powder-laying arm of a metal 3D printer is heavy, which can easily cause long-term damage to the powder-laying servomotor or belt, so it is necessary to design a lightweight powder-laying arm. To this end, we first use 3D modeling Rhino software to rebuild the powder-laying arm, and then, we carry out topology optimization design on the rebuilt powder-laying arm in Altair Inspire software. Finally, we use the Aurora Elva 3D printer to complete manufacturing and assembly to verify compatibility. The results show that the maximum displacement of the original powder-spreading arm is concentrated in the lower right corner at 4.319 × 10−5 mm; the maximum stress is concentrated in the middle transition part, decreasing toward the ends; the maximum stress is 3.843 × 10−2 MPa; the stress concentration and deformation of the powder-spreading arm when spreading powder is small, which provides a large optimization space. The topology-optimized powder-spreading arm, with a 25% quality objective, maintains the integrity of the connection with the fixing hole while having a large mass reduction. The surface of the parts of the completed 3D-printed powder arm is bright, with low roughness, and there is no obvious warping and deformation or other defects; the completed 3D-printed powder-spreading arm and the assembly of the wall are closely coordinated with each other, and the location of the screw holes is appropriate, having no obvious assembly conflicts between the parts, which lays the foundation for the mass production of the powder-spreading arm of high-performance metal 3D printers. Full article
Show Figures

Figure 1

10 pages, 4647 KB  
Article
Color-Tunable and Efficient CsPbBr3 Photovoltaics Enabled by a Triple-Functional P3HT Modification
by Yanan Zhang, Zhizhe Wang, Dazheng Chen, Tongwanming Zheng, Menglin Yan, Yibing He, Zihao Wang, Weihang Zhang and Chunfu Zhang
Materials 2025, 18(19), 4579; https://doi.org/10.3390/ma18194579 - 2 Oct 2025
Viewed by 664
Abstract
All inorganic CsPbBr3 possesses ideal stability in halide perovskites, but its wide bandgap and relatively poor film quality seriously limit the performance enhancement and possible applications of perovskite solar cells (PSCs). In this work, a triple-functional poly(3-Hexylthiophene) (P3HT) modifier was introduced to [...] Read more.
All inorganic CsPbBr3 possesses ideal stability in halide perovskites, but its wide bandgap and relatively poor film quality seriously limit the performance enhancement and possible applications of perovskite solar cells (PSCs). In this work, a triple-functional poly(3-Hexylthiophene) (P3HT) modifier was introduced to realize color-tunable semi-transparent CsPbBr3 PSCs. From the optical perspective, the P3HT acted as the assistant photoactive layer, enhanced the light absorption capacity of the CsPbBr3 film, and broadened the spectrum response range of devices. In view of the hole transport layer, P3HT modified the energy level matching between the CsPbBr3/anode interface and facilitated the hole transport. Simultaneously, the S in P3HT formed a more stable Pb-S bond with the uncoordinated Pb2+ on the surface of CsPbBr3 and played the role of a defect passivator. As the P3HT concentration increased from 0 to 15 mg/mL, the color of CsPbBr3 devices gradually changed from light yellow to reddish brown. The PSC treated by an optimal P3HT concentration of 10 mg/mL achieved a champion power conversion efficiency (PCE) of 8.71%, with a VOC of 1.30 V and a JSC of 8.54 mA/cm2, which are remarkably higher than those of control devices (6.86%, 1.22 V, and 8.21 mA/cm2), as well its non-degrading stability and repeatability. Here, the constructed CsPbBr3/P3HT heterostructure revealed effective paths for enhancing the photovoltaic performance of CsPbBr3 PSCs and boosted their semi-transparent applications in building integrated photovoltaics (BIPVs). Full article
Show Figures

Graphical abstract

12 pages, 1923 KB  
Article
Microwave Resonant Probe-Based Defect Detection for Butt Fusion Joints in High-Density Polyethylene Pipes
by Jinping Pan, Chaoming Zhu and Lianjiang Tan
Polymers 2025, 17(19), 2617; https://doi.org/10.3390/polym17192617 - 27 Sep 2025
Viewed by 650
Abstract
With the widespread use of high-density polyethylene (HDPE) pipes in various industrial and municipal applications, ensuring the structural integrity of their joints is crucial. This paper presents a novel defect detection method based on a microwave resonant probe, designed to perform efficient and [...] Read more.
With the widespread use of high-density polyethylene (HDPE) pipes in various industrial and municipal applications, ensuring the structural integrity of their joints is crucial. This paper presents a novel defect detection method based on a microwave resonant probe, designed to perform efficient and non-destructive evaluation of butt fusion joints in HDPE pipes. The experimental setup integrates a microwave antenna and resonant cavity to record real-time variations in resonance frequency and S21 magnitude while scanning the pipe surface. This method effectively detects common defects, including cracks, holes, and inclusions, within the butt fusion joints. The results show that the microwave resonant probe exhibits high sensitivity in detecting HDPE pipe defects. It can identify different sizes of cracks and holes, and can distinguish between talc powder and sand particles. This technique offers a promising solution for pipeline health monitoring, particularly for evaluating the quality of welded joints in non-metallic materials. Full article
(This article belongs to the Special Issue Advanced Joining Technologies for Polymers and Polymer Composites)
Show Figures

Graphical abstract

18 pages, 4208 KB  
Article
Experimental Study and Defect Control in Picosecond Laser Trepanning Drilling of Superalloy
by Liang Wang, Yefei Rong, Long Xu, Changjian Wu and Kaibo Xia
Metals 2025, 15(8), 893; https://doi.org/10.3390/met15080893 - 10 Aug 2025
Cited by 3 | Viewed by 1067
Abstract
Picosecond laser trepanning is a key technology for fabricating film cooling holes in aero-engine turbine blades, overcoming the limitations of conventional machining such as severe tool wear and thermal damage. However, optimizing this advanced process to achieve consistent, high-quality results remains a challenge. [...] Read more.
Picosecond laser trepanning is a key technology for fabricating film cooling holes in aero-engine turbine blades, overcoming the limitations of conventional machining such as severe tool wear and thermal damage. However, optimizing this advanced process to achieve consistent, high-quality results remains a challenge. This study therefore systematically investigates the influence of key laser parameters (power, scanning speed, defocusing distance, and number of scans) on the geometric quality (diameter, taper, and roundness) of holes trepanned in GH4169 superalloy. The experimental results revealed that laser power and defocusing distance are the dominant factors controlling hole diameter and taper. Furthermore, a critical trade-off was identified concerning the number of scans: while more scans improved exit roundness, they also detrimentally increased entrance diameter and taper due to heat accumulation. Based on these findings, we propose a defect control strategy prioritizing a lower number of scans in the initial phase to effectively suppress molten material formation and preserve surface integrity. This work provides a valuable technological reference and theoretical foundation for the low-damage, high-reliability laser manufacturing of high-performance aerospace components. Full article
(This article belongs to the Special Issue Advances in Laser Processing of Metals and Alloys)
Show Figures

Figure 1

19 pages, 6293 KB  
Article
Restoring Anomalous Water Surface in DOM Product of UAV Remote Sensing Using Local Image Replacement
by Chunjie Wang, Ti Zhang, Liang Tao and Jiayuan Lin
Sensors 2025, 25(13), 4225; https://doi.org/10.3390/s25134225 - 7 Jul 2025
Viewed by 823
Abstract
In the production of a digital orthophoto map (DOM) from unmanned aerial vehicle (UAV)-acquired overlapping images, some anomalies such as texture stretching or data holes frequently occur in water areas due to the lack of significant textural features. These anomalies seriously affect the [...] Read more.
In the production of a digital orthophoto map (DOM) from unmanned aerial vehicle (UAV)-acquired overlapping images, some anomalies such as texture stretching or data holes frequently occur in water areas due to the lack of significant textural features. These anomalies seriously affect the visual quality and data integrity of the resulting DOMs. In this study, we attempted to eliminate the water surface anomalies in an example DOM via replacing the entire water area with an intact one that was clipped out from one single UAV image. The water surface scope and boundary in the image was first precisely achieved using the multisource seed filling algorithm and contour-finding algorithm. Next, the tie points were selected from the boundaries of the normal and anomalous water surfaces, and employed to realize their spatial alignment using affine plane coordinate transformation. Finally, the normal water surface was overlaid onto the DOM to replace the corresponding anomalous water surface. The restored water area had good visual effect in terms of spectral consistency, and the texture transition with the surrounding environment was also sufficiently natural. According to the standard deviations and mean values of RGB pixels, the quality of the restored DOM was greatly improved in comparison with the original one. These demonstrated that the proposed method had a sound performance in restoring abnormal water surfaces in a DOM, especially for scenarios where the water surface area is relatively small and can be contained in a single UAV image. Full article
(This article belongs to the Special Issue Remote Sensing and UAV Technologies for Environmental Monitoring)
Show Figures

Figure 1

23 pages, 11925 KB  
Article
Design and Field Experiment of Synchronous Hole Fertilization Device for Maize Sowing
by Feng Pan, Jincheng Chen, Baiwei Wang, Ziheng Fang, Jinxin Liang, Kangkang He and Chao Ji
Agriculture 2025, 15(13), 1400; https://doi.org/10.3390/agriculture15131400 - 29 Jun 2025
Viewed by 4444
Abstract
The disadvantages of traditional strip fertilization technology for corn planting in China include low fertilizer utilization rates, unstable operation quality, and environmental pollution. Therefore, in this study, a synchronous hole fertilization device for corn planting based on real-time intelligent control is designed, aiming [...] Read more.
The disadvantages of traditional strip fertilization technology for corn planting in China include low fertilizer utilization rates, unstable operation quality, and environmental pollution. Therefore, in this study, a synchronous hole fertilization device for corn planting based on real-time intelligent control is designed, aiming to reduce fertilizer application and increase efficiency through the precise alignment technology of the seed and fertilizer. This device integrates an electric drive precision seeding unit, a slot wheel hole fertilization unit, and a multi-sensor coordinated closed-loop control system. An STM32 single-chip micro-computer is used to dynamically analyze the seed–fertilizer timing signal, and a double closed-loop control strategy (the position loop priority is higher than the speed loop) is used to correct the spatial phase difference between the seed and fertilizer in real time to ensure the precise control of the longitudinal distance (40~70 mm) and the lateral distance (50~80 mm) of the seed and fertilizer. Through the Box–Behnken response surface method, a field multi-factor test was carried out to analyze the mechanism of influence of the implemented forward speed (A), per-hole target fertilizing amount (B), and plant spacing (fertilizer hole interval) (C) on the seed–fertilizer alignment qualification rate (Y1) and the coefficient of variation in the hole fertilizing amount (Y2). The results showed that the order of primary and secondary factors affecting Y1 was A > C > B, and that the order affecting Y2 was C > B > A; the comprehensive performance of the device was best with the optimal parameter combination of A = 4.2 km/h, B = 4.4 g, and C = 30 cm, with Y1 as high as 94.024 ± 0.694% and Y2 as low as 3.147 ± 0.058%, which is significantly better than the traditional strip application method. The device realizes the precise regulation of 2~6 g/hole by optimizing the structural parameters of the outer groove wheel (arc center distance of 25 mm, cross-sectional area of 201.02 mm2, effective filling length of 2.73~8.19 mm), which can meet the differentiated agronomic needs of ordinary corn, silage corn, and popcorn. Field verification shows that the device significantly improves the spatial distribution of the concentration of fertilizer, effectively reduces the amount of fertilizer applied, and improves operational stability and reliability in multiple environments. This provides technical support for the regional application of precision agricultural equipment. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

15 pages, 4751 KB  
Article
SnO Nanosheet Transistor with Remarkably High Hole Effective Mobility and More than Six Orders of Magnitude On-Current/Off-Current
by Kuan-Chieh Chen, Jiancheng Wu, Pheiroijam Pooja and Albert Chin
Nanomaterials 2025, 15(9), 640; https://doi.org/10.3390/nano15090640 - 23 Apr 2025
Viewed by 1842
Abstract
Using novel SiO2 surface passivation and ultraviolet (UV) light anneal, a 12 nm thick SnO p-type FET (pFET) shows hole effective mobilities (µeff) of more than 100 cm2/V·s and 31.1 cm2/V·s at hole densities (Qh [...] Read more.
Using novel SiO2 surface passivation and ultraviolet (UV) light anneal, a 12 nm thick SnO p-type FET (pFET) shows hole effective mobilities (µeff) of more than 100 cm2/V·s and 31.1 cm2/V·s at hole densities (Qh) of 1 × 1011 and 5 × 1012 cm−2, respectively. To further improve the on-current/off-current (ION/IOFF), an ultra-thin 7 nm thick SnO nanosheet pFET shows a record-breaking ION/IOFF of 6.9 × 106 and remarkable µeff values of ~70 cm2/V·s and 20.7 cm2/V·s at Qh of 1 × 1011 cm−2 and 5 × 1012 cm−2, respectively. This is the first report of an oxide semiconductor transistor achieving a hole effective mobility µeff that reaches 20% of that in single-crystal Si pFETs at an ultra-thin body thickness of 7 nm. In sharp contrast, the control SnO nanosheet pFET without surface passivation or UV anneal exhibits a small ION/IOFF of 1.8 × 104 and a µeff of only 6.1 cm2/V·s at 5 × 1012 cm−2 Qh. The enhanced SnO pFET performance is attributed to reduced defects and improved quality in the SnO channel, as confirmed by decreased charges related to sub-threshold swing (SS) and threshold voltage (Vth) shift. Such a large improvement is further supported by the increased Sn2+ after passivation and UV anneal, as evidenced by X-ray photoelectron spectroscopy (XPS) analysis. The ION/IOFF ratio exceeding six orders of magnitude, remarkably high hole µeff, and excellent two-month stability demonstrate that this pFET is a strong candidate for integration with SnON nFETs in next-generation ultra-high-definition displays and monolithic three-dimensional integrated circuits (3D ICs). Full article
(This article belongs to the Special Issue Integrated Circuit Research for Nanoscale Field-Effect Transistors)
Show Figures

Figure 1

21 pages, 10761 KB  
Article
Vibration Characteristics Analysis of Boring Bar with Tunable Dynamic Vibration Absorber
by Yanqi Guan, Guangbin Yu, Qingming Hu, Donghui Xu, Jiao Xu and Pavel Lushchyk
Materials 2025, 18(6), 1324; https://doi.org/10.3390/ma18061324 - 17 Mar 2025
Viewed by 1003
Abstract
In deep-hole boring processes, boring bars with a large length-to-diameter ratio are typically employed. However, excessive overhang significantly reduces the boring bar’s stiffness, inducing vibrational effects that severely degrade machining precision and surface quality. To address this, the research objective is to suppress [...] Read more.
In deep-hole boring processes, boring bars with a large length-to-diameter ratio are typically employed. However, excessive overhang significantly reduces the boring bar’s stiffness, inducing vibrational effects that severely degrade machining precision and surface quality. To address this, the research objective is to suppress vibrations using a tunable-parameter boring bar. This paper proposes a novel Tunable Dynamic Vibration Absorber (TDVA) boring bar and designs its fundamental parameters. Based on the derived dynamic model, the vibration characteristics of the proposed boring bar are analyzed, revealing the variation in damping performance under different excitation frequencies. By establishing the relationship between TDVA stiffness, damping, and the axial compression of rubber bushings, optimal parameter combinations can be precisely identified for specific excitation frequencies. Ultimately, adjusting the TDVA’s axial compression displacement (0.1–0.5 mm) significantly expands the effective machining frequency range compared to conventional designs while maintaining operational reliability. This study proposes a novel Tunable Dynamic Vibration Absorber (TDVA) that innovatively integrates axial compression to achieve coupled stiffness and damping adjustments, addressing the rigidity–adaptability trade-off in deep-hole boring tools. Full article
Show Figures

Figure 1

13 pages, 4773 KB  
Article
Research on Helical Electrode Electrochemical Drilling Assisted by Anode Vibration for Jet Micro-Hole Arrays on Tube Walls
by Tao Yang, Yikai Xiao, Yusen Hang, Xiujuan Wu and Weijing Kong
Micromachines 2025, 16(1), 86; https://doi.org/10.3390/mi16010086 - 13 Jan 2025
Cited by 2 | Viewed by 1254
Abstract
The electrochemical cutting technique, utilizing electrolyte flushing through micro-hole arrays in the radial direction of a tube electrode, offers the potential for cost-effective and high-surface-integrity machining of large-thickness, straight-surface structures of difficult-to-cut materials. However, fabricating the array of jet micro-holes on the tube [...] Read more.
The electrochemical cutting technique, utilizing electrolyte flushing through micro-hole arrays in the radial direction of a tube electrode, offers the potential for cost-effective and high-surface-integrity machining of large-thickness, straight-surface structures of difficult-to-cut materials. However, fabricating the array of jet micro-holes on the tube electrode sidewall remains a significant challenge, limiting the broader application of this technology. To enhance the efficiency and quality of machining these jet micro-holes on the tube sidewall, a helical electrode electrochemical drilling method assisted by anode vibration has been proposed. The influence of parameters, such as the rotational direction and speed of the helical electrode, as well as the vibration amplitude and frequency of the workpiece, on the machining results was investigated using fluid field simulation and machining experiments. It was found that these auxiliary movements could facilitate the renewal of electrolytes within the machining gap, thereby enhancing the efficiency and quality of electrochemical drilling. Using the optimized machining parameters, an array of 10 jet micro-holes with a diameter of 200 μm was machined on the metal tube sidewall. Electrochemical cutting with radial electrolyte flushing tests were then performed through these micro-holes. Full article
(This article belongs to the Special Issue Ultra-Precision Machining of Difficult-to-Machine Materials)
Show Figures

Figure 1

25 pages, 5829 KB  
Article
Advanced Design and Performance Evaluation of an Automatic Synchronized Grafting Machine for Solanum Vulgare
by Zhenya Liu, Wei Zhou, Fahao Wang, Jiawei Li, Luyan Jiang, Guoqiang Wang and Caihong Zhang
Processes 2025, 13(1), 131; https://doi.org/10.3390/pr13010131 - 6 Jan 2025
Cited by 1 | Viewed by 1988
Abstract
The adoption of grafting machines has become an essential trend in the advancement of the vegetable nursery industry, driven by the aging population and the rapid growth of the vegetable sector. Domestic and foreign research organizations have designed various types of vegetable grafting [...] Read more.
The adoption of grafting machines has become an essential trend in the advancement of the vegetable nursery industry, driven by the aging population and the rapid growth of the vegetable sector. Domestic and foreign research organizations have designed various types of vegetable grafting devices for the huge nursery market. However, most of the machines developed and designed at home and abroad are now semi-automated and are thus highly susceptible to damaging the stems of the seedlings during operation. Therefore, in order to realize the complete automation of the grafting operation and improve the grafting survival rate and quality, in this paper, eggplant hole tray seedlings were grafted as the object, and the cutting mechanism, the integrated mechanism of clamping and fitting, and the wrapping mechanism were structured on the basis of the affixing method. The transition conversion from semi-automatic to fully automatic was realized. And the rationality of the design was verified via the cutting test and the clamping characteristic test, which maximized the fit rate between the cutting surface of the rootstock and the scion seedling and maximized the protection of the grafted seedling from damage in the clamping process. Finally, the device was tested using Torubam rootstock and a Nova 101 tomato scion. The results showed that the optimal cutting angles were 35° and 30° for rootstock and scion, respectively, and that the lengths of the cutting surfaces were 11.28 ± 0.18 mm and 11.43 ± 0.14 mm. The grafting efficiency of the machine was up to 700 grafts per hour, with an average grafting success rate of up to 95% and zero stem damage to the seedlings. The experiments proved that the structure design of the machine is reasonable, and it can fully improve the grafting efficiency and quality. Meanwhile, the research findings can provide a theoretical basis for the application of the latter in the field of plant grafting. The research results can effectively alleviate the dependence on manual labor in the nursery industry and further liberate the labor force. Full article
(This article belongs to the Special Issue Reliability and Engineering Applications (Volume II))
Show Figures

Figure 1

25 pages, 5749 KB  
Article
A Statistical Assessment of Drilling Effects on Glass Fiber-Reinforced Polymeric Composites
by Ana Martins, Alda Carvalho, Ivo M. F. Bragança, Inês C. J. Barbosa, Joaquim Infante Barbosa and Maria A. R. Loja
Materials 2024, 17(22), 5631; https://doi.org/10.3390/ma17225631 - 18 Nov 2024
Cited by 1 | Viewed by 1282
Abstract
Fiber-reinforced composites are extensively used in many components and structures in various industry sectors, and the need to connect and assemble such types of components may require drilling operations. Although drilling is a common machining process; when dealing with fiber-reinforced composite materials, additional [...] Read more.
Fiber-reinforced composites are extensively used in many components and structures in various industry sectors, and the need to connect and assemble such types of components may require drilling operations. Although drilling is a common machining process; when dealing with fiber-reinforced composite materials, additional and specific problems may arise that can com-promise mechanical integrity. So, the main goal of this work is to assess how various input variables impact two main outcomes in the drilling process: the exit-adjusted delamination factor and the maximum temperature on the bottom surface where the drilling tool exits. The input variables include the type of drilling tools used, the operating speeds, and the thickness of the plates being drilled. By using Analysis of Variance (ANOVA), the analysis aims to identify which factors significantly influence damage and exit temperature. The results demonstrate that the influence of tools and drilling parameters is critical, and those selections impact the quality of the hole and the extent of the induced damage to the surrounding area. In concrete, considering the initially selected set of tools, the BZT03 tool does not lead to high-quality holes when drilling medium- and high-thickness plates. In contrast, the Dagger tool shows potential to reduce exit hole damage while also lowering temperature. Full article
Show Figures

Figure 1

Back to TopTop