Sustainable Cellulose Production from Agro-Industrial Waste: A Comprehensive Review
Abstract
1. Introduction
2. Agro-Industrial Waste as a Source of Cellulose
3. Technologies for Processing Agro-Industrial Waste into Cellulose
3.1. Pretreatment Strategies for Lignocellulosic Disruption
3.2. Cellulose Extraction and Enzyme-Assisted Processing
3.3. Mechanical Processing and Fibrillation
3.4. Yield Variability and Comparative Considerations
4. Sustainability and Process Efficiency in Cellulose Production
4.1. Material and Energy Efficiency of Cellulose Extraction
4.2. Water and Chemical Footprint of Processing Routes
4.3. Waste Streams, Effluents, and Biorefinery-Oriented Sustainability
- Reduction in chemically intensive and waste-generating steps;
- Integration of side-stream valorization within biorefinery concepts; and
- Implementation of waste and effluent management strategies that are compatible with the compositional characteristics of agricultural feedstocks.
4.4. Integrative Considerations and Transition to Industrial Feasibility
5. Advanced Applications of Agro-Waste-Derived Cellulose
- the cellulose form is matched to the end-use (“fit-for-purpose” processing),
- the conversion route is tailored to feedstock-specific constraints (ash/silica for rice wastes, compositional variability for straws, extractives for oilseed residues), because these factors influence purification demand, fibrillation energy, and product reproducibility.
5.1. Oat and Wheat Straw-Derived Cellulose
5.2. Corn Residues-Derived Cellulose
5.3. Rice Waste-Derived Cellulose
5.4. Sugarcane Bagasse-Derived Cellulose
5.5. Oilseed Residues-Derived Cellulose
6. Challenges, Standardization, and Scale-Up Outlook
- Solids content;
- Energy cost and electricity carbon intensity;
- Chemical recovery efficiency;
- Robustness to feedstock variability.
- Feedstock-specific severity control rather than “maximum extraction”;
- High-solids, high-throughput unit operations with quantified energy–property trade-offs;
- Demonstrably closed water/chemical loops (or clear recovery/valorization pathways for unavoidable side streams);
- standardized quality descriptors enabling reproducibility, procurement specifications, and regulatory confidence.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Nargotra, P.; Sharma, V.; Tsai, M.-L.; Hsieh, S.-L.; Dong, C.-D.; Wang, H.-M.D.; Kuo, C.-H. Recent Advancements in the Valorization of Agro-Industrial Food Waste for the Production of Nanocellulose. Appl. Sci. 2023, 13, 6159. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Lin, Y.; Qin, Y.; He, R.; Wang, M.; Sun, Q.; Peng, Y. Nanocellulose from Agro-Industrial Wastes: A Review on Sources, Production, Applications, and Current Challenges. Food Res. Int. 2024, 192, 114741. [Google Scholar] [CrossRef] [PubMed]
- Faluyi, E.O.; Rodríguez-Jasso, R.M.; Aguilar, C.N.; Belmares-Cerda, R.E.; Cerqueira, M.A.; Ruiz, H.A. Nanocellulose from Agro-Industrial Waste: Green Extraction and Application in the Food Industry. In Reducing Food Loss and Waste; Aguilar-Zárate, P., Haghi, A.K., Gómez-García, R., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 389–417. ISBN 978-3-031-91692-2. [Google Scholar]
- Saikia, P. Cellulose and Its Derivatives: Fundamental Chemistry, Structure, Properties, and Applications. In Cellulose-Based Hydrogels; Elsevier: Amsterdam, The Netherlands, 2025; pp. 1–21. ISBN 978-0-443-22049-4. [Google Scholar]
- Abdul Khalil, H.P.S.; Davoudpour, Y.; Islam, M.N.; Mustapha, A.; Sudesh, K.; Dungani, R.; Jawaid, M. Production and Modification of Nanofibrillated Cellulose Using Various Mechanical Processes: A Review. Carbohydr. Polym. 2014, 99, 649–665. [Google Scholar] [CrossRef] [PubMed]
- Kargupta, W.; Stevenson, T.; Sharman, S.; Tanner, J.; Batchelor, W. Sustainable Production of Nanocellulose: Technoeconomic Assessment, Energy Savings and Scalability. J. Clean. Prod. 2023, 425, 138748. [Google Scholar] [CrossRef]
- Dabhi, M.; Dange, H.; Bonde, C.; Bonde, S. A Comprehensive Review on Sustainable Production of Nano Crystalline Cellulose from Sugarcane Bagasse and Its Applications. Chem. Eng. Commun. 2025, 212, 1437–1451. [Google Scholar] [CrossRef]
- Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A New Family of Nature-Based Materials. Angew. Chem. Int. Ed. 2011, 50, 5438–5466. [Google Scholar] [CrossRef]
- Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chem. Soc. Rev. 2011, 40, 3941. [Google Scholar] [CrossRef]
- Trache, D.; Tarchoun, A.F.; Derradji, M.; Hamidon, T.S.; Masruchin, N.; Brosse, N.; Hussin, M.H. Nanocellulose: From Fundamentals to Advanced Applications. Front. Chem. 2020, 8, 392. [Google Scholar] [CrossRef]
- Fahma, F.; Febiyanti, I.; Lisdayana, N.; Arnata, I.W.; Sartika, D. Nanocellulose as a New Sustainable Material for Various Applications: A Review. Arch. Mater. Sci. Eng. 2021, 2, 49–64. [Google Scholar] [CrossRef]
- Norizan, M.N.; Shazleen, S.S.; Alias, A.H.; Sabaruddin, F.A.; Asyraf, M.R.M.; Zainudin, E.S.; Abdullah, N.; Samsudin, M.S.; Kamarudin, S.H.; Norrrahim, M.N.F. Nanocellulose-Based Nanocomposites for Sustainable Applications: A Review. Nanomaterials 2022, 12, 3483. [Google Scholar] [CrossRef]
- Ahsan, S.; Rabbi, M.S. Recent Advancement in Nanocellulose Synthesis, Characterization and Application: A Review. J. Polym. Sci. Eng. 2024, 7, 4496. [Google Scholar] [CrossRef]
- Jiao, H.; Sun, J.; Shi, Y.; Lu, X.; Ali, S.S.; Fu, Y.; Zhang, H.; Li, Y.; Wang, Q.; Zhou, M.; et al. Recent Advances in Strategies of Nanocellulose Surface and/or Interface Engineering for Potential Biomedical Applications as Well as Its Ongoing Challenges: A Review. Cellulose 2023, 30, 6741–6771. [Google Scholar] [CrossRef]
- Han, X.; Wang, Z.; Ding, L.; Chen, L.; Wang, F.; Pu, J.; Jiang, S. Water Molecule-Induced Hydrogen Bonding between Cellulose Nanofibers toward Highly Strong and Tough Materials from Wood Aerogel. Chin. Chem. Lett. 2021, 32, 3105–3108. [Google Scholar] [CrossRef]
- Hiloidhari, M.; Bhuyan, N.; Gogoi, N.; Seth, D.; Garg, A.; Singh, A.; Prasad, S.; Kataki, R. Agroindustry Wastes: Biofuels and Biomaterials Feedstocks for Sustainable Rural Development. In Refining Biomass Residues for Sustainable Energy and Bioproducts; Elsevier: Amsterdam, The Netherlands, 2020; pp. 357–388. ISBN 978-0-12-818996-2. [Google Scholar]
- Singh, R.; Das, R.; Sangwan, S.; Rohatgi, B.; Khanam, R.; Peera, S.K.P.G.; Das, S.; Lyngdoh, Y.A.; Langyan, S.; Shukla, A.; et al. Utilisation of Agro-Industrial Waste for Sustainable Green Production: A Review. Environ. Sustain. 2021, 4, 619–636. [Google Scholar] [CrossRef]
- Singh Nee’ Nigam, P.; Gupta, N.; Anthwal, A. Pre-Treatment of Agro-Industrial Residues. In Biotechnology for Agro-Industrial Residues Utilisation; Singh Nee’ Nigam, P., Pandey, A., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 13–33. ISBN 978-1-4020-9941-0. [Google Scholar]
- Souza, M.A.D.; Vilas-Boas, I.T.; Leite-da-Silva, J.M.; Abrahão, P.D.N.; Teixeira-Costa, B.E.; Veiga-Junior, V.F. Polysaccharides in Agro-Industrial Biomass Residues. Polysaccharides 2022, 3, 95–120. [Google Scholar] [CrossRef]
- Mohamed, H.; Shah, A.M.; Song, Y. Conversion of Agro-Industrial Wastes into Value-Added Products. In Conversion of Renewable Biomass into Bioproducts; ACS Symposium Series; Sarker, M.I., Liu, L., Yadav, M.P., Yosief, H.O., Hussain, S.A., Eds.; American Chemical Society: Washington, DC, USA, 2021; Volume 1392, pp. 197–217. ISBN 978-0-8412-9814-9. [Google Scholar]
- Thongsomboon, W.; Baimark, Y.; Srihanam, P. Valorization of Cellulose-Based Materials from Agricultural Waste: Comparison between Sugarcane Bagasse and Rice Straw. Polymers 2023, 15, 3190. [Google Scholar] [CrossRef]
- Ahmad Khorairi, A.N.S.; Sofian-Seng, N.-S.; Othaman, R.; Abdul Rahman, H.; Mohd Razali, N.S.; Lim, S.J.; Wan Mustapha, W.A. A Review on Agro-Industrial Waste as Cellulose and Nanocellulose Source and Their Potentials in Food Applications. Food Rev. Int. 2023, 39, 663–688. [Google Scholar] [CrossRef]
- Enawgaw, H.; Tesfaye, T.; Yilma, K.T.; Limeneh, D.Y. Multiple Utilization Ways of Corn By-Products for Biomaterial Production with Bio-Refinery Concept; a Review. Mater. Circ. Econ. 2023, 5, 7. [Google Scholar] [CrossRef]
- Lim, K.Y.; Foo, K.Y. Facile Synthesis of Nanocrystalline Cellulose from Rice Husk by Microwave Heating: Evaluation of Morphological Architectures from the Macro-to-Nano Dimensions. Cellulose 2024, 31, 9661–9679. [Google Scholar] [CrossRef]
- Ansari, M.M.; Heo, Y.; Do, K.; Ghosh, M.; Son, Y.-O. Nanocellulose Derived from Agricultural Biowaste By-Products–Sustainable Synthesis, Biocompatibility, Biomedical Applications, and Future Perspectives: A Review. Carbohydr. Polym. Technol. Appl. 2024, 8, 100529. [Google Scholar] [CrossRef]
- Díaz, L.; Mertes, L.; Brito, A.; Rodríguez, K.E. Valorization of Energy Crop Shells as Potential Green Adsorbents for Free Fatty Acid Removal from Oils for Biodiesel Production. Biomass Conv. Bioref. 2022, 12, 655–668. [Google Scholar] [CrossRef]
- Darmenbayeva, A.; Rajasekharan, R.; Massalimova, B.; Bektenov, N.; Taubayeva, R.; Bazarbaeva, K.; Kurmanaliev, M.; Mukazhanova, Z.; Nurlybayeva, A.; Bulekbayeva, K.; et al. Cellulose-Based Sorbents: A Comprehensive Review of Current Advances in Water Remediation and Future Prospects. Molecules 2024, 29, 5969. [Google Scholar] [CrossRef] [PubMed]
- Jacome, C.; Barragán, J.; Cevallos, K.; Flores, D. Marcelo García Use of Agro-Industrial Waste from the Cereal Sector to Obtain Cellulose. J. Adv. Zool. 2023, 44, 1582–1590. [Google Scholar] [CrossRef]
- Sun, R.C.; Tomkinson, J.; Ma, P.L.; Liang, S.F. Comparative Study of Hemicelluloses from Rice Straw by Alkali and Hydrogen Peroxide Treatments. Carbohydr. Polym. 2000, 42, 111–122. [Google Scholar] [CrossRef]
- Kshirsagar, S.D.; Waghmare, P.R.; Chandrakant Loni, P.; Patil, S.A.; Govindwar, S.P. Dilute Acid Pretreatment of Rice Straw, Structural Characterization and Optimization of Enzymatic Hydrolysis Conditions by Response Surface Methodology. RSC Adv. 2015, 5, 46525–46533. [Google Scholar] [CrossRef]
- Beck-Candanedo, S.; Roman, M.; Gray, D.G. Effect of Reaction Conditions on the Properties and Behavior of Wood Cellulose Nanocrystal Suspensions. Biomacromolecules 2005, 6, 1048–1054. [Google Scholar] [CrossRef]
- Feng, X.; Yao, Y.; Xu, N.; Jia, H.; Li, X.; Zhao, J.; Chen, S.; Qu, Y. Pretreatment Affects Profits from Xylanase During Enzymatic Saccharification of Corn Stover Through Changing the Interaction Between Lignin and Xylanase Protein. Front. Microbiol. 2021, 12, 754593. [Google Scholar] [CrossRef]
- Abena, T.; Simachew, A. A Review on Xylanase Sources, Classification, Mode of Action, Fermentation Processes, and Applications as a Promising Biocatalyst. BioTechnologia 2024, 105, 273–285. [Google Scholar] [CrossRef]
- Ali, S.Z.; Nahian, M.K.; Hoque, M.E. Extraction of Cellulose from Agro-Industrial Wastes. In Extraction of Natural Products from Agro-Industrial Wastes; Elsevier: Amsterdam, The Netherlands, 2023; pp. 319–348. ISBN 978-0-12-823349-8. [Google Scholar]
- Karn, A.; Thakur, S.; Shrestha, B. Extraction and Characterization of Cellulose from Agricultural Residues: Wheat Straw and Sugarcane Bagasse. J. Nepal Chem. Soc. 2022, 43, 93–98. [Google Scholar] [CrossRef]
- Romruen, O.; Karbowiak, T.; Tongdeesoontorn, W.; Shiekh, K.A.; Rawdkuen, S. Extraction and Characterization of Cellulose from Agricultural By-Products of Chiang Rai Province, Thailand. Polymers 2022, 14, 1830. [Google Scholar] [CrossRef]
- Latibari, A.J.; Hossein, M.A.; Hosseinpour, R.; Tajdini, A. Elemental chlorine free bleaching of wheat straw chemimechanical pulp. Cellul. Chem. Technol. 2014, 48, 119–125. [Google Scholar]
- Yunus, M.A. Extraction Cellulose from Rice Husk. ICA 2019, 12, 79. [Google Scholar] [CrossRef]
- Neto, J.M.D.S.; Oliveira, L.D.S.C.; Da Silva, F.L.H.; Tabosa, J.N.; Pacheco, J.G.A.; Da Silva, M.J.V. Use of Sweet Sorghum Bagasse (Sorghum Bicolor (L.) Moench) for Cellulose Acetate Synthesis. BioResources 2019, 14, 3534–3553. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, M.; Shen, J.; He, Z.; Fatehi, P.; Ni, Y. Applications of Cellulose-Based Materials in Sustained Drug Delivery Systems. CMC 2019, 26, 2485–2501. [Google Scholar] [CrossRef]
- Kane, S.; Miller, S.A.; Kurtis, K.E.; Youngblood, J.P.; Landis, E.N.; Weiss, W.J. Harmonized Life-Cycle Inventories of Nanocellulose and Its Application in Composites. Environ. Sci. Technol. 2023, 57, 19137–19147. [Google Scholar] [CrossRef]
- Piccinno, F.; Hischier, R.; Seeger, S.; Som, C. Life Cycle Assessment of a New Technology to Extract, Functionalize and Orient Cellulose Nanofibers from Food Waste. ACS Sustain. Chem. Eng. 2015, 3, 1047–1055. [Google Scholar] [CrossRef]
- Abolore, R.S.; Jaiswal, S.; Jaiswal, A.K. Green and Sustainable Pretreatment Methods for Cellulose Extraction from Lignocellulosic Biomass and Its Applications: A Review. Carbohydr. Polym. Technol. Appl. 2024, 7, 100396. [Google Scholar] [CrossRef]
- Jönsson, L.J.; Martín, C. Pretreatment of Lignocellulose: Formation of Inhibitory by-Products and Strategies for Minimizing Their Effects. Bioresour. Technol. 2016, 199, 103–112. [Google Scholar] [CrossRef]
- Zoghlami, A.; Paës, G. Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis. Front. Chem. 2019, 7, 874. [Google Scholar] [CrossRef]
- Djafari Petroudy, S.R.; Chabot, B.; Loranger, E.; Naebe, M.; Shojaeiarani, J.; Gharehkhani, S.; Ahvazi, B.; Hu, J.; Thomas, S. Recent Advances in Cellulose Nanofibers Preparation through Energy-Efficient Approaches: A Review. Energies 2021, 14, 6792. [Google Scholar] [CrossRef]
- Yahaya, S.; Muhammad, C.; Zauro, S.; Magami, I. An In-Depth Review of Sustainable and Environmentally Friendly Pretreatment Techniques for Cellulose Extraction from Lignocellulosic Biomass and Their Uses. Anatol. J. Anesthesiol. Intensive Care 2025, 9, 13–33. [Google Scholar] [CrossRef]
- Ang, S.; Haritos, V.; Batchelor, W. Effect of Refining and Homogenization on Nanocellulose Fiber Development, Sheet Strength and Energy Consumption. Cellulose 2019, 26, 4767–4786. [Google Scholar] [CrossRef]
- Martín, C. (Ed.) Pretreatment and Bioconversion of Crop Residues; MDPI: Basel, Switzerland, 2021; ISBN 978-3-0365-1410-9. [Google Scholar]
- Woźniak, A.; Kuligowski, K.; Świerczek, L.; Cenian, A. Review of Lignocellulosic Biomass Pretreatment Using Physical, Thermal and Chemical Methods for Higher Yields in Bioethanol Production. Sustainability 2025, 17, 287. [Google Scholar] [CrossRef]
- Vu, A.N.; Nguyen, L.H.; Tran, H.-C.V.; Yoshimura, K.; Tran, T.D.; Van Le, H.; Nguyen, N.-U.T. Cellulose Nanocrystals Extracted from Rice Husk Using the Formic/Peroxyformic Acid Process: Isolation and Structural Characterization. RSC Adv. 2024, 14, 2048–2060. [Google Scholar] [CrossRef] [PubMed]
- Verdía Barbará, P.; Choudhary, H.; Nakasu, P.S.; Al-Ghatta, A.; Han, Y.; Hopson, C.; Aravena, R.I.; Mishra, D.K.; Ovejero-Pérez, A.; Simmons, B.A.; et al. Recent Advances in the Use of Ionic Liquids and Deep Eutectic Solvents for Lignocellulosic Biorefineries and Biobased Chemical and Material Production. Chem. Rev. 2025, 125, 5461–5583. [Google Scholar] [CrossRef]
- Rahman, M.M.; Choudhary, H.; Simmons, B.A.; Gladden, J.M.; Rodriguez, A. Advances in Ionic Liquid Recycling for Lignocellulosic Biomass Pretreatment. Green Chem. 2025, 27, 15338–15373. [Google Scholar] [CrossRef]
- Zhang, Z.; Harrison, M.D.; Rackemann, D.W.; Doherty, W.O.S.; O’Hara, I.M. Organosolv Pretreatment of Plant Biomass for Enhanced Enzymatic Saccharification. Green Chem. 2016, 18, 360–381. [Google Scholar] [CrossRef]
- Mandal, P.; Bhuvanesh, E.; Goel, P.; Sujit Kumar, K.; Chattopadhyay, S. Caustic Recovery from Green Liquor of Agro-Based Paper Mills Using Electrolysis. Sep. Purif. Technol. 2021, 262, 118347. [Google Scholar] [CrossRef]
- Pokhrel, D.; Viraraghavan, T. Treatment of Pulp and Paper Mill Wastewater—A Review. Sci. Total Environ. 2004, 333, 37–58. [Google Scholar] [CrossRef]
- Tran, H.; Vakkilainnen, E.K. The Kraft Chemical Recovery Process. Available online: https://docslib.org/doc/12806118/the-kraft-chemical-recovery-process (accessed on 2 January 2026).
- Bajpai, P. Generation of Waste in Pulp and Paper Mills. In Management of Pulp and Paper Mill Waste; Springer International Publishing: Cham, Switzerland, 2015; pp. 9–17. ISBN 978-3-319-11787-4. [Google Scholar]
- Ragauskas, A.J.; Williams, C.K.; Davison, B.H.; Britovsek, G.; Cairney, J.; Eckert, C.A.; Frederick, W.J.; Hallett, J.P.; Leak, D.J.; Liotta, C.L.; et al. The Path Forward for Biofuels and Biomaterials. Science 2006, 311, 484–489. [Google Scholar] [CrossRef]
- Cherubini, F.; Jungmeier, G.; Wellisch, M.; Willke, T.; Skiadas, I.; Van Ree, R.; De Jong, E. Toward a Common Classification Approach for Biorefinery Systems. Biofuels Bioprod. Biorefin. 2009, 3, 534–546. [Google Scholar] [CrossRef]
- Jeswani, H.K.; Falano, T.; Azapagic, A. Life Cycle Environmental sustainability of Lignocellulosic ethanol Produced in Integrated Thermo-chemical Biorefineries. Biofuels Bioprod. Biorefin. 2017, 11, 396. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, J. Hydrolysis of Lignocellulosic Materials for Ethanol Production: A Review. Bioresour. Technol. 2002, 83, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.H.; Farmer, T.J.; Herrero-Davila, L.; Sherwood, J. Circular Economy Design Considerations for Research and Process Development in the Chemical Sciences. Green Chem. 2016, 18, 3914–3934. [Google Scholar] [CrossRef]
- Ubando, A.T.; Felix, C.B.; Chen, W.-H. Biorefineries in Circular Bioeconomy: A Comprehensive Review. Bioresour. Technol. 2020, 299, 122585. [Google Scholar] [CrossRef]
- Cellupro Green Private Limited (CPG). Available online: https://celluprogreen.com/ (accessed on 2 January 2026).
- World Leader in Cellulose Nanocrystals & Nanocellulose Products. Available online: https://celluforce.com/ (accessed on 2 January 2026).
- Nanocellulose Market Size. Available online: https://www.polarismarketresearch.com/ (accessed on 2 January 2026).
- Do Lago, R.C.; De Oliveira, A.L.M.; Cordasso Dias, M.; De Carvalho, E.E.N.; Denzin Tonoli, G.H.; De Barros Vilas Boas, E.V. Obtaining Cellulosic Nanofibrils from Oat Straw for Biocomposite Reinforcement: Mechanical and Barrier Properties. Ind. Crops Prod. 2020, 148, 112264. [Google Scholar] [CrossRef]
- Morcillo-Martín, R.; Espinosa, E.; Rabasco-Vílchez, L.; Sanchez, L.M.; De Haro, J.; Rodríguez, A. Cellulose Nanofiber-Based Aerogels from Wheat Straw: Influence of Surface Load and Lignin Content on Their Properties and Dye Removal Capacity. Biomolecules 2022, 12, 232. [Google Scholar] [CrossRef]
- Cherezova, E.; Karaseva, Y.; Nakyp, A.; Nuriev, A.; Islambekuly, B.; Akylbekov, N. Influence of Partially Carboxylated Powdered Lignocellulose from Oat Straw on Technological and Strength Properties of Water-Swelling Rubber. Polymers 2024, 16, 282. [Google Scholar] [CrossRef]
- Babaei-Ghazvini, A.; Patel, R.; Vafakish, B.; McAlpine, S.; Acharya, B. One-Pot Catalytic Isolation of Cellulose Nanocrystals from Agricultural Biomass—Oat Hull, Wheat Straw, and Flax Straw: Physicochemical Characterization. Bioresour. Technol. 2025, 424, 132271. [Google Scholar] [CrossRef]
- Park, N.; Friest, M.A.; Liu, L. Enhancing the Properties of Polyvinyl Alcohol Films by Blending with Corn Stover-Derived Cellulose Nanocrystals and Beeswax. Polymers 2023, 15, 4321. [Google Scholar] [CrossRef]
- Silvério, H.A.; Flauzino Neto, W.P.; Pasquini, D. Effect of Incorporating Cellulose Nanocrystals from Corncob on the Tensile, Thermal and Barrier Properties of Poly(Vinyl Alcohol) Nanocomposites. J. Nanomater. 2013, 2013, 289641. [Google Scholar] [CrossRef]
- Freitas, P.A.V.; Arias, C.I.L.F.; Torres-Giner, S.; González-Martínez, C.; Chiralt, A. Valorization of Rice Straw into Cellulose Microfibers for the Reinforcement of Thermoplastic Corn Starch Films. Appl. Sci. 2021, 11, 8433. [Google Scholar] [CrossRef]
- Feng, Z.; Xu, D.; Shao, Z.; Zhu, P.; Qiu, J.; Zhu, L. Rice Straw Cellulose Microfiber Reinforcing PVA Composite Film of Ultraviolet Blocking through Pre-Cross-Linking. Carbohydr. Polym. 2022, 296, 119886. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, T.S.M.; Martins, C.C.N.; Scatolino, M.V.; Dias, M.C.; Mascarenhas, A.R.P.; Ferreira, C.B.; Bianchi, M.L.; Tonoli, G.H.D. Using Cellulose Nanofibril from Sugarcane Bagasse as an Eco-Friendly Ductile Reinforcement in Starch Films for Packaging. Sustainability 2025, 17, 4128. [Google Scholar] [CrossRef]
- Siriwong, C.; Sae-oui, P.; Chuengan, S.; Ruanna, M.; Siriwong, K. Cellulose Nanofibers from Sugarcane Bagasse and Their Application in Starch-based Packaging Films. Polym. Compos. 2024, 45, 15689–15703. [Google Scholar] [CrossRef]
- Sukyai, P.; Anongjanya, P.; Bunyahwuthakul, N.; Kongsin, K.; Harnkarnsujarit, N.; Sukatta, U.; Sothornvit, R.; Chollakup, R. Effect of Cellulose Nanocrystals from Sugarcane Bagasse on Whey Protein Isolate-Based Films. Food Res. Int. 2018, 107, 528–535. [Google Scholar] [CrossRef]
- Nguyen, T.T.V.; Tri, N.; Tran, B.A.; Dao Duy, T.; Nguyen, S.T.; Nguyen, T.-A.; Phan, A.N.; Mai Thanh, P.; Huynh, H.K.P. Synthesis, Characteristics, Oil Adsorption, and Thermal Insulation Performance of Cellulosic Aerogel Derived from Water Hyacinth. ACS Omega 2021, 6, 26130–26139. [Google Scholar] [CrossRef]
- Mirzaee, N.; Nikzad, M.; Battisti, R.; Araghi, A. Isolation of Cellulose Nanofibers from Rapeseed Straw via Chlorine-Free Purification Method and Its Application as Reinforcing Agent in Carboxymethyl Cellulose-Based Films. Int. J. Biol. Macromol. 2023, 251, 126405. [Google Scholar] [CrossRef]
- Svärd, A.; Moriana, R.; Brännvall, E.; Edlund, U. Rapeseed Straw Biorefinery Process. ACS Sustain. Chem. Eng. 2019, 7, 790–801. [Google Scholar] [CrossRef]
- Flauzino Neto, W.P.; Mariano, M.; Da Silva, I.S.V.; Silvério, H.A.; Putaux, J.-L.; Otaguro, H.; Pasquini, D.; Dufresne, A. Mechanical Properties of Natural Rubber Nanocomposites Reinforced with High Aspect Ratio Cellulose Nanocrystals Isolated from Soy Hulls. Carbohydr. Polym. 2016, 153, 143–152. [Google Scholar] [CrossRef]
- Yu, K.; Yang, L.; Zhang, S.; Zhang, N.; Wang, S.; He, Y.; Liu, H. Soy Hull Nanocellulose Enhances the Stretchability, Transparency and Ionic Conductance of Sodium Alginate Hydrogels and Application in Beef Preservation. Food Hydrocoll. 2024, 152, 109938. [Google Scholar] [CrossRef]
- Fiameni, L.; Fahimi, A.; Marchesi, C.; Sorrentino, G.P.; Zanoletti, A.; Moreira, K.; Valentim, B.; Predeanu, G.; Depero, L.E.; Bontempi, E. Phosphorous and Silica Recovery from Rice Husk Poultry Litter Ash: A Sustainability Analysis Using a Zero-Waste Approach. Materials 2021, 14, 6297. [Google Scholar] [CrossRef] [PubMed]
- Signori-Iamin, G.; Aguado, R.J.; Putaux, J.-L.; Santos, A.F.; Thielemans, W.; Delgado-Aguilar, M. Energy and Property Trade-Offs in Nanocellulose Production: High-Pressure Homogenization at Different Processing Consistencies. Chem. Eng. J. 2025, 509, 161257. [Google Scholar] [CrossRef]
- Baati, R.; Magnin, A.; Boufi, S. High Solid Content Production of Nanofibrillar Cellulose via Continuous Extrusion. ACS Sustain. Chem. Eng. 2017, 5, 2350–2359. [Google Scholar] [CrossRef]
- De Assis, C.A.; Iglesias, M.C.; Bilodeau, M.; Johnson, D.; Phillips, R.; Peresin, M.S.; Bilek, E.M.T.; Rojas, O.J.; Venditti, R.; Gonzalez, R. Cellulose Micro- and Nanofibrils (CMNF) Manufacturing—Financial and Risk Assessment. Biofuels Bioprod. Biorefin. 2018, 12, 251–264. [Google Scholar] [CrossRef]
- Tofani, G.; Jasiukaitytė-Grojzdek, E.; Grilc, M.; Likozar, B. Organosolv Biorefinery: Resource-Based Process Optimisation, Pilot Technology Scale-up and Economics. Green Chem. 2024, 26, 186–201. [Google Scholar] [CrossRef]
- ISO/TS 20477:2023; Nanotechnologies—Vocabulary for Cellulose Nanomaterial. International Organization for Standardization: Geneva, Switzerland, 2023.
- Sai, T.; Fujita, K. A Review of Pulmonary Toxicity Studies of Nanocellulose. Inhal. Toxicol. 2020, 32, 231–239. [Google Scholar] [CrossRef]
- Stoudmann, N.; Schmutz, M.; Hirsch, C.; Nowack, B.; Som, C. Human Hazard Potential of Nanocellulose: Quantitative Insights from the Literature. Nanotoxicology 2020, 14, 1241–1257. [Google Scholar] [CrossRef]



| Waste Type | Examples | Cellulose (%) | Hemicellulose (%) | Lignin (%) | Additional Components | Processing Methods | Potential Applications | Sources |
|---|---|---|---|---|---|---|---|---|
| Oat and wheat straw | Waste from grain crops after harvesting | 30–40 | 20–25 | 15–20 | Minerals (5–7%) | Acid hydrolysis, mechanical disaggregation | Biodegradable composites, biofuels, packaging | [22] |
| Corn Residues | Corn stalks, leaves, cobs | 35–40 | 30–35 | 15–20 | Extractive substances (5–10%) | Enzymatic hydrolysis, ultrasonic treatment | Biopolymers, filtration membranes | [23] |
| Rice Waste | Rice husks, rice straw | 30–35 | 20–25 | 30–35 | Silica (10–20%) | Alkaline treatment, mechanochemical destruction | Production of sorbents, composites, nanomaterials | [24] |
| Sugar Cane | Baggasse | 40–45 | 15–25 | 20–25 | Ash (2–5%) | Hydrothermal treatment, mechanical treatment | Biodegradable films, bioethanol | [25] |
| Oilseeds | Sunflower husks, soybean stalks | 35–40 | 20–25 | 25–30 | Oils (2–8%) | Alkaline treatment, steam treatment | Biocomposites, filters, carbon nanomaterials | [26] |
| Feedstock (Matches Section 2) | Product Reported in Study | Yield Definition Used by Authors | Reported Yield (%) | Key Processing Notes | Source |
|---|---|---|---|---|---|
| Wheat/oat straw (cereal straw) | Cellulosic pulp/cellulose-rich fraction | Pulp yield after alkaline pulping (mass basis reported by authors) | 53–62 | Soda–AQ pulping conditions; yield varies with severity | [37] |
| Corn residues (corncob = corn by-product) | Extracted cellulose | Yield (%) = weight of cellulose/weight of dried raw material × 100 (explicit formula) | 38.18 | Bleaching (acidified NaClO2) + alkaline extraction (KOH) | [36] |
| Rice waste (rice straw) | Extracted cellulose | Same explicit yield definition as above | 32.26 | Same bleaching + alkaline extraction route | [36] |
| Rice waste (rice husk) | Purified cellulose | Percentage of cellulose obtained after delignification and bleaching, reported relative to the initial mass of rice husk | 52.3 | Alkaline delignification with 12% NaOH at 80 °C for 3 h followed by bleaching using 2.5% NaOCl at 80 °C for 1 h; washing to neutral pH | [38] |
| Sugarcane residues (bagasse) | Pulp/cellulosic fraction | Reported pulp yield from bagasse processing (as reported in the cited study) | 39.59 | Bagasse-to-cellulose route summarized with stated yield | [39] |
| Processing Route | Main Objective | Applicable Agro-Industrial Residues | Key Features | Advantages | Limitations | Sources |
|---|---|---|---|---|---|---|
| Chemical pretreatment (alkaline, dilute acid, alkaline–peroxide) | Disruption of lignocellulosic matrix; removal of hemicellulose and partial delignification | Wheat and oat straw; corn residues; rice straw; sugarcane bagasse; oilseed residues | Solubilization of hemicellulose; weakening of lignin–carbohydrate complexes; increased cellulose accessibility | High efficiency; well-established; suitable for scale-up | Chemical consumption; wastewater generation; risk of cellulose degradation at high severity | [28,30,40] |
| Enzyme-assisted processing (cellulases, hemicellulases, xylanases) | Enhancement of polysaccharide conversion and cellulose accessibility after pretreatment | Corn residues; rice straw; cereal straw | Selective hydrolysis of polysaccharides; effectiveness strongly dependent on pretreatment and enzyme composition | Mild conditions; high selectivity; reduced chemical load | High enzyme cost; long processing times; ineffective without pretreatment | [28,30,32,33] |
| Mechanical processing (milling, grinding, refining) | Particle size reduction and cellulose fibrillation | Wheat and oat straw; sugarcane bagasse; corn residues; oilseed residues | Increased surface area; improved mass transfer; fibrillation to micro-/nanostructured cellulose | No chemical reagents; preservation of cellulose structure | High energy demand; no delignification when used alone | [34] |
| Cellulose Type | Agro-Waste Source | Key Applications | Representative Commercial Examples/Producers |
|---|---|---|---|
| Nanocellulose/cellulose pulp | Rice straw, sugarcane bagasse, fruit peels | Sustainable packaging materials, personal care, biocomposites | Cellupro Green: Cellulose Pulp @ PC, EcoPulp@CP (agro-waste derived) [65] |
| Cellulose nanocrystals (CNC) | Corn residues, other biomass | Reinforcement in coatings, packaging, composites | CelluForce (CelluRods®)—commercial CNC supplier [66] |
| Cellulose nanofibrils (CNF) | Various agro-biomass | Barrier films, biocomposites | Producers such as Borregaard AS, Stora Enso Biomaterials (market nanocellulose) [65,67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Darmenbayeva, A.; Rajasekharan, R.; Idrisheva, Z.; Aubakirova, R.; Dautova, Z.; Abylkassova, G.; Zhamanbayeva, M.; Afanasenkova, I.; Massalimova, B. Sustainable Cellulose Production from Agro-Industrial Waste: A Comprehensive Review. Polymers 2026, 18, 153. https://doi.org/10.3390/polym18020153
Darmenbayeva A, Rajasekharan R, Idrisheva Z, Aubakirova R, Dautova Z, Abylkassova G, Zhamanbayeva M, Afanasenkova I, Massalimova B. Sustainable Cellulose Production from Agro-Industrial Waste: A Comprehensive Review. Polymers. 2026; 18(2):153. https://doi.org/10.3390/polym18020153
Chicago/Turabian StyleDarmenbayeva, Akmaral, Reshmy Rajasekharan, Zhanat Idrisheva, Roza Aubakirova, Zukhra Dautova, Gulzhan Abylkassova, Manira Zhamanbayeva, Irina Afanasenkova, and Bakytgul Massalimova. 2026. "Sustainable Cellulose Production from Agro-Industrial Waste: A Comprehensive Review" Polymers 18, no. 2: 153. https://doi.org/10.3390/polym18020153
APA StyleDarmenbayeva, A., Rajasekharan, R., Idrisheva, Z., Aubakirova, R., Dautova, Z., Abylkassova, G., Zhamanbayeva, M., Afanasenkova, I., & Massalimova, B. (2026). Sustainable Cellulose Production from Agro-Industrial Waste: A Comprehensive Review. Polymers, 18(2), 153. https://doi.org/10.3390/polym18020153

