Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,785)

Search Parameters:
Keywords = high-strength steels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 8403 KB  
Article
Effects of Two-Way Cold Rolling and Subsequent Annealing on the Microstructure and Tensile Properties of Low-Carbon Steel with Different Initial Microstructures
by Toshio Ogawa, Hidetomo Hayashi and Hiroyuki Dannoshita
Materials 2026, 19(3), 466; https://doi.org/10.3390/ma19030466 (registering DOI) - 24 Jan 2026
Abstract
We investigated the effects of two-way cold rolling and subsequent annealing on the microstructure and tensile properties of low-carbon steel with different initial microstructures. Two types of hot-rolled sheet specimens were prepared: specimen P, consisting of ferrite and pearlite, and specimen M, consisting [...] Read more.
We investigated the effects of two-way cold rolling and subsequent annealing on the microstructure and tensile properties of low-carbon steel with different initial microstructures. Two types of hot-rolled sheet specimens were prepared: specimen P, consisting of ferrite and pearlite, and specimen M, consisting of martensite. The hot-rolled sheets were cold-rolled in two directions and subsequently annealed. Two-way cold rolling promoted shear-band formation compared with one-way cold rolling. Furthermore, the two-way cold-rolled specimens showed higher strain homogeneity than the one-way cold-rolled specimens. When annealed below the Ac1 temperature, two-way cold rolling accelerated recrystallization in specimen P, but not in specimen M. In the intercritically annealed specimen P, two-way cold rolling increased the average size of recrystallized ferrite grains while reducing their aspect ratio. In addition, the strength–ductility balance of the two-way cold-rolled specimen P was similar to that of the one-way cold-rolled specimen P. In contrast, in the intercritically annealed specimen M, two-way cold rolling reduced the average size and the aspect ratio of recrystallized ferrite grains. As a result, the strength–ductility balance of the two-way cold-rolled specimen M was improved by approximately 15% compared with that of the one-way cold-rolled specimen. This improvement was attributed to the formation of fine and equiaxed recrystallized ferrite grains. The present findings provide a basis for applying two-way cold rolling as a microstructure-control strategy in high-strength steels. Full article
Show Figures

Graphical abstract

18 pages, 7911 KB  
Article
Verification of the Applicability of the FAD Method Based on Full-Scale Pressurised Tensile Tests of Large-Diameter X80 Pipelines
by Xiaoben Chen, Ying Zhen, Hongfeng Zheng, Haicheng Jin, Rui Hang, Xiaojiang Guo, Jian Xiao and Hao Zhou
Materials 2026, 19(3), 465; https://doi.org/10.3390/ma19030465 - 23 Jan 2026
Abstract
The Failure Assessment Diagram (FAD), as a significant method for evaluating the suitability of defective metallic structures, has been subject to considerable debate regarding its applicability in assessing ring welded joints for high-grade steel and large-diameter pipelines. To address this issue, this study [...] Read more.
The Failure Assessment Diagram (FAD), as a significant method for evaluating the suitability of defective metallic structures, has been subject to considerable debate regarding its applicability in assessing ring welded joints for high-grade steel and large-diameter pipelines. To address this issue, this study first designed and conducted two sets of full-scale pressure-tension tests on large-diameter X80 pipeline ring welded joints, considering factors such as different welding processes, joint configurations, defect dimensions, and locations. Subsequently, three widely adopted failure assessment diagram methodologies—BS 7910, API 579, and API 1104—were selected. Corresponding assessment curves were established based on material performance parameters obtained from the ring weld tests. Finally, predictive outcomes from each assessment method were compared against experimental data to investigate the applicability of failure assessment diagrams for evaluating high-strength, large-diameter, thick-walled ring welds. The research findings indicate that, under the specific material and defect assessment conditions employed in this study, the API 1104 assessment results exhibited significant conservatism (two sets matched). Conversely, the BS 7910 and API 579 assessment results showed a high degree of agreement with the experimental data (eight sets matched), with the BS 7910 assessment providing a relatively higher safety margin compared to API 579. The data from this study provides valuable experimental reference for selecting assessment methods under specific conditions, such as similar materials, defects, and loading patterns. Full article
Show Figures

Figure 1

13 pages, 3467 KB  
Article
Study on the Influence of the Surface Altered Layer on Fracture Initiation and Load-Bearing Capacity of Gouged Pipelines
by Hui Yang, Can He, Enming Zhang, Fuxiang Wang, Yuguang Cao and Ying Zhen
Materials 2026, 19(3), 462; https://doi.org/10.3390/ma19030462 - 23 Jan 2026
Abstract
To clarify the influence of gouge-induced altered layers on fracture initiation and load-bearing capacity of pipelines, X70 pipeline steel is taken as the research object. The geometry and partition of the altered layer are first determined by means of a micro-Vickers hardness array [...] Read more.
To clarify the influence of gouge-induced altered layers on fracture initiation and load-bearing capacity of pipelines, X70 pipeline steel is taken as the research object. The geometry and partition of the altered layer are first determined by means of a micro-Vickers hardness array and a threshold criterion, and its mechanical parameters are then obtained from small-scale tensile tests. The altered layer is subsequently embedded into a finite element model of a gouged pipe as an independent material domain, and the Gurson–Tvergaard–Needleman (GTN) damage model is employed to simulate damage evolution and crack propagation under pure internal pressure and combined internal pressure and tensile loading. The results indicate that, compared with the base metal, the yield strength and ultimate tensile strength of the altered layer increase by about 39% and 47%, respectively, while the elongation to failure decreases from 16% to 1.8%, exhibiting a typical “high-strength–low-ductility” behavior. When the altered layer is considered, the fracture initiation location under pure internal pressure shifts from the base metal to the altered layer, and the burst pressure decreases from 19 MPa to 16.5 MPa. Under the combined internal pressure and tensile loading, the peak load changes little, whereas the ultimate displacement is reduced by about 26.5%, leading to a marked loss of pipeline ductility. These findings demonstrate that the gouge-induced altered layer has a significant effect on the fracture initiation pressure, failure mode, and load-bearing characteristics of gouged pipes. Modeling it as an independent material domain in finite element analysis can more realistically capture the failure behavior and safety margin of gouged pipelines, thereby providing a more reliable theoretical basis for improving integrity assessment criteria for externally damaged pipelines. Full article
Show Figures

Figure 1

18 pages, 5769 KB  
Article
Enhanced Dynamic Compressive Behavior of Rubberized Concrete with Steel–Glass Fibers
by Jiahao Wen, Zhe Xiong, Xianpeng Wu, Xiaohui Li and Wenhua Luo
Buildings 2026, 16(3), 472; https://doi.org/10.3390/buildings16030472 - 23 Jan 2026
Abstract
To enhance the damage resistance of protective engineering materials under extreme loads such as explosions and impacts, this study, building upon the improvement in impact resistance of concrete achieved by rubber modification, further incorporates steel fibers and glass fibers to synergistically enhance impact [...] Read more.
To enhance the damage resistance of protective engineering materials under extreme loads such as explosions and impacts, this study, building upon the improvement in impact resistance of concrete achieved by rubber modification, further incorporates steel fibers and glass fibers to synergistically enhance impact resistance and to investigate the underlying mechanisms. Using split Hopkinson pressure bar (SHPB) testing, a comparative investigation was conducted on the dynamic mechanical responses of four specimen groups, namely plain rubberized concrete, single steel fiber-reinforced, single glass fiber-reinforced, and hybrid steel–glass fiber-reinforced rubberized concrete, over a strain-rate range of 30–185 s−1. The results demonstrate that the incorporation of hybrid fibers significantly enhances the dynamic compressive performance of plain rubber concrete. Specifically, the dynamic compressive strength increases from 40.73–61.29 MPa to 60.25–101.86 MPa, accompanied by a 59.5% increase in strain-rate sensitivity. Meanwhile, the fragment fineness modulus after failure rises from 3.20–3.33 to 3.73–4.20, indicating improved post-impact integrity. In addition, the hybrid fiber-reinforced specimens exhibit the highest energy dissipation capacity at identical strain rates. Their dynamic stress–strain responses are characterized by higher stiffness, improved ductility, and more pronounced progressive failure behavior. These findings provide experimental evidence for the design of high-impact-resistant protective engineering materials. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 3630 KB  
Article
Chloride Ion-Induced Modification of Passive Film on the Surface of 18%Ni High-Strength Steel
by Shule Yu, Boheng Yan, Botao Jiang, Hao Guo, Eshov Bakhtiyor and Liang Wang
Materials 2026, 19(2), 444; https://doi.org/10.3390/ma19020444 (registering DOI) - 22 Jan 2026
Viewed by 24
Abstract
This work investigates the corrosion behavior of 18%Ni high-strength steel (00Ni18Co-8Mo5TiAl, solution-treated at 820 °C for 3 h and aged at 480 °C for 3 h) in NaCl solutions with 1%, 3.5%, and 6% chloride ions, as well as chloride ions’ effect on [...] Read more.
This work investigates the corrosion behavior of 18%Ni high-strength steel (00Ni18Co-8Mo5TiAl, solution-treated at 820 °C for 3 h and aged at 480 °C for 3 h) in NaCl solutions with 1%, 3.5%, and 6% chloride ions, as well as chloride ions’ effect on passive film properties. The corrosion process was systematically studied via chemical immersion tests (GB/T 17897-1999, 144 h, solution-to-sample contact area ratio 20:1) and electrochemical methods, including EIS (frequency range: 100 kHz–0.01 Hz) and Tafel polarization curves (scan rate: 10 mV/min). Passive film evolution was analyzed via Mott–Schottky curves (fixed frequency: 1000 Hz, scanning potential: −1 V to 1 V vs. SCE). Microstructural observations show the steel exhibits pitting corrosion in chloride environments, with corrosion products transforming from loose outer α-FeOOH/γ-FeOOH to dense inner Fe3O4/β-FeOOH. These dense products inhibit anodic reactions. Electrochemical results reveal polarization resistance decreases and corrosion current density rises with increasing chloride concentration. Mott–Schottky curves indicate that flat band potential increases from −0.2177 V to −0.1258 V with rising chloride concentration, increasing point defects in the passive film and weakening its self-healing ability. Full article
(This article belongs to the Special Issue Advances in Corrosion and Protection of Metallic Materials)
Show Figures

Graphical abstract

14 pages, 8625 KB  
Article
Microstructural Characteristics and Tensile Behavior of Vacuum-Fusion-Welded Joints in 2507 Duplex Stainless-Steel Pipes
by Xia Cao, Lichu Zhou, Lili Zhai and Hong Gao
Coatings 2026, 16(1), 146; https://doi.org/10.3390/coatings16010146 - 22 Jan 2026
Viewed by 13
Abstract
To address the performance deficiencies in welded joints in 2507 duplex stainless-steel pipes under demanding service conditions such as deep-sea operation, this study investigates drawn 2507 duplex stainless-steel pipes. Vacuum-fusion welding coupled with ER2507 wire filling is employed to fabricate the joints. The [...] Read more.
To address the performance deficiencies in welded joints in 2507 duplex stainless-steel pipes under demanding service conditions such as deep-sea operation, this study investigates drawn 2507 duplex stainless-steel pipes. Vacuum-fusion welding coupled with ER2507 wire filling is employed to fabricate the joints. The joint microstructure and tensile behavior are systematically analyzed using microstructural characterization techniques (electron backscatter diffraction and transmission electron microscopy) and uniaxial tensile testing. The results indicate that the joint exhibits a graded microstructure along the welding direction: base metal-heat affected zone-weld metal. The austenite phase fraction in the fusion zone decreases to 27.6%. The joint achieves an ultimate tensile strength of 833.3 MPa and a total elongation of close to 23%, demonstrating an excellent combination of strength and ductility. During tensile deformation, the ferrite and austenite phases undergo coordinated deformation. Strain is distributed relatively uniformly at low strain levels but localized preferentially within the fusion zone at high strain levels. Fractographic analyses reveal a ductile fracture mode. This research provides theoretical support and technical reference for optimizing welding processes and assessing the service safety of 2507 duplex stainless-steel pipes in deep-sea pipeline-engineering applications. Full article
Show Figures

Figure 1

16 pages, 11984 KB  
Article
Research on the Shear Forces and Fracture Behavior of Self-Riveting Friction Stir Lap Welding Joints with Medium-Thick Aluminum/Steel Plates
by Xiongwen Tian, Jianxin Wang, Chang Zhai, Yabin He, Shujin Chen, Yiming Jin, Rui Yu and Sergii Maksymov
Metals 2026, 16(1), 127; https://doi.org/10.3390/met16010127 - 22 Jan 2026
Viewed by 17
Abstract
The self-riveting friction stir lap welding (SRFSLW) method was utilized to improve the bonding strength of lap welding joints with medium-thick aluminum/steel plates and to realize structural lightweighting. The effect of plunge depth on the shear force and the microstructure of the joint [...] Read more.
The self-riveting friction stir lap welding (SRFSLW) method was utilized to improve the bonding strength of lap welding joints with medium-thick aluminum/steel plates and to realize structural lightweighting. The effect of plunge depth on the shear force and the microstructure of the joint was studied, and the influence of groove structure (rectangular groove and dovetail groove) on the failure behavior of the joint under shear load was obtained, simultaneously. The EBSD results indicate that the aluminum alloy grains in the stir zone (SZ) of groove joints have been refined compared to the non-groove joint. Meanwhile, due to the presence of grooves, the proportion of high-angle grain boundaries of the SZ is increased, and more dynamic recrystallization has emerged; thus, the KAM value of the SZ is reduced to a certain extent. The non-groove joint exhibits {111}//ND fiber texture, while the groove joint shows F-plate texture. In self-riveting joints, due to the increased metallurgical bonding area and the weakened effect of external loads, the failure of metallurgical bonding in the joint requires higher external load, and the separation of the self-riveted structure from the groove requires greater bending moment, thereby improving the strength of the joint. Full article
(This article belongs to the Special Issue Properties and Residual Stresses of Welded Alloys)
Show Figures

Figure 1

17 pages, 10961 KB  
Article
Optimizing Image Segmentation for Microstructure Analysis of High-Strength Steel: Histogram-Based Recognition of Martensite and Bainite
by Filip Hallo, Tomasz Jażdżewski, Piotr Bała, Grzegorz Korpała and Krzysztof Regulski
Materials 2026, 19(2), 429; https://doi.org/10.3390/ma19020429 - 22 Jan 2026
Viewed by 18
Abstract
This study systematically compares three unsupervised segmentation algorithms (Simple Linear Iterative Clustering (SLIC), Felzenszwalb’s graph-based method, and the Watershed algorithm) in combination with two classification approaches: Random Forest using histogram-based features and Convolutional Neural Networks (CNNs). The study employs Bayesian optimization to jointly [...] Read more.
This study systematically compares three unsupervised segmentation algorithms (Simple Linear Iterative Clustering (SLIC), Felzenszwalb’s graph-based method, and the Watershed algorithm) in combination with two classification approaches: Random Forest using histogram-based features and Convolutional Neural Networks (CNNs). The study employs Bayesian optimization to jointly tune segmentation parameters and model hyperparameters, investigating how segmentation quality impacts downstream classification performance. The methodology is validated using light optical microscopy images of a high-strength steel sample, with performance evaluated through stratified cross-validation and independent test sets. The findings demonstrate the critical importance of segmentation algorithm selection and provide insights into the trade-offs between feature-engineered and end-to-end learning approaches for microstructure analysis. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

21 pages, 1811 KB  
Article
Data-Driven Prediction of Tensile Strength in Heat-Treated Steels Using Random Forests for Sustainable Materials Design
by Yousef Alqurashi
Sustainability 2026, 18(2), 1087; https://doi.org/10.3390/su18021087 - 21 Jan 2026
Viewed by 59
Abstract
Accurate prediction of ultimate tensile strength (UTS) is central to the design and optimization of heat-treated steels but is traditionally achieved through costly and iterative experimental trials. This study presents a transparent, physics-aware machine learning (ML) framework for predicting UTS using an open-access [...] Read more.
Accurate prediction of ultimate tensile strength (UTS) is central to the design and optimization of heat-treated steels but is traditionally achieved through costly and iterative experimental trials. This study presents a transparent, physics-aware machine learning (ML) framework for predicting UTS using an open-access steel database. A curated dataset of 1255 steel samples was constructed by combining 18 chemical composition variables with 7 processing descriptors extracted from free-text heat-treatment records and filtering them using physically justified consistency criteria. To avoid information leakage arising from repeated measurements, model development and evaluation were conducted under a group-aware validation framework based on thermomechanical states. A Random Forest (RF) regression model achieved robust, conservative test-set performance (R2 ≈ 0.90, MAE ≈ 40 MPa), with unbiased residuals and realistic generalization across diverse composition–processing conditions. Performance robustness was further examined using repeated group-aware resampling and strength-stratified error analysis, highlighting increased uncertainty in sparsely populated high-strength regimes. Model interpretability was assessed using SHAP-based feature importance and partial dependence analysis, revealing that UTS is primarily governed by the overall alloying level, carbon content, and processing parameters controlling transformation kinetics, particularly bar diameter and tempering temperature. The results demonstrate that reliable predictions and physically meaningful insights can be obtained from publicly available data using a conservative, reproducible machine-learning workflow. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

18 pages, 5019 KB  
Article
A High-Solid-Content and Low-Surface-Treatment Epoxy-Polysiloxane Ceramic Metal Coating for Metal Anti-Corrosion in Harsh Environments
by Xiufen Liao, Liang Fan, Qiumei Jiang, Maomi Zhao, Songqiang Huang, Junxiang Lai, Congtao Sun and Baorong Hou
Metals 2026, 16(1), 123; https://doi.org/10.3390/met16010123 - 21 Jan 2026
Viewed by 94
Abstract
Conventional anticorrosive coatings suffer from limitations of low solid content and rigorous surface pretreatment, posing environmental and cost challenges in field applications. In this study, a novel high-solid-content (>95%) epoxy-polysiloxane (Ep-PSA) ceramic metal coating was prepared that enables low-surface-treatment application. The originality lies [...] Read more.
Conventional anticorrosive coatings suffer from limitations of low solid content and rigorous surface pretreatment, posing environmental and cost challenges in field applications. In this study, a novel high-solid-content (>95%) epoxy-polysiloxane (Ep-PSA) ceramic metal coating was prepared that enables low-surface-treatment application. The originality lies in the synergistic combination of nano-sized ceramic powders, high-strength metallic powders, polysiloxane resin (PSA), and solvent-free epoxy resin (Ep), which polymerize through an organic–inorganic interpenetrating network to form a dense shielding layer. The as-prepared Ep-PSA coating system chemically bonds with indigenous metal substrate via Zn3(PO4)2 and resin functionalities during curing, forming a conversion layer that reduces surface preparation requirements. Differentiating from existing high-solid coatings, this approach achieves superior long-term barrier properties, evidenced by |Z|0.01Hz value of 9.64 × 108 Ω·cm2, after 6000 h salt spray exposure—four orders of magnitude higher than commercial 60% epoxy zinc-rich coatings (2.26 × 104 Ω·cm2, 3000 h salt spray exposure). The coating exhibits excellent adhesion (14.28 MPa) to standard sandblasted steel plates. This environmentally friendly, durable, and easily applicable composite coating demonstrates significant field application value for large-scale energy infrastructure. Full article
(This article belongs to the Special Issue Surface Treatments and Coating of Metallic Materials (2nd Edition))
Show Figures

Figure 1

21 pages, 8972 KB  
Article
Mechanism and Optimization of Metakaolin-Based Geopolymer Grout Under High Water-to-Solid Ratio: Steel Slag as a Calcareous Source
by Lijuan He, Yuhang Huang, Jianhua Zhou, Yi Wang, Jingwei Yang, Xuan Liu, Shuping Wang and Zhigang Zhang
Ceramics 2026, 9(1), 9; https://doi.org/10.3390/ceramics9010009 - 21 Jan 2026
Viewed by 43
Abstract
This study systematically examines the fluidity, setting time, mechanical properties, and microstructural evolution of metakaolin-based geopolymer grouting materials with a relatively high water-to-solid (W/S) ratio window. A four-factor, three-level orthogonal experimental design was employed to identify the dominant factors and main effect trends [...] Read more.
This study systematically examines the fluidity, setting time, mechanical properties, and microstructural evolution of metakaolin-based geopolymer grouting materials with a relatively high water-to-solid (W/S) ratio window. A four-factor, three-level orthogonal experimental design was employed to identify the dominant factors and main effect trends of W/S ratio, alkali dosage, water glass modulus (Ms, molar ratio of SiO2 to Na2O in alkali solution), and steel slag content on the material’s performance. The results indicated that the W/S ratio predominantly governed fluidity, while the alkali content was the primary controlling factor for setting time and early-age strength. An intermediate range of water glass modulus with a value of 1.6 provided balanced performance. The incorporation of steel slag with a range of 10–20% showed an age-dependent contribution: it not only tended to improve the rheology of the paste but also the later-age strength. XRD, FTIR, and SEM/EDS results suggested that the hardened binders were dominated by amorphous products, where alumimosilicate gel (N-A-S-H) and Ca-containing gel (C-S-H/C-A-S-H) may coexist depending on calcium availability and activator chemistry. The proposed parameter ranges are valid within the studied design space and provide guidance for the mix design of high-W/S geopolymer grout. Full article
(This article belongs to the Special Issue The Production Processes and Applications of Geopolymers, 2nd Edition)
Show Figures

Figure 1

19 pages, 4964 KB  
Article
Experimental Study on Bonding Performance of Steel Rebar and Grout at Different Positions After Elevated Temperatures
by Tingting Peng, Jijun Miao, Bochen Song, Yanchun Liu, Jiaqi Zhang, Dongde Sun and Sumeng Song
Appl. Sci. 2026, 16(2), 1053; https://doi.org/10.3390/app16021053 - 20 Jan 2026
Viewed by 97
Abstract
To evaluate the fire safety performance of the joint region in prefabricated buildings, specifically when the grout in the slurry layer is under an unconstrained state. Total 54 pull-out specimens were designed to investigate the effects of elevated temperatures (20 °C, 200 °C, [...] Read more.
To evaluate the fire safety performance of the joint region in prefabricated buildings, specifically when the grout in the slurry layer is under an unconstrained state. Total 54 pull-out specimens were designed to investigate the effects of elevated temperatures (20 °C, 200 °C, 300 °C, 400 °C, 500 °C, and 600 °C) and steel bar positions (center, mid-side, and corner) on the bond behavior between the grout and steel rebars. The failure modes, bond strength, ultimate displacement, and load–slip curves of the specimens were recorded. The peak load of the specimens with the temperature increasing first rose and then declined, exhibiting a trend consistent with the variation in compressive strength of the grout with temperature. At 600 °C, the ultimate loads of the center, mid-side, and corner specimens decreased by 53.46%, 52.53%, and 51.28%, respectively, compared with those at ambient temperature. At ambient temperature, the bond strength of the mid-side specimen was 11.24% lower than that of the central specimen, but 19.98% higher than that of the corner specimen. At 500 °C, the bond strength of the mid-side and corner specimens decreased by 15.76% and 39.26%, respectively, compared with that of the center specimen. The failure mode changed from steel-rebar fracture to pull-out failure due to the high temperature exposure and the steel rebar position. Finally, based on the post-heating strength test results of grout specimens, a bond strength calculation formula and a bond–slip constitutive model, considering both steel rebar position and temperature, were developed, achieving a correlation coefficient (R2) close to 1.0. Full article
(This article belongs to the Special Issue Innovative Building Materials: Design, Properties and Applications)
Show Figures

Figure 1

23 pages, 5500 KB  
Article
Low-Damage Seismic Design Approach for a Long-Span Cable-Stayed Bridge in a High Seismic Hazard Zone: A Case Study of the New Panama Canal Bridge
by Zhenghao Xiao, Shan Huang, Sheng Li, Minghua Li and Yao Hu
Buildings 2026, 16(2), 428; https://doi.org/10.3390/buildings16020428 - 20 Jan 2026
Viewed by 94
Abstract
Designing long-span cable-stayed bridges in high seismic hazard zones presents significant challenges due to their flexible structural systems, the influence of multi-support excitation, and the need to control large displacements while limiting seismic demands on critical components. These difficulties are further amplified in [...] Read more.
Designing long-span cable-stayed bridges in high seismic hazard zones presents significant challenges due to their flexible structural systems, the influence of multi-support excitation, and the need to control large displacements while limiting seismic demands on critical components. These difficulties are further amplified in regions with complex geology and for bridges required to maintain high levels of post-earthquake serviceability. This study develops a low-damage seismic design approach for long-span cable-stayed bridges and demonstrates its application in the New Panama Canal Bridge. Probabilistic seismic hazard assessment and site response analyses are performed to generate spatially varying ground motions at the pylons and side piers. The pylons adopt a reinforced concrete configuration with embedded steel stiffeners for anchorage, forming a composite zone capable of efficiently transferring concentrated stay-cable forces. The lightweight main girder consists of a lattice-type steel framework connected to a high-strength reinforced concrete deck slab, providing both rigidity and structural efficiency. A coordinated girder–pylon restraint system—comprising vertical bearings, fuse-type restrainers, and viscous dampers—ensures controlled stiffness and effective energy dissipation. Nonlinear seismic analyses show that displacements of the girder remain well controlled under the Safety Evaluation Earthquake, and the dampers and bearings exhibit stable hysteretic behaviours. Cable tensions remain within 500–850 MPa, meeting minimal-damage performance criteria. Overall, the results demonstrate that low-damage seismic performance targets are achievable and that the proposed design approach enhances structural control and seismic resilience in long-span cable-stayed bridges. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

13 pages, 3005 KB  
Article
A Study of Effect of Bidirectional Drawing on the Mechanical Properties of 30MnSi6 Non-Heat-Treated Steel
by Jaehan Lim, Jonghyeok Lee and Byounglok Jang
Metals 2026, 16(1), 118; https://doi.org/10.3390/met16010118 - 20 Jan 2026
Viewed by 126
Abstract
As the work hardening rate increases during the cold drawing of non-heat-treated steel (NHT steel), a significant loss in ductility and toughness can occur, leading to reduced formability and part quality. In this study, a bidirectional drawing process consisting of alternating forward and [...] Read more.
As the work hardening rate increases during the cold drawing of non-heat-treated steel (NHT steel), a significant loss in ductility and toughness can occur, leading to reduced formability and part quality. In this study, a bidirectional drawing process consisting of alternating forward and reverse passes is proposed to mitigate these issues and enhance the mechanical performance of the steel. Mechanical property evaluations, including tensile testing and three-point bending tests, were conducted to assess the effects of bidirectional drawing compared to conventional unidirectional drawing. The results showed that the bidirectionally drawn wire maintained a similar tensile strength to that of the unidirectionally drawn wire at a 70% area reduction, while exhibiting a 12% improvement in elongation. Microstructural analysis revealed grain refinement and reduced texture anisotropy in the bidirectionally drawn specimens, contributing to the observed enhancement in ductility. These findings indicate that bidirectional drawing is a promising approach for improving the formability and overall quality of high-strength, NHT steel components. Full article
Show Figures

Figure 1

24 pages, 8813 KB  
Article
Research on the Mechanism of Steel Slag Fine Aggregate Damaging the Volume Stability of Cement-Based Materials
by Haoran Zhai, Aizhu Liu, Huiqing Yang, Dong Gao, Chunguang Liu, Wenda Yan and Whengyu Du
Coatings 2026, 16(1), 132; https://doi.org/10.3390/coatings16010132 - 20 Jan 2026
Viewed by 183
Abstract
With the depletion of natural sand and gravel resources and increasing emphasis on environmental protection, natural aggregates suitable for concrete production are becoming increasingly scarce. Steel slag, a by-product of steelmaking, is produced in substantial quantities yet remains underutilized due to its low [...] Read more.
With the depletion of natural sand and gravel resources and increasing emphasis on environmental protection, natural aggregates suitable for concrete production are becoming increasingly scarce. Steel slag, a by-product of steelmaking, is produced in substantial quantities yet remains underutilized due to its low recycling rate. Owing to the high strength and excellent compatibility of steel slag particles with cementitious materials, they demonstrate significant potential as a replacement for natural river sand in fine aggregate applications. However, the volumetric instability of steel slag has long been a major impediment to its widespread adoption in cement-based composites. This study examines the stability performance of cement mortar containing steel slag aggregate, with the objective of clarifying the mechanisms responsible for dimensional instability resulting from steel slag incorporation. When the replacement level exceeds 40%, the dimensional stability of the mortar deteriorates markedly. The initial contents of free CaO (f-CaO) and free MgO (f-MgO) in the steel slag were determined to be 1.58% and 1.14%, respectively. Following 50 h of hydrothermal treatment, 69.6% of f-CaO and 44.3% of f-MgO had hydrated, causing internal volumetric expansion and subsequent particle fracturing. Under elevated temperature conditions, over-burned lime demonstrated 220% volumetric expansion and completed its reaction within 40 min, consequently impairing early-age stability. In contrast, periclase (dead-burned MgO) exhibited 34% expansion and attained a reaction degree of merely 13.3%, suggesting a more substantial impact on long-term stability. For each mixture, linear expansion measurements were performed on n = 5 independent specimens, and results are reported as mean ± standard deviation. Full article
Show Figures

Figure 1

Back to TopTop