Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (195)

Search Parameters:
Keywords = high-proportion renewable power systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1146 KiB  
Review
A Review of Optimization Scheduling for Active Distribution Networks with High-Penetration Distributed Generation Access
by Kewei Wang, Yonghong Huang, Yanbo Liu, Tao Huang and Shijia Zang
Energies 2025, 18(15), 4119; https://doi.org/10.3390/en18154119 - 3 Aug 2025
Viewed by 239
Abstract
The high-proportion integration of renewable energy sources, represented by wind power and photovoltaics, into active distribution networks (ADNs) can effectively alleviate the pressure associated with advancing China’s dual-carbon goals. However, the high uncertainty in renewable energy output leads to increased system voltage fluctuations [...] Read more.
The high-proportion integration of renewable energy sources, represented by wind power and photovoltaics, into active distribution networks (ADNs) can effectively alleviate the pressure associated with advancing China’s dual-carbon goals. However, the high uncertainty in renewable energy output leads to increased system voltage fluctuations and localized voltage violations, posing safety challenges. Consequently, research on optimal dispatch for ADNs with a high penetration of renewable energy has become a current focal point. This paper provides a comprehensive review of research in this domain over the past decade. Initially, it analyzes the voltage impact patterns and control principles in distribution networks under varying levels of renewable energy penetration. Subsequently, it introduces optimization dispatch models for ADNs that focus on three key objectives: safety, economy, and low carbon emissions. Furthermore, addressing the challenge of solving non-convex and nonlinear models, the paper highlights model reformulation strategies such as semidefinite relaxation, second-order cone relaxation, and convex inner approximation methods, along with summarizing relevant intelligent solution algorithms. Additionally, in response to the high uncertainty of renewable energy output, it reviews stochastic optimization dispatch strategies for ADNs, encompassing single-stage, two-stage, and multi-stage approaches. Meanwhile, given the promising prospects of large-scale deep reinforcement learning models in the power sector, their applications in ADN optimization dispatch are also reviewed. Finally, the paper outlines potential future research directions for ADN optimization dispatch. Full article
Show Figures

Figure 1

23 pages, 20344 KiB  
Article
Transient Stability Analysis for the Wind Power Grid-Connected System: A Manifold Topology Perspective on the Global Stability Domain
by Jinhao Yuan, Meiling Ma and Yanbing Jia
Electricity 2025, 6(3), 44; https://doi.org/10.3390/electricity6030044 - 1 Aug 2025
Viewed by 183
Abstract
Large-scale wind power grid-connected systems can trigger the risk of power system instability. In order to enhance the stability margin of grid-connected systems, this paper accurately characterizes the topology of the global boundary of stability domain (BSD) of the grid-connected system based on [...] Read more.
Large-scale wind power grid-connected systems can trigger the risk of power system instability. In order to enhance the stability margin of grid-connected systems, this paper accurately characterizes the topology of the global boundary of stability domain (BSD) of the grid-connected system based on BSD theory, using the method of combining the manifold topologies and singularities at infinity. On this basis, the effect of large-scale doubly fed induction generators (DFIGs) replacing synchronous units on the BSD of the system is analyzed. Simulation results based on the IEEE 39-bus system indicate that the negative impedance characteristics and low inertia of DFIGs lead to a contraction of the stability domain. The principle of singularity invariance (PSI) proposed in this paper can effectively expand the BSD by adjusting the inertia and damping, thereby increasing the critical clearing time by about 5.16% and decreasing the dynamic response time by about 6.22% (inertia increases by about 5.56%). PSI is superior and applicable compared to traditional energy functions, and can be used to study the power angle stability of power systems with a high proportion of renewable energy. Full article
Show Figures

Figure 1

25 pages, 2281 KiB  
Article
Life Cycle Cost Modeling and Multi-Dimensional Decision-Making of Multi-Energy Storage System in Different Source-Grid-Load Scenarios
by Huijuan Huo, Peidong Li, Cheng Xin, Yudong Wang, Yuan Zhou, Weiwei Li, Yanchao Lu, Tianqiong Chen and Jiangjiang Wang
Processes 2025, 13(8), 2400; https://doi.org/10.3390/pr13082400 - 28 Jul 2025
Viewed by 347
Abstract
The large-scale integration of volatile and intermittent renewables necessitates greater flexibility in the power system. Improving this flexibility is key to achieving a high proportion of renewable energy consumption. In this context, the scientific selection of energy storage technology is of great significance [...] Read more.
The large-scale integration of volatile and intermittent renewables necessitates greater flexibility in the power system. Improving this flexibility is key to achieving a high proportion of renewable energy consumption. In this context, the scientific selection of energy storage technology is of great significance for the construction of new power systems. From the perspective of life cycle cost analysis, this paper conducts an economic evaluation of four mainstream energy storage technologies: lithium iron phosphate battery, pumped storage, compressed air energy storage, and hydrogen energy storage, and quantifies and compares the life cycle cost of multiple energy storage technologies. On this basis, a three-dimensional multi-energy storage comprehensive evaluation indicator system covering economy, technology, and environment is constructed. The improved grade one method and entropy weight method are used to determine the comprehensive performance, and the fuzzy comprehensive evaluation method is used to carry out multi-attribute decision-making on the multi-energy storage technology in the source, network, and load scenarios. The results show that pumped storage and compressed air energy storage have significant economic advantages in long-term and large-scale application scenarios. With its fast response ability and excellent economic and technical characteristics, the lithium iron phosphate battery has the smallest score change rate (15.2%) in various scenarios, showing high adaptability. However, hydrogen energy storage technology still lacks economic and technological maturity, and breakthrough progress is still needed for its wide application in various application scenarios in the future. Full article
Show Figures

Figure 1

18 pages, 5232 KiB  
Article
Analysis of the Characteristics of a Multi-Generation System Based on Geothermal, Solar Energy, and LNG Cold Energy
by Xinfeng Guo, Hao Li, Tianren Wang, Zizhang Wang, Tianchao Ai, Zireng Qi, Huarong Hou, Hongwei Chen and Yangfan Song
Processes 2025, 13(8), 2377; https://doi.org/10.3390/pr13082377 - 26 Jul 2025
Viewed by 285
Abstract
In order to reduce gas consumption and increase the renewable energy proportion, this paper proposes a poly-generation system that couples geothermal, solar, and liquid natural gas (LNG) cold energy to produce steam, gaseous natural gas, and low-temperature nitrogen. The high-temperature flue gas is [...] Read more.
In order to reduce gas consumption and increase the renewable energy proportion, this paper proposes a poly-generation system that couples geothermal, solar, and liquid natural gas (LNG) cold energy to produce steam, gaseous natural gas, and low-temperature nitrogen. The high-temperature flue gas is used to heat LNG; low-temperature flue gas, mainly nitrogen, can be used for cold storage cooling, enabling the staged utilization of the energy. Solar shortwave is used for power generation, and longwave is used to heat the working medium, which realizes the full spectrum utilization of solar energy. The influence of different equipment and operating parameters on the performance of a steam generation system is studied, and the multi-objective model of the multi-generation system is established and optimized. The results show that for every 100 W/m2 increase in solar radiation, the renewable energy ratio of the system increases by 1.5%. For every 10% increase in partial load rate of gas boiler, the proportion of renewable energy decreases by 1.27%. The system’s energy efficiency, cooling output, and the LNG vaporization flow rate are negatively correlated with the scale of solar energy utilization equipment. The decision variables determined by the TOPSIS (technique for order of preference by similarity to ideal solution) method have better economic performance. Its investment cost is 18.14 × 10 CNY, which is 7.83% lower than that of the LINMAP (linear programming technique for multidimensional analysis of preference). Meanwhile, the proportion of renewable energy is only 0.29% lower than that of LINMAP. Full article
(This article belongs to the Special Issue Innovations in Waste Heat Recovery in Industrial Processes)
Show Figures

Figure 1

22 pages, 1896 KiB  
Article
Physics-Constrained Diffusion-Based Scenario Expansion Method for Power System Transient Stability Assessment
by Wei Dong, Yue Yu, Lebing Zhao, Wen Hua, Ying Yang, Bowen Wang, Jiawen Cao and Changgang Li
Processes 2025, 13(8), 2344; https://doi.org/10.3390/pr13082344 - 23 Jul 2025
Viewed by 236
Abstract
In transient stability assessment (TSA) of power systems, the extreme scarcity of unstable scenario samples often leads to misjudgments of fault risks by assessment models, and this issue is particularly pronounced in new-type power systems with high penetration of renewable energy sources. To [...] Read more.
In transient stability assessment (TSA) of power systems, the extreme scarcity of unstable scenario samples often leads to misjudgments of fault risks by assessment models, and this issue is particularly pronounced in new-type power systems with high penetration of renewable energy sources. To address this, this paper proposes a physics-constrained diffusion-based scenario expansion method. It constructs a hierarchical conditional diffusion framework embedded with transient differential equations, combines a spatiotemporal decoupling analysis mechanism to capture grid topological and temporal features, and introduces a transient energy function as a stability boundary constraint to ensure the physical rationality of generated scenarios. Verification on the modified IEEE-39 bus system with a high proportion of new energy sources shows that the proposed method achieves an unstable scenario recognition rate of 98.77%, which is 3.92 and 2.65 percentage points higher than that of the Synthetic Minority Oversampling Technique (SMOTE, 94.85%) and Generative Adversarial Networks (GANs, 96.12%) respectively. The geometric mean achieves 99.33%, significantly enhancing the accuracy and reliability of TSA, and providing sufficient technical support for identifying the dynamic security boundaries of power systems. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

20 pages, 1647 KiB  
Article
Research on the Enhancement of Provincial AC/DC Ultra-High Voltage Power Grid Security Based on WGAN-GP
by Zheng Shi, Yonghao Zhang, Zesheng Hu, Yao Wang, Yan Liang, Jiaojiao Deng, Jie Chen and Dingguo An
Electronics 2025, 14(14), 2897; https://doi.org/10.3390/electronics14142897 - 19 Jul 2025
Viewed by 241
Abstract
With the advancement in the “dual carbon” strategy and the integration of high proportions of renewable energy sources, AC/DC ultra-high-power grids are facing new security challenges such as commutation failure and multi-infeed coupling effects. Fault diagnosis, as an important tool for assisting power [...] Read more.
With the advancement in the “dual carbon” strategy and the integration of high proportions of renewable energy sources, AC/DC ultra-high-power grids are facing new security challenges such as commutation failure and multi-infeed coupling effects. Fault diagnosis, as an important tool for assisting power grid dispatching, is essential for maintaining the grid’s long-term stable operation. Traditional fault diagnosis methods encounter challenges such as limited samples and data quality issues under complex operating conditions. To overcome these problems, this study proposes a fault sample data enhancement method based on the Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP). Firstly, a simulation model of the AC/DC hybrid system is constructed to obtain the original fault sample data. Then, through the adoption of the Wasserstein distance measure and the gradient penalty strategy, an improved WGAN-GP architecture suitable for feature learning of the AC/DC hybrid system is designed. Finally, by comparing the fault diagnosis performance of different data models, the proposed method achieves up to 100% accuracy on certain fault types and improves the average accuracy by 6.3% compared to SMOTE and vanilla GAN, particularly under limited-sample conditions. These results confirm that the proposed approach can effectively extract fault characteristics from complex fault data. Full article
(This article belongs to the Special Issue Applications of Computational Intelligence, 3rd Edition)
Show Figures

Figure 1

22 pages, 1725 KiB  
Article
Capacity Optimization for Coordinated Operation of Hybrid Electrolytic Cells Based on Wavelet Packet
by Yi Yang, Bowen Zhou, Yang Xu, Juan Zhang, Bo Yang, Guiping Zhou and Shunjiang Wang
Sustainability 2025, 17(14), 6412; https://doi.org/10.3390/su17146412 - 13 Jul 2025
Viewed by 331
Abstract
Hydrogen production through electrolysis of water can achieve efficient, stable and diversified utilization of renewable energy. To this end, a hybrid electrolyzer system for hydrogen production based on bi-layer optimization is constructed. Firstly, the wind and photovoltaic power is decomposed into high-frequency and [...] Read more.
Hydrogen production through electrolysis of water can achieve efficient, stable and diversified utilization of renewable energy. To this end, a hybrid electrolyzer system for hydrogen production based on bi-layer optimization is constructed. Firstly, the wind and photovoltaic power is decomposed into high-frequency and low-frequency components by an adaptive wavelet packet. The low-frequency power is allocated to the alkaline electrolyzers (AWE) to ensure its stability, and the high-frequency power is allocated to the proton exchange membrane electrolyzers (PEM) with a faster response characteristic, thereby improving the energy utilization rate. This paper proposes a bi-layer optimization model, in which the upper-layer objective is to minimize the cost of mixed hydrogen production, and the lower-layer optimization objective is to maximize the utilization rate of renewable energy. The differential evolution algorithm optimizes the upper-layer objective, with results sent to the lower layer. Then, the YALMIP toolbox is used to solve the lower-layer objective. Through case analysis, the optimal proportion of AWE and PEM hydrogen electrolyzers obtained by this optimization method is 89.5 and 10.5, respectively. Compared with a single type of electrolyzer, the method proposed in this paper effectively improves the energy utilization efficiency and reduces the cost of hydrogen production. Full article
(This article belongs to the Topic Clean Energy Technologies and Assessment, 2nd Edition)
Show Figures

Figure 1

15 pages, 795 KiB  
Article
Optimal Dispatch of Power Grids Considering Carbon Trading and Green Certificate Trading
by Xin Shen, Xuncheng Zhu, Yuan Yuan, Zhao Luo, Xiaoshun Zhang and Yuqin Liu
Technologies 2025, 13(7), 294; https://doi.org/10.3390/technologies13070294 - 9 Jul 2025
Viewed by 274
Abstract
In the context of the intensifying global climate crisis, the power industry, as a significant carbon emitter, urgently needs to promote low-carbon transformation using market mechanisms. In this paper, a multi-objective stochastic optimization scheduling framework for regional power grids integrating carbon trading (CET) [...] Read more.
In the context of the intensifying global climate crisis, the power industry, as a significant carbon emitter, urgently needs to promote low-carbon transformation using market mechanisms. In this paper, a multi-objective stochastic optimization scheduling framework for regional power grids integrating carbon trading (CET) and green certificate trading (GCT) is proposed to coordinate the conflict between economic benefits and environmental objectives. By building a deterministic optimization model, the goal of maximizing power generation profit and minimizing carbon emissions is combined in a weighted form, and the power balance, carbon quota constraint, and the proportion of renewable energy are introduced. To deal with the uncertainty of power demand, carbon baseline, and the green certificate ratio, Monte Carlo simulation was further used to generate random parameter scenarios, and the CPLEX solver was used to optimize scheduling schemes iteratively. The simulation results show that when the proportion of green certificates increases from 0.35 to 0.45, the proportion of renewable energy generation increases by 4%, the output of coal power decreases by 12–15%, and the carbon emission decreases by 3–4.5%. At the same time, the tightening of carbon quotas (coefficient increased from 0.78 to 0.84) promoted the output of gas units to increase by 70 MWh, verifying the synergistic emission reduction effect of the “total control + market incentive” policy. Economic–environmental tradeoff analysis shows that high-cost inputs are positively correlated with the proportion of renewable energy, and carbon emissions are significantly negatively correlated with the proportion of green certificates (correlation coefficient −0.79). This study emphasizes that dynamic adjustments of carbon quota and green certificate targets can avoid diminishing marginal emission reduction efficiency, while the independent carbon price mechanism needs to enhance its linkage with economic targets through policy design. This framework provides theoretical support and a practical path for decision-makers to design a flexible market mechanism and build a multi-energy complementary system of “coal power base load protection, gas peak regulation, and renewable energy supplement”. Full article
Show Figures

Figure 1

24 pages, 4035 KiB  
Article
Coordinated Optimization Scheduling Method for Frequency and Voltage in Islanded Microgrids Considering Active Support of Energy Storage
by Xubin Liu, Jianling Tang, Qingpeng Zhou, Jiayao Peng and Nanxing Huang
Processes 2025, 13(7), 2146; https://doi.org/10.3390/pr13072146 - 5 Jul 2025
Cited by 1 | Viewed by 344
Abstract
In islanded microgrids with high-proportion renewable energy, the disconnection from the main grid leads to the characteristics of low inertia, weak damping, and high impedance ratio, which exacerbate the safety risks of frequency and voltage. To balance the requirements of system operation economy [...] Read more.
In islanded microgrids with high-proportion renewable energy, the disconnection from the main grid leads to the characteristics of low inertia, weak damping, and high impedance ratio, which exacerbate the safety risks of frequency and voltage. To balance the requirements of system operation economy and frequency–voltage safety, a coordinated optimization scheduling method for frequency and voltage in islanded microgrids considering the active support of battery energy storage (BES) is proposed. First, to prevent the state of charge (SOC) of BES from exceeding the frequency regulation range due to rapid frequency adjustment, a BES frequency regulation strategy with an adaptive virtual droop control coefficient is adopted. The frequency regulation capability of BES is evaluated based on the capacity constraints of grid-connected converters, and a joint frequency and voltage regulation strategy for BES is proposed. Second, an average system frequency model and an alternating current power flow model for islanded microgrids are established. The influence of steady-state voltage fluctuations on active power frequency regulation is analyzed, and dynamic frequency safety constraints and node voltage safety constraints are constructed and incorporated into the optimization scheduling model. An optimization scheduling method for islanded microgrids that balances system operation costs and frequency–voltage safety is proposed. Finally, the IEEE 33-node system in islanded mode is used as a simulation case. Through comparative analysis of different optimization strategies, the effectiveness of the proposed method is verified. Full article
Show Figures

Figure 1

20 pages, 3502 KiB  
Article
Blockchain-Enabled Cross-Chain Coordinated Trading Strategy for Electricity-Carbon-Green Certificate in Virtual Power Plants: Multi-Market Coupling and Low-Carbon Operation Optimization
by Chao Zheng, Wei Huang, Suwei Zhai, Kaiyan Pan, Xuehao He, Xiaojie Liu, Shi Su, Cong Shen and Qian Ai
Energies 2025, 18(13), 3443; https://doi.org/10.3390/en18133443 - 30 Jun 2025
Viewed by 232
Abstract
In the context of global climate governance and the low-carbon energy transition, virtual power plant (VPP), a key technology for integrating distributed energy resources, is urgently needed to solve the problem of decentralization and lack of synergy in electricity, carbon, and green certificate [...] Read more.
In the context of global climate governance and the low-carbon energy transition, virtual power plant (VPP), a key technology for integrating distributed energy resources, is urgently needed to solve the problem of decentralization and lack of synergy in electricity, carbon, and green certificate trading. Existing studies mostly focus on single energy or carbon trading scenarios and lack a multi-market coupling mechanism supported by blockchain technology, resulting in low transaction transparency and a high risk of information tampering. For this reason, this paper proposes a synergistic optimization strategy for electricity/carbon/green certificate virtual power plants based on blockchain cross-chain transactions. First, Latin Hypercubic Sampling (LHS) is used to generate new energy output and load scenarios, and the K-means clustering method with improved particle swarm optimization are combined to cut down the scenarios and improve the prediction accuracy; second, a relay chain cross-chain trading framework integrating quota system is constructed to realize organic synergy and credible data interaction among electricity, carbon, and green certificate markets; lastly, the multi-energy optimization model of the virtual power plant is designed to integrate carbon capture, Finally, a virtual power plant multi-energy optimization model is designed, integrating carbon capture, power-to-gas (P2G) and other technologies to balance the economy and low-carbon goals. The simulation results show that compared with the traditional model, the proposed strategy reduces the carbon emission intensity by 13.3% (1.43 tons/million CNY), increases the rate of new energy consumption to 98.75%, and partially offsets the cost through the carbon trading revenue, which verifies the Pareto improvement of environmental and economic benefits. This study provides theoretical support for the synergistic optimization of multi-energy markets and helps to build a low-carbon power system with a high proportion of renewable energy. Full article
Show Figures

Figure 1

22 pages, 3277 KiB  
Article
Power Oscillation Emergency Support Strategy for Wind Power Clusters Based on Doubly Fed Variable-Speed Pumped Storage Power Support
by Weidong Chen and Jianyuan Xu
Symmetry 2025, 17(6), 964; https://doi.org/10.3390/sym17060964 - 17 Jun 2025
Viewed by 331
Abstract
Single-phase short-circuit faults are severe asymmetrical fault modes in high renewable energy power systems. They can easily cause large-scale renewable energy to enter the low-voltage ride-through (LVRT) state. When such symmetrical or asymmetrical faults occur in the transmission channels of high-proportion wind power [...] Read more.
Single-phase short-circuit faults are severe asymmetrical fault modes in high renewable energy power systems. They can easily cause large-scale renewable energy to enter the low-voltage ride-through (LVRT) state. When such symmetrical or asymmetrical faults occur in the transmission channels of high-proportion wind power clusters, they may trigger the tripping of thermal power units and a transient voltage drop in most wind turbines in the high-proportion wind power area. This causes an instantaneous active power deficiency and poses a low-frequency oscillation risk. To address the deficiencies of wind turbine units in fault ride-through (FRT) and active frequency regulation capabilities, a power emergency support scheme for wind power clusters based on doubly fed variable-speed pumped storage dynamic excitation is proposed. A dual-channel energy control model for variable-speed pumped storage units is established via AC excitation control. This model provides inertia support and FRT energy simultaneously through AC excitation control of variable-speed pumped storage units. Considering the transient stability of the power network in the wind power cluster transmission system, this scheme prioritizes offering dynamic reactive power to support voltage recovery and suppresses power oscillations caused by power deficiency during LVRT. The electromagnetic torque completed the power regulation within 0.4 s. Finally, the effectiveness of the proposed strategy is verified through modeling and analysis based on the actual power network of a certain region in Northeast China. Full article
(This article belongs to the Special Issue Advances in Intelligent Power Electronics with Symmetry/Asymmetry)
Show Figures

Figure 1

19 pages, 1681 KiB  
Article
An Energy-Function-Based Approach for Power System Inertia Assessment
by Shizheng Wang and Zhenglong Sun
Energies 2025, 18(12), 3105; https://doi.org/10.3390/en18123105 - 12 Jun 2025
Viewed by 311
Abstract
With the increasing popularity of low-cost, clean, and environmentally friendly new energy sources, the proportion of grid-connected new energy units has increased significantly. However, since these units are frequency decoupled from the grid through a power electronic interface, they are unable to provide [...] Read more.
With the increasing popularity of low-cost, clean, and environmentally friendly new energy sources, the proportion of grid-connected new energy units has increased significantly. However, since these units are frequency decoupled from the grid through a power electronic interface, they are unable to provide inertia support during active power perturbations, which leads to a decrease in system inertia and reduced frequency stability. In this study, the urgent need to accurately assess inertia is addressed by developing an energy-function-based inertia identification technique that eliminates the effect of damping terms. By integrating vibration mechanics, the proposed method calculates the inertia value after a perturbation using port measurements (active power, voltage phase, and frequency). Simulation results of the Western System Coordinating Council (WSCC) 9-bus system show that the inertia estimation error of the method is less than 1%, which is superior to conventional methods such as rate-of-change-of-frequency (RoCoF) and least squares methods. Notably, the technique accurately evaluates the inertia of synchronous generators and doubly fed induction generators (DFIGs) under virtual inertia control, providing a robust inertia evaluation framework for low-inertia power systems with high renewable energy penetration. This research deepens the understanding of inertial dynamics and contributes to practical applications in grid stability analysis and control strategy optimalization. Full article
Show Figures

Figure 1

17 pages, 1393 KiB  
Article
Regional Frequency Measurement Point Selection and System Partitioning Method for High-Renewable-Energy-Penetration Power System
by Dongdong Li, Zhenfei Yao, Yin Yao, Bo Xu and Fan Yang
Energies 2025, 18(12), 3040; https://doi.org/10.3390/en18123040 - 8 Jun 2025
Viewed by 418
Abstract
The integration of high proportions of renewable energy into power systems to replace traditional synchronous generators has led to continuous weakening of the system inertia support and primary frequency regulation resources. Spatiotemporal dispersion of the system’s frequency response has become increasingly prominent. Historical [...] Read more.
The integration of high proportions of renewable energy into power systems to replace traditional synchronous generators has led to continuous weakening of the system inertia support and primary frequency regulation resources. Spatiotemporal dispersion of the system’s frequency response has become increasingly prominent. Historical data from numerous frequency disturbance events show that the unified system’s frequency can no longer accurately represent the variations in the frequency response at each node in the system. To address this issue, a method for frequency measurement point selection and system partitioning in a high-renewable-energy-penetration power system is proposed. Firstly, the frequency regulation influence (FRI) index is defined to quantify the comprehensive ability of nodes to dynamically regulate the spatiotemporal dynamics of the power system’s frequency, identifying key frequency regulation nodes as the regional frequency measurement points. Secondly, a hierarchical clustering method is employed to partition the remaining nodes around the frequency measurement points, and the optimal partitioning result is evaluated using modularity indicators. Finally, the effectiveness of the proposed method is verified using a modified standard 39-node system. The simulation results reveal that the proposed frequency measurement point selection and system partitioning method can effectively enhance the accuracy of regional frequency response measurements, as well as the evaluation accuracy of inertia and primary frequency regulation. Full article
(This article belongs to the Special Issue Big Data Analysis and Application in Power System)
Show Figures

Figure 1

22 pages, 4847 KiB  
Article
Design and Implementation of a Comparative Study of Fractional-Order Fuzzy Logic and Conventional PI Controller for Optimizing Stand-Alone DFIG Performance in Wind Energy Systems
by Fella Boucetta, Mohamed Toufik Benchouia, Amel Benmouna, Mohamed Chebani, Amar Golea, Mohamed Becherif and Mohammed Saci Chabani
Sci 2025, 7(2), 80; https://doi.org/10.3390/sci7020080 - 5 Jun 2025
Viewed by 601
Abstract
This paper introduces a novel fractional-order fuzzy logic controller (FOFLC) designed for stator voltage control in standalone doubly fed induction generator (DFIG) systems used in wind energy applications. Unlike traditional fuzzy logic controllers (FLCs), which are limited by integer-order dynamics, the FOFLC leverages [...] Read more.
This paper introduces a novel fractional-order fuzzy logic controller (FOFLC) designed for stator voltage control in standalone doubly fed induction generator (DFIG) systems used in wind energy applications. Unlike traditional fuzzy logic controllers (FLCs), which are limited by integer-order dynamics, the FOFLC leverages the advanced principles of fractional-order (FO) calculus. By integrating fuzzy logic with fractional-order operators, the FOFLC enhances system precision, adaptability, and interpretability while addressing the inherent limitations of conventional proportional-integral (PI) controllers and integer-order FLCs. A key innovation of the FOFLC is its dual-mode architecture, enabling it to operate seamlessly as either a traditional FLC or a fractional-order FOFLC controller. This versatility allows for independent tuning of fractional parameters, optimizing the system’s response to transients, steady-state errors, and disturbances. The controller’s flexibility makes it particularly well-suited for nonlinear and dynamically complex stand-alone renewable energy systems. The FOFLC is experimentally validated on a 3-kW DFIG test bench using the dSPACE-1104 platform under various operating conditions. Compared to a conventional PI controller, the FOFLC demonstrated superior performance, achieving 80% reduction in response time, eliminating voltage overshoot and undershoot, reducing stator power and torque ripples by over 46%, and decreasing total harmonic distortion (THD) of both stator voltage and current by more than 50%. These results confirm the FOFLC’s potential as a robust and adaptive control solution for stand-alone renewable energy systems, ensuring high-quality power output and reliable operation. Full article
Show Figures

Figure 1

27 pages, 2165 KiB  
Article
Load Frequency Control via Multi-Agent Reinforcement Learning and Consistency Model for Diverse Demand-Side Flexible Resources
by Guangzheng Yu, Xiangshuai Li, Tiantian Chen and Jing Liu
Processes 2025, 13(6), 1752; https://doi.org/10.3390/pr13061752 - 2 Jun 2025
Viewed by 567
Abstract
With the high-proportion integration of renewable energy into the power grid, the fast-response capabilities of demand-side flexible resources (DSFRs), such as electric vehicles (EVs) and thermostatic loads, have become critical for frequency stability. However, the diverse dynamic characteristics of heterogeneous resources lead to [...] Read more.
With the high-proportion integration of renewable energy into the power grid, the fast-response capabilities of demand-side flexible resources (DSFRs), such as electric vehicles (EVs) and thermostatic loads, have become critical for frequency stability. However, the diverse dynamic characteristics of heterogeneous resources lead to high modeling complexity. Traditional reinforcement learning methods, which rely on neural networks to approximate value functions, often suffer from training instability and lack the effective quantification of resource regulation costs. To address these challenges, this paper proposes a multi-agent reinforcement learning frequency control method based on a Consistency Model (CM). This model incorporates power, energy, and first-order inertia characteristics to uniformly characterize the response delays and dynamic behaviors of EVs and air conditioners (ACs), providing a reduced-order analytical foundation for large-scale coordinated control. On this basis, a policy gradient controller is designed. By using projected gradient descent, it ensures that control actions satisfy physical boundaries. A reward function including state deviation penalties and regulation costs is constructed, dynamically adjusting penalty factors according to resource states to achieve priority configuration for frequency regulation. Simulations on the IEEE 39-node system demonstrate that the proposed method significantly outperforms traditional approaches in terms of frequency deviation, algorithm training efficiency, and frequency regulation economy. Full article
Show Figures

Figure 1

Back to TopTop