Color-Tunable and Efficient CsPbBr3 Photovoltaics Enabled by a Triple-Functional P3HT Modification
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manser, J.S.; Christians, J.A.; Kamat, P.V. Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 2016, 116, 12956–13008. [Google Scholar] [CrossRef]
- Unger, E.L.; Kegelmann, L.; Suchan, K.; Sörell, D.; Korte, L.; Albrecht, S. Roadmap and roadblocks for the band gap tunability of metal halide perovskites. J. Mater. Chem. A 2017, 5, 11401–11409. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Siefer, G.; Hao, X.; Jiang, J.Y. Solar cell efficiency tables (version 66). Prog. Photovolt. Res. Appl. 2025, 33, 795–810. [Google Scholar] [CrossRef]
- Zhang, W.; Eperon, G.E.; Snaith, H.J. Metal halide perovskites for energy applications. Nat. Energy 2016, 1, 16048. [Google Scholar] [CrossRef]
- Bing, J.; Caro, L.G.; Talathi, H.P.; Chang, N.L.; Mckenzie, D.R.; Ho-Baillie, A.W. Perovskite solar cells for building integrated photovoltaics—Glazing applications. Joule 2022, 6, 1446–1474. [Google Scholar] [CrossRef]
- Liu, X.K.; Xu, W.; Bai, S.; Jin, Y.; Wang, J.; Friend, R.H.; Gao, F. Metal halide perovskites for light-emitting diodes. Nat. Mater. 2021, 20, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Yin, X.; Zhou, Y.; Nan, H.; Gu, Y.; Tai, M.; Li, J.; Lin, H. Perovskite/poly [bis (4-phenyl) (2, 4, 6-trimethylphenyl) amine] bulk heterojunction for high-efficient carbon-based large-area solar cells by gradient engineering. ACS Appl. Mater. Interfaces 2018, 10, 42328–42334. [Google Scholar] [CrossRef]
- Yang, Y.; You, J. Make perovskite solar cells stable. Nature 2017, 544, 155–156. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Meyer, S.; Dkhissi, Y.; Weber, K.; Pringle, J.M.; Bach, U.; Spiccia, L.; Cheng, Y.B. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 2015, 3, 8139–8147. [Google Scholar] [CrossRef]
- Liang, J.; Wang, C.; Wang, Y.; Xu, Z.; Lu, Z.; Ma, Y.; Zhu, H.; Hu, Y.; Xiao, C.; Yi, X.; et al. All-inorganic perovskite solar cells. J. Am. Chem. Soc. 2016, 138, 15829–15832. [Google Scholar] [CrossRef]
- Zhu, J.; Tang, M.; He, B.; Shen, K.; Zhang, W.; Sun, X.; Sun, M.; Chen, H.; Duan, Y.; Tang, Q. Ultraviolet filtration and defect passivation for efficient and photostable CsPbBr3 perovskite solar cells by interface engineering with ultraviolet absorber. Chem. Eng. J. 2021, 404, 126548. [Google Scholar] [CrossRef]
- Xiang, W.; Liu, S.F.; Tress, W. A review on the stability of inorganic metal halide perovskites: Challenges and opportunities for stable solar cells. Energy Environ. Sci. 2021, 14, 2090–2113. [Google Scholar] [CrossRef]
- He, B.; Jiao, D.; Liu, L.; Hu, J.; Nie, S.; Chen, Y.; Wang, X.; Chen, Y. Influence of water–vapor treatment on the properties of CsPbBr3 perovskite solar cells. Eur. Phys. J. Plus 2023, 138, 412. [Google Scholar] [CrossRef]
- Chen, D.; He, Y.; Fan, G.; Zhang, Z.; Zhu, W.; Xi, H.; Zhou, L.; Zhang, C.; Zhang, J.; Hao, Y. Ultrahigh fill-factor all-inorganic CsPbBr3 perovskite solar cells processed from two-step solution method and solvent additive strategy. J. Mater. 2023, 9, 717–724. [Google Scholar] [CrossRef]
- Bi, J.; Chang, J.; Lei, M.; Zhang, W.; Meng, F.; Wang, G. Thiourea-assisted facile fabrication of high-quality CsPbBr3 perovskite films for high-performance solar cells. ACS Appl. Mater. Interfaces 2022, 14, 48888–48896. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Bi, J.; Chang, J.; Lei, M.; Zheng, H.; Yan, Y. Bandgap tuning of a CsPbBr3 perovskite with synergistically improved quality via Sn2+ doping for high-performance carbon-based inorganic perovskite solar cells. Inorg. Chem. Front. 2022, 9, 4359–4368. [Google Scholar] [CrossRef]
- Yuan, H.; Zhao, Y.; Duan, J.; Wang, Y.; Yang, X.; Tang, Q. All-inorganic CsPbBr3 perovskite solar cell with 10.26% efficiency by spectra engineering. J. Mater. Chem. A 2018, 6, 24324–24329. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, H.; Wang, Y.; Yang, X.; Duan, J.; Tang, Q. 10.34%-efficient integrated CsPbBr3/bulk-heterojunction solar cells. J. Power Sources 2019, 440, 227151. [Google Scholar] [CrossRef]
- Liu, Y.; He, B.; Duan, J.; Zhao, Y.; Ding, Y.; Tang, M.; Chen, H.; Tang, Q. Poly (3-hexylthiophene)/zinc phthalocyanine composites for advanced interface engineering of 10.03%-efficiency CsPbBr3 perovskite solar cells. J. Mater. Chem. A 2019, 7, 12635–12644. [Google Scholar] [CrossRef]
- Wang, G.; Dong, W.; Gurung, A.; Chen, K.; Wu, F.; He, Q.; Pathak, R.; Qiao, Q. Improving photovoltaic performance of carbon-based CsPbBr3 perovskite solar cells by interfacial engineering using P3HT interlayer. J. Power Sources 2019, 432, 48–54. [Google Scholar] [CrossRef]
- Na, J.Y.; Kang, B.; Sin, D.H.; Cho, K.; Park, Y.D. Understanding solidification of polythiophene thin films during spin-coating: Effects of spin-coating time and processing additives. Sci. Rep. 2015, 5, 13288. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, T.; Zhao, B.; Liu, C.; Bai, Y.; Li, Z.; Zhu, S.; Wang, T.; Sun, X.; Liu, H.; et al. Facilitating the Carrier Transport Kinetics at the CsPbBr3/Carbon Interface through SbX3 (X= Cl, Br, I) Passivation. ACS Appl. Mater. Interfaces 2022, 14, 57362–57370. [Google Scholar] [CrossRef] [PubMed]
- Marinova, N.; Tress, W.; Humphry-Baker, R.; Dar, M.I.; Bojinov, V.; Zakeeruddin, S.M.; Nazeeruddin, M.K.; Grätzel, M. Light harvesting and charge recombination in CH3NH3PbI3 perovskite solar cells studied by hole transport layer thickness variation. ACS Nano 2015, 9, 4200–4209. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Li, K.; Wang, Y.; Feng, X.; Liao, Z.; Su, Q.; Lin, X.; He, Z. Black phosphorus quantum dots for hole extraction of typical planar hybrid perovskite solar cells. J. Phys. Chem. Lett. 2017, 8, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Rothmann, M.U.; Liu, A.; Wang, Z.; Zhang, Y.; Pascoe, A.R.; Lu, J.; Jiang, L.; Chen, Y.; Huang, F.; et al. Phase segregation enhanced ion movement in efficient inorganic CsPbIBr2 solar cells. Adv. Energy Mater. 2017, 7, 1700946. [Google Scholar] [CrossRef]
- Gao, L.; Spanopoulos, I.; Ke, W.; Huang, S.; Hadar, I.; Chen, L.; Li, X.; Yang, G.; Kanatzidis, M.G. Improved Environmental Stability and Solar Cell Efficiency of (MA, FA) PbI3 Perovskite Using a Wide Band gap 1D Thiazolium Lead Iodide Capping Layer Strategy. ACS Energy Lett. 2019, 4, 1763–1769. [Google Scholar] [CrossRef]
- Agresti, A.; Pescetelli, S.; Palma, A.L.; Martín-García, B.; Najafi, L.; Bellani, S.; Moreels, I.; Prato, M.; Bonaccorso, F.; Di Carlo, A. Two-Dimensional Material Interface Engineering for Efficient Perovskite Large-Area Modules. ACS Energy Lett. 2019, 4, 1862–1871. [Google Scholar] [CrossRef]
- Zeng, Q.; Zhang, X.; Feng, X.; Lu, S.; Chen, Z.; Yong, X.; Redfern, S.A.T.; Wei, H.; Wang, H.; Shen, H.; et al. Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V. Adv. Mater. 2018, 30, 1705393. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, W.; Chen, D.; Zhang, Z.; Lin, Z.; Chang, J.; Zhang, J.; Zhang, C.; Hao, Y. Light processing enables efficient carbon-based, all-inorganic planar CsPbIBr2 solar cells with high photovoltages. ACS Appl. Mater. Interfaces 2018, 11, 2997–3005. [Google Scholar] [CrossRef]
Condition (mg/mL) | PCE (%) | FF (%) | VOC (V) | JSC (mA/cm2) |
---|---|---|---|---|
0 (control) | 6.86 | 68.44 | 1.22 | 8.21 |
5 | 7.16 | 69.43 | 1.24 | 8.32 |
7.5 | 7.62 | 71.53 | 1.26 | 8.45 |
10 | 8.71 | 78.42 | 1.30 | 8.54 |
12.5 | 8.39 | 75.64 | 1.28 | 8.67 |
15 | 8.07 | 73.35 | 1.28 | 8.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, Z.; Chen, D.; Zheng, T.; Yan, M.; He, Y.; Wang, Z.; Zhang, W.; Zhang, C. Color-Tunable and Efficient CsPbBr3 Photovoltaics Enabled by a Triple-Functional P3HT Modification. Materials 2025, 18, 4579. https://doi.org/10.3390/ma18194579
Zhang Y, Wang Z, Chen D, Zheng T, Yan M, He Y, Wang Z, Zhang W, Zhang C. Color-Tunable and Efficient CsPbBr3 Photovoltaics Enabled by a Triple-Functional P3HT Modification. Materials. 2025; 18(19):4579. https://doi.org/10.3390/ma18194579
Chicago/Turabian StyleZhang, Yanan, Zhizhe Wang, Dazheng Chen, Tongwanming Zheng, Menglin Yan, Yibing He, Zihao Wang, Weihang Zhang, and Chunfu Zhang. 2025. "Color-Tunable and Efficient CsPbBr3 Photovoltaics Enabled by a Triple-Functional P3HT Modification" Materials 18, no. 19: 4579. https://doi.org/10.3390/ma18194579
APA StyleZhang, Y., Wang, Z., Chen, D., Zheng, T., Yan, M., He, Y., Wang, Z., Zhang, W., & Zhang, C. (2025). Color-Tunable and Efficient CsPbBr3 Photovoltaics Enabled by a Triple-Functional P3HT Modification. Materials, 18(19), 4579. https://doi.org/10.3390/ma18194579