Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,081)

Search Parameters:
Keywords = high-quality economic development

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4684 KB  
Article
Measurement and Scenario Simulation of Territorial Space Conflicts Under the Orientation of Carbon Neutrality in Jiangsu Province, China
by Tao Sun and Jie Guo
Land 2026, 15(1), 135; https://doi.org/10.3390/land15010135 - 9 Jan 2026
Abstract
Measuring and simulating territorial space conflicts (TSCs) for the achievement of carbon neutrality is of critical significance for formulating regional sustainable utilization of territorial resources that are inherently green and low-carbon. This study develops a TSC evaluation framework: “conflict identification–scenario simulation–carbon effect assessment”. [...] Read more.
Measuring and simulating territorial space conflicts (TSCs) for the achievement of carbon neutrality is of critical significance for formulating regional sustainable utilization of territorial resources that are inherently green and low-carbon. This study develops a TSC evaluation framework: “conflict identification–scenario simulation–carbon effect assessment”. Focusing on Jiangsu Province, we clarify the evolutionary mechanism of TSCs under carbon neutrality goals, providing a scientific basis for high-quality regional development and low-carbon spatial governance. Results show that Jiangsu’s average TSC level was categorized as “strong conflict” (0.66) during 2005–2020. For 2030, four scenarios (natural development, economic priority, ecological protection, low-carbon development) project TSCs shifting from scattered to point-like distribution, concentrating in key core areas. Corresponding projected average carbon neutrality indices are 1.10, 1.11, 1.33, and 1.11, respectively. Under the low-carbon scenario, grid units with serious TSCs decreased by 4.53% compared to 2020—higher than natural development and economic priority scenarios, but lower than the ecological protection scenario (12.45%). Consequently, the low-carbon development scenario can optimally mitigate land use conflicts while maintaining carbon balance. This research provides robust data support for Jiangsu’s sustainable coordinated development and informs efficient land use and regional ecological security. Full article
Show Figures

Figure 1

26 pages, 1669 KB  
Article
Does the National Key Ecological Function Zones Policy Promote Leapfrog Development in Urban–Rural Integration?
by Fanfan Li, Guangpeng Ma and Guixiang Zhang
Land 2026, 15(1), 128; https://doi.org/10.3390/land15010128 - 9 Jan 2026
Abstract
Integrated urban–rural development is an inevitable requirement of regional development. Developing green industries based on rural ecological resources are important approaches to promoting urban–rural integration. The National Key Ecological Function Zones (NKEFZ) policy focuses on safeguarding national ecological security. However, whether the resulting [...] Read more.
Integrated urban–rural development is an inevitable requirement of regional development. Developing green industries based on rural ecological resources are important approaches to promoting urban–rural integration. The National Key Ecological Function Zones (NKEFZ) policy focuses on safeguarding national ecological security. However, whether the resulting ecological improvements can, through the realization of ecological value, provide momentum for urban–rural integration remains unclear in existing research. This study uses a sample of 284 prefecture-level cities in China from 2006 to 2023, treating the establishment of NKEFZ as a quasi-natural experiment. First, the study constructs a “Driving-constraining” bidirectional theoretical framework, and then uses the entropy weight method to measure the level of urban–rural integration, which is selected by 18 sub-indicators from the populational, spatial, and economic dimensions. Finally, a multi-period difference-in-differences (DID) model is constructed to test the impact of NKEFZ on urban–rural integration, and the transmission mechanisms and heterogeneity are explored. The results indicate the following: (1) Following the implementation of the NKEFZ policy, it shows an overall inhibitory trend on urban–rural integration, consequently slowing the progress of urban–rural integration. The inhibitory effects are particularly pronounced in spatial and economic integration dimensions, and these results are robust. (2) Constrained industrial upgrading and increased fiscal pressure on local governments are the main mechanisms behind the slowed urban–rural integration. (3) Due to differences in policy coverage and the heterogeneous characteristics of city locations, the negative effects of the policy are more pronounced in cities with a high proportion of key ecological function counties, as well as in prefecture-level cities in central and western regions. Based on these findings, it is suggested to promote high-quality urban–rural integration in eco-priority areas through pathways such as developing ecological industries, improving the ecological compensation system, and clarifying central–local collaborative governance. Full article
Show Figures

Figure 1

19 pages, 23779 KB  
Article
Unveiling the Genomic Landscape of Yan Goose (Anser cygnoides): Insights into Population History and Selection Signatures for Growth and Adaptation
by Shangzong Qi, Zhenkang Ai, Yuchun Cai, Yang Zhang, Wenming Zhao and Guohong Chen
Animals 2026, 16(2), 194; https://doi.org/10.3390/ani16020194 - 8 Jan 2026
Abstract
The Yan goose (YE, Anser cygnoides) is a valuable indigenous poultry genetic resource, renowned for its superior meat quality and environmental adaptability. Despite its economic importance, the genetic basis underlying these adaptive traits remains unclear. In this study, we employed whole-genome resequencing [...] Read more.
The Yan goose (YE, Anser cygnoides) is a valuable indigenous poultry genetic resource, renowned for its superior meat quality and environmental adaptability. Despite its economic importance, the genetic basis underlying these adaptive traits remains unclear. In this study, we employed whole-genome resequencing (WGS) to perform high-throughput sequencing on a conserved population of 15 samples. Bioinformatic analyses were conducted to systematically evaluate the population’s genetic structure, and a genome-wide scan for selection signals related to economically significant traits was performed using the integrated haplotype score (iHS) method. An average of 4.43 million high-quality SNPs were identified, which were predominantly located in intergenic and intronic regions. Population structure analysis revealed a close genetic relationship within the conserved population of YE, with no significant lineage stratification observed. Pairwise sequentially Markovian coalescent (PSMC) analysis indicated that the YE underwent a severe genetic bottleneck during the Last Glacial Maximum (LGM), followed by gradual population recovery in the early Neolithic period. Genome-wide selection signal scanning identified multiple genomic regions under strong selection, annotating key genes associated with growth and development (e.g., GHRL, AKT1, and MAPK3), lipid deposition (e.g., PLPP4, SAMD8, and LPIN1), and disease resistance and stress resilience (e.g., TP53, STAT3). Functional enrichment analysis revealed significant enrichment of these genes in pathways related to glycerophospholipid metabolism (p < 0.01), purine metabolism (p < 0.01), and immune response (p < 0.01). This study not only provides a theoretical foundation for the scientific conservation of the YE germplasm resources but also offers valuable genomic resources for identifying functional genes underlying important economic traits and advancing molecular breeding strategies. Full article
(This article belongs to the Special Issue Genetic Diversity and Conservation of Local Poultry Breeds)
Show Figures

Figure 1

13 pages, 892 KB  
Article
Streetscapes and Street Livability: Advancing Sustainable and Human-Centered Urban Environments
by Walaa Mohamed Metwally
Sustainability 2026, 18(2), 667; https://doi.org/10.3390/su18020667 - 8 Jan 2026
Abstract
Street livability is widely recognized as a fundamental indicator of urban livability. Despite growing global agendas advocating human-centered, sustainable, and smart cities, the microscale implementation of streetscape interventions remains limited and non-integrated. This gap is particularly evident in developing cities’ contexts where policy-level [...] Read more.
Street livability is widely recognized as a fundamental indicator of urban livability. Despite growing global agendas advocating human-centered, sustainable, and smart cities, the microscale implementation of streetscape interventions remains limited and non-integrated. This gap is particularly evident in developing cities’ contexts where policy-level frameworks fail to translate into tangible street-level transformations. Responding to this challenge, this paper investigates how streetscape components can enhance everyday street livability. The study aims to explore opportunities for improving street livability through the utilization of three core streetscape components: vegetation, street furniture, and lighting. The discourse on street livability identifies vegetation, street furniture, and lighting as the primary drivers of high-quality urban spaces. Scholarly research suggests that these micro-interventions are most effective when viewed through the combined lenses of human-centered design, environmental sustainability, and smart city technology. While the literature indicates that integrating climate-responsive greenery and renewable energy systems can enhance social interaction and safety, it also highlights significant implementation hurdles. Specifically, researchers point to policy limitations, technical feasibility in developing nations, and the socio-economic threat of green gentrification. Despite these complexities, microscale streetscape improvements remain a vital strategy for fostering inclusive and resilient cities. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

24 pages, 445 KB  
Article
Digital Platform Capability and Enterprise Digital Transformation in Azerbaijan’s Organic Product Value Chain
by Mubariz Mammadli, Natavan Namazova and Zivar Zeynalova
Sustainability 2026, 18(2), 634; https://doi.org/10.3390/su18020634 - 8 Jan 2026
Abstract
Based on survey data from 320 Azerbaijani enterprises operating across the organic product value chain—including producers, sellers, and key supporting firms such as logistics, financial, and ICT service providers—this study investigates how digital platform capability influences firms’ innovation and performance outcomes and their [...] Read more.
Based on survey data from 320 Azerbaijani enterprises operating across the organic product value chain—including producers, sellers, and key supporting firms such as logistics, financial, and ICT service providers—this study investigates how digital platform capability influences firms’ innovation and performance outcomes and their perceived high-quality economic development within an emerging digital economy context. Four constructs—Digital Platform Capability, Enterprise Digital Transformation, Innovation and Performance Outcomes, and Perceived High-Quality Economic Development—are measured using multi-item Likert scales. Confirmatory factor analysis and Structural Equation Modeling (SEM) are employed to test the proposed relationships. The results show that Digital Platform Capability exerts a strong positive effect on Innovation and Performance Outcomes (β = 0.574) and on Perceived High-Quality Economic Development (β = 0.512). In addition, Innovation and Performance Outcomes have a direct positive impact on Perceived High-Quality Economic Development (β = 0.313). Mediation analysis further indicates that Enterprise Digital Transformation partially mediates this relationship, transmitting approximately 52% of the total effect of Innovation and Performance Outcomes on Perceived High-Quality Economic Development. These findings underscore digital transformation as a key structural mechanism through which firm-level innovation and performance contribute to broader perceptions of high-quality economic development. The study provides novel empirical evidence from Azerbaijan and offers practical implications for digital policy design and enterprise strategies aimed at promoting innovation-driven, inclusive, and sustainable growth. Full article
Show Figures

Figure 1

19 pages, 922 KB  
Review
Poultry Farming in the Republic of Moldova: Current Trends, Best Practices, Product Quality Assurance, and Sustainable Development Strategies
by Larisa Caisin and Elena Scripnic
Sustainability 2026, 18(2), 626; https://doi.org/10.3390/su18020626 - 7 Jan 2026
Abstract
Poultry farming ranks among the most rapidly expanding sectors of global agriculture, significantly contributing to food availability, improved dietary quality, and economic stability in rural areas. The sector’s efficiency stems from short production cycles and the ability to convert agricultural by-products into high-quality [...] Read more.
Poultry farming ranks among the most rapidly expanding sectors of global agriculture, significantly contributing to food availability, improved dietary quality, and economic stability in rural areas. The sector’s efficiency stems from short production cycles and the ability to convert agricultural by-products into high-quality protein, energy, and essential nutrients. Despite these benefits, the growing scale of poultry production raises serious environmental concerns, including intensive use of land and water, high feed demand, and impacts on greenhouse gas emissions, soil nutrient balance, and water quality. This study examines the poultry industry in the Republic of Moldova, where it forms a crucial component of the agricultural economy. Drawing on recent statistical data and scientific literature, the article reviews production dynamics, farm structures, and technological adoption, offering a comprehensive overview of the sector’s current state. The findings highlight both the sector’s essential role in strengthening food security and rural livelihoods and its susceptibility to resource limitations and environmental pressures. The analysis emphasizes the importance of implementing precision livestock farming technologies, improving biosecurity, and promoting environmentally sustainable practices as key strategies for long-term sector resilience. These insights aim to support policymakers and stakeholders in developing effective strategies to ensure a competitive and sustainable poultry industry in Moldova. Full article
(This article belongs to the Special Issue Agriculture, Food, and Resources for Sustainable Economic Development)
Show Figures

Figure 1

23 pages, 317 KB  
Article
Corporate Financialization and Agricultural Supply Chain Resilience: Evidence from Agricultural Listed Companies
by Lingling Zhang, Yufeng Wang, Xiangshang Yuan and Rui Chen
Sustainability 2026, 18(2), 617; https://doi.org/10.3390/su18020617 - 7 Jan 2026
Abstract
Against the backdrop of heightened global economic uncertainty and increasingly frequent risks in agricultural supply chains, enhancing agricultural supply chain resilience has become a critical issue for safeguarding national food security and promoting high-quality agricultural development. As key actors within agricultural supply chains, [...] Read more.
Against the backdrop of heightened global economic uncertainty and increasingly frequent risks in agricultural supply chains, enhancing agricultural supply chain resilience has become a critical issue for safeguarding national food security and promoting high-quality agricultural development. As key actors within agricultural supply chains, the impact of financialization—defined as the shift of resources to non-core financial assets—among agricultural listed firms on supply chain resilience warrants systematic examination. Using panel data from 165 Chinese agricultural listed firms (2010–2022), this study empirically investigates the impact of corporate financialization on agricultural supply chain resilience and its underlying mechanisms. An entropy-weighted composite index based on 16 parameters is used to assess agricultural supply chain resilience. It is composed of three dimensions: resistance capability, recovery capacity, and renewal capacity. The results show that: Financialization significantly undermines supply chain resilience, with the most substantial negative effect on recovery capacity, followed by renewal capacity, and the weakest on resistance capacity. Heterogeneity analyses show more pronounced negative effects among non-state-owned enterprises, non-primary sector firms, and capital-intensive enterprises. Financing constraints and capital expenditures partially mediate the negative relationship between financialization and resilience, while profitability persistence exacerbates the crowding-out effect. These findings suggest that policymakers should strike a compromise between reducing excessive financialization and strengthening agricultural supply chains. While prudently guiding agricultural firms’ financial asset allocation, greater emphasis should be placed on developing a diverse and coordinated industrial support system, thereby diverting financial capital away from crowding out core operations and toward effectively serving the real economy, ultimately contributing to national food security and agricultural modernization. Full article
29 pages, 4229 KB  
Article
Horizontal Ecological Compensation for Ecosystem Services Based on the Perspective of Flood-Sediment Transport, Eco-Environmental and Socio-Economic Subsystems
by Ni Geng, Guiliang Tian and Hengquan Zhang
Land 2026, 15(1), 111; https://doi.org/10.3390/land15010111 - 7 Jan 2026
Abstract
The uncoordinated water–sediment relationship, fragile eco-environment and unbalanced economic development in the Wei River Basin (WRB) pose serious challenges to its high-quality development. Most existing studies focus on static structures or single elements, making it difficult to systematically reveal the complex interrelationships among [...] Read more.
The uncoordinated water–sediment relationship, fragile eco-environment and unbalanced economic development in the Wei River Basin (WRB) pose serious challenges to its high-quality development. Most existing studies focus on static structures or single elements, making it difficult to systematically reveal the complex interrelationships among ecosystem services (ESs) supply, transmission and demand. To address this issue, this paper innovatively combines the “system perspective” with the “flow network model”. From the perspective of flood-sediment transport, eco-environmental and socio-economic (FES) subsystems, we take the WRB as its research object and systematically analyzes the supply–demand relationship of ESs, the pathways of the ESs flows and ecological compensation (EC) strategies at multiple scales. By constructing a supply–demand assessment model for six types of ESs combined with the water-related flows model, the enhanced two-step floating catchment area method and the gravity model, this paper simulates the ESs flows driven by different transmission media (water, road and atmosphere). The results showed the following: (1) a significant spatial mismatch was observed between the high-supply areas at the northern foothills of the Qinling Mountains and the high-demand areas in the Guanzhong Plains. Furthermore, the degree of this mismatch increased with decreasing scale. (2) The pathways of different ESs flows were influenced by their respective transmission media. The water-related flows passed through areas along the Wei River and the Jing River. The carbon sequestration flows were identified in the upper reaches of the Luo River and between the core urban agglomerations of the Guanzhong Plains. The crop production flows were significantly influenced by the scale of urban crop demand, radiating outward from Xi’an City. (3) At the county and watershed scales, The EC fund pools of 7.5 billion yuan and 2.6 billion yuan were formed, respectively. These EC funds covered over 90% of the areas. These findings verify the applicability of the “FES subsystems” framework for multi-scale EC and provide a theoretical basis for developing an integrated EC mechanism across the entire basin. Full article
Show Figures

Figure 1

25 pages, 1026 KB  
Article
A Comparative CVM-Based Evaluation of Non-Use Values for the Zhongjieshan and Liuheng Marine Ranches in China
by Yutao Li, Shu Jiang and Yingtien Lin
Sustainability 2026, 18(2), 608; https://doi.org/10.3390/su18020608 - 7 Jan 2026
Abstract
This study uses the Contingent Valuation Method (CVM), a quantitative approach, with interval regression and Ordinary Least Squares (OLS) models to assess the non-use values of the Zhongjieshan and Liuheng Marine Ranches. The aim of the study is to quantify the monetary value [...] Read more.
This study uses the Contingent Valuation Method (CVM), a quantitative approach, with interval regression and Ordinary Least Squares (OLS) models to assess the non-use values of the Zhongjieshan and Liuheng Marine Ranches. The aim of the study is to quantify the monetary value of non-market benefits, examine socioeconomic influences on stakeholders’ Willingness to Pay (WTP), and provide a basis for ecological compensation mechanisms. Zhongjieshan’s annual non-use value is estimated at 28.99–30.81 million CNY (Chinese Yuan) (median WTP 74.33–78.99 CNY per person), while Liuheng’s value is higher at 108–111 million CNY (median WTP 150.20–153.89 CNY per person), suggesting greater ecological and recreational potential at Liuheng. The results show robust model performance, with minimal WTP differences. WTP for Liuheng is primarily influenced by income and environmental awareness, while Zhongjieshan shows a distance-decay effect. Visitor profiles reveal that Zhongjieshan attracts younger, moderately educated visitors, while Liuheng draws more highly educated, economically diverse groups. These findings suggest that Zhongjieshan should prioritize community-based co-management, while Liuheng should focus on high-quality, technology-driven ecological leisure development. The study also emphasizes the need for targeted awareness campaigns and supports the creation of diversified ecological compensation mechanisms beyond government funding. Full article
(This article belongs to the Section Sustainable Oceans)
Show Figures

Figure 1

35 pages, 25567 KB  
Article
Origin Warehouses as Logistics or Supply Chain Centers: Comparative Analysis of Business Models in Sustainable Agri-Food Supply Chains
by Yiwen Gao, Mengru Shen, Kai Yang, Xifu Wang, Lijun Jiang and Yang Yao
Agriculture 2026, 16(2), 147; https://doi.org/10.3390/agriculture16020147 - 7 Jan 2026
Viewed by 20
Abstract
Origin warehouses, positioned at the critical “first mile” of the agri-food supply chain, profoundly influence supply chain power structures and profit allocation, as well as supply chain stability and sustainable development. To explore the role of origin warehouses in the agri-food supply chain, [...] Read more.
Origin warehouses, positioned at the critical “first mile” of the agri-food supply chain, profoundly influence supply chain power structures and profit allocation, as well as supply chain stability and sustainable development. To explore the role of origin warehouses in the agri-food supply chain, this study develops a three-level game model comprising a “planter–origin warehouse operator–seller” framework. Notably, this study conceptualizes the dual-functional “origin warehouse” as observed in practice, proposing two theoretical modes: the Logistics Center (LC) and the Supply Chain Center (SCC). By treating quality level, service level, and selling price decisions as endogenous variables, this study further reveals the interconnected decision-making mechanisms under different operational modes. Overall, the LC mode performs better in quality-driven markets, generating higher system profits and greater social welfare, whereas the SCC mode is superior when consumers are more price-sensitive or place greater value on service. Based on these findings, this study provides decision-making guidance for origin warehouse operators aiming to select the optimal mode under varying market conditions and proposes targeted coordination strategies to promote the high-quality development and economic sustainability of the agri-food supply chain. Full article
(This article belongs to the Special Issue Building Resilience Through Sustainable Agri-Food Supply Chains)
Show Figures

Figure 1

7 pages, 820 KB  
Proceeding Paper
Potential of Open-Pollinated Varieties (OPVs) in Chilli Crop Breeding—A Review
by Israr Ali, Muhammad Azam Khan, Muhammad Tahir Akram, Rashid Mehmood Rana, Inaba Hawraa, Hina Nawaz and Feroz Ahmed Tipu
Biol. Life Sci. Forum 2025, 51(1), 11; https://doi.org/10.3390/blsf2025051011 - 6 Jan 2026
Abstract
The research for crop improvement is a continuous process that enhances plant quality, yield, and ameliorates their adaptability to changing climatic conditions. Chilli is cultivated worldwide as a vegetable, spice, or natural colour additive and is an economically and medicinally important crop. A [...] Read more.
The research for crop improvement is a continuous process that enhances plant quality, yield, and ameliorates their adaptability to changing climatic conditions. Chilli is cultivated worldwide as a vegetable, spice, or natural colour additive and is an economically and medicinally important crop. A basic requirement for crop improvement in breeding programmes is the presence of genetic diversity within the crop. Smallholder farmers of chilli usually face challenges in acquiring commercial hybrid seeds because of their high cost and the need for annual purchases. Open-pollinated varieties (OPVs) can serve as a sustainable alternative that provides broader genetic variability, allowing adaptation to local growing conditions, and enabling farmers to save seeds for successive planting season. These characteristics make OPVs economically viable and valuable genetic resources for future chilli cultivation and breeding programmes. This review highlights the potential of OPVs in promoting sustainable chilli cultivation, enhancing genetic diversity, and supporting breeding to develop resilient and economically viable cultivars. Full article
Show Figures

Figure 1

10 pages, 1644 KB  
Proceeding Paper
Heat Stress in Chillies: Integrating Physiological Responses and Heterosis Breeding Approaches for Enhanced Resilience
by Inaba Hawraa, Muhammad Azam Khan, Muhammad Tahir Akram, Rashid Mehmood Rana, Feroz Ahmed Tipu, Israr Ali, Hina Nawaz and Muhammad Hashir Khan
Biol. Life Sci. Forum 2025, 51(1), 12; https://doi.org/10.3390/blsf2025051012 - 6 Jan 2026
Viewed by 15
Abstract
Chilli (Capsicum annuum) is a popular spice and vegetable crop of significant economic importance that is cultivated worldwide in warm and humid climatic zones. Although chilli is a thermophilic crop, its quality and yield potential are significantly affected due to various [...] Read more.
Chilli (Capsicum annuum) is a popular spice and vegetable crop of significant economic importance that is cultivated worldwide in warm and humid climatic zones. Although chilli is a thermophilic crop, its quality and yield potential are significantly affected due to various abiotic factors, including extremely fluctuating temperatures beyond the optimum temperatures (18–30 °C). Global warming and anthropogenic activities lead to adverse climatic changes, imposing severe stress on growth, development, and productivity. High temperatures above 43–45 °C adversely affect chilli crops, especially during the reproductive stages, by causing immature fruit dropping, poor seed vigour, reduced number of flowers, flower abscission, aborted reproductive organs, reduced fruit set, and significant yield loss by 50%. Therefore, to reduce quantitative and qualitative losses, heat management is necessary from April to June in Pakistan, when the temperature rises beyond 40 °C. For heat management, the hybridisation of heat-resilient and high-yielding genotypes to develop heat-tolerant high-yielding hybrids appears to be a rational approach. These genetically improved hybrids inherit such characteristics that assist in maintaining vigorous growth, fruit quality, and stable yield without significant yield losses even under heat-stressed conditions. Hence, the thermotolerant chilli hybrids developed through hybridisation help to satisfy the escalating demand for chilli and guarantee the financial stability of farmers. Full article
Show Figures

Figure 1

22 pages, 1115 KB  
Review
Sustainable Cellulose Production from Agro-Industrial Waste: A Comprehensive Review
by Akmaral Darmenbayeva, Reshmy Rajasekharan, Zhanat Idrisheva, Roza Aubakirova, Zukhra Dautova, Gulzhan Abylkassova, Manira Zhamanbayeva, Irina Afanasenkova and Bakytgul Massalimova
Polymers 2026, 18(2), 153; https://doi.org/10.3390/polym18020153 - 6 Jan 2026
Viewed by 100
Abstract
The growing demand for sustainable and renewable materials has intensified interest in agro-industrial waste as an alternative source of cellulose. This review critically examines current approaches to cellulose production from major agro-industrial residues, including cereal straw, corn residues, rice waste, sugarcane bagasse, and [...] Read more.
The growing demand for sustainable and renewable materials has intensified interest in agro-industrial waste as an alternative source of cellulose. This review critically examines current approaches to cellulose production from major agro-industrial residues, including cereal straw, corn residues, rice waste, sugarcane bagasse, and oilseed by-products. Emphasis is placed on the relationship between feedstock composition and extraction efficiency, highlighting how lignin distribution, hemicellulose content, and mineral impurities influence pretreatment severity, cellulose yield, and process sustainability. The review systematically analyzes chemical, enzymatic, and mechanical processing routes, with particular attention being paid to pretreatment strategies, fibrillation intensity, and yield variability. Beyond cellulose recovery, key sustainability indicators—such as energy demand, water and chemical consumption, waste generation, and chemical recovery—are evaluated to provide a system-level perspective on process efficiency. The analysis demonstrates that cellulose yield alone is an insufficient criterion for sustainable process design and must be considered alongside environmental and techno-economic metrics. Advanced applications of agro-waste-derived cellulose are discussed using a feedstock-driven approach, showing that high functional performance can often be achieved with moderately processed cellulose tailored to specific end uses. Finally, the review addresses challenges related to feedstock heterogeneity, mineral management, standardization, and industrial scale-up, underscoring the importance of biorefinery integration, closed-loop resource management, and harmonized quality descriptors. These insights provide a foundation for the development of scalable and sustainable cellulose production pathways based on agro-industrial waste. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

20 pages, 1793 KB  
Article
Multi-Time Scale Optimal Scheduling of Aluminum Electrolysis Parks Considering Production Economy and Operational Safety Under High Wind Power Integration
by Chiyin Xiao, Hao Zhong, Xun Li, Zhenhui Ouyang and Yongjia Wang
Energies 2026, 19(1), 278; https://doi.org/10.3390/en19010278 - 5 Jan 2026
Viewed by 82
Abstract
To address the power fluctuation challenges associated with high-proportion wind power integration and enhance the source–load coordination capability of aluminum electrolysis parks, this paper proposes a multi-time scale collaborative regulation strategy. Based on the production characteristics and regulation principles of aluminum electrolysis loads, [...] Read more.
To address the power fluctuation challenges associated with high-proportion wind power integration and enhance the source–load coordination capability of aluminum electrolysis parks, this paper proposes a multi-time scale collaborative regulation strategy. Based on the production characteristics and regulation principles of aluminum electrolysis loads, a multi-objective optimization model for regulating loads with multiple potline series is established, considering both production revenue and temperature penalties. On this basis, a multi-time scale optimal scheduling model is developed for the park, involving day-ahead commitment optimization, intraday rolling adjustment, and real-time dynamic responses. Case studies based on actual data demonstrate that the proposed strategy effectively alleviates wind power fluctuations and enhances local consumption capacity. Compared to the baseline scenario without load regulation, the integration of electrolytic aluminum load across day-ahead, intra-day, and real-time stages reduces wind curtailment by approximately 40.1%, 52.5%, and 74.6% in successive scenarios, respectively, while the total operating cost shows a decreasing trend with reductions of about 1.15%, 0.63%. This facilitates economical and high-quality operation while maintaining temperature stability for the aluminum electrolysis production process. Full article
Show Figures

Figure 1

32 pages, 25756 KB  
Article
Study on Spatio-Temporal Changes and Driving Factors of Soil and Water Conservation Ecosystem Services in the Source Region of the Yellow River
by Xiaoqing Li, Xingnian Zhang, Keding Sheng, Fengqiuli Zhang, Tongde Chen and Binzu Yan
Water 2026, 18(1), 128; https://doi.org/10.3390/w18010128 - 5 Jan 2026
Viewed by 130
Abstract
This study takes the source region of the Yellow River from 2000 to 2024 as the research area, and integrates multi-source remote sensing, long-term meteorological observation, and land use data from 2000 to 2024. Using GIS spatial analysis, the standard ellipse model, and [...] Read more.
This study takes the source region of the Yellow River from 2000 to 2024 as the research area, and integrates multi-source remote sensing, long-term meteorological observation, and land use data from 2000 to 2024. Using GIS spatial analysis, the standard ellipse model, and a geographic detector, this study systematically depicts the spatio-temporal heterogeneity and multi-scale evolution trend of soil and water conservation services, and then quantifies the spatial differentiation of the contribution rate of climate fluctuation, land use transformation, and human activity intensity to service change. The results showed the following: (1) The land use pattern in the source region of the Yellow River showed a one-way transformation of “grassland dominated, forest land increased alone, and the rest decreased”. The net increase in forest land 204.3 km2 was all from the transformation of grassland. The vegetation coverage increased by 9.9%, and the low-value area of soil and water conservation services in the northwest continued to expand. (2) The overall moving distance of the center of gravity of soil and water conservation service capacity is not significant compared with the spatial scale of the source area of the Yellow River. The standard deviation ellipse of each year also did not show systematic and large changes in area, shape, or direction. (3) Annual mean temperature (Q = 0.590) and vegetation coverage (Q = 0.527) are the most influential single factors, while the interaction between annual mean temperature and precipitation (bidirectional enhancement) is the most stable synergistic driving combination. The single-factor Q values of topography and human activities were <0.10. (4) Climate and economic factors are the key factors driving the spatial differentiation of soil and water conservation service capacity, and the role of each driving factor has an optimal range to reduce the risk of soil erosion. The optimal range of population density is 7~9 person/km2, the optimal range of average GDP is 11,900~14,100 yuan/km2, the optimal range of annual average temperature is 1.71~3.47 °C, the optimal range of annual precipitation is 682~730 mm, the optimal range of vegetation coverage is 81.7~100%, and the optimal range of altitude is 3390~3740 m. The optimal range of slope is 18.3~24.3°. The optimal range of soil moisture is 26.7~29.4%. The optimal range of grazing intensity is 0.352~0.652. The study proposes countermeasures such as strict control of development in high-value areas of soil and water conservation services and key ecological restoration in low-value areas, the establishment of breeding bases and catchment areas in low-precipitation areas to cope with climate change, the optimization of grazing strategies, so as to provide scientific support for the stability of alpine grassland ecosystem services, and the high-quality development of the Yellow River Basin. Full article
(This article belongs to the Special Issue Soil Erosion and Soil and Water Conservation, 2nd Edition)
Show Figures

Figure 1

Back to TopTop